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Toward autonomous design and synthesis of novel inorganic materials
Nathan J. Szymanski1,2, Yan Zeng2, Haoyan Huo1,2, Christopher J. Bartel1,2*,

Haegyeom Kim2*, and Gerbrand Ceder1,2*

Abstract

Autonomous experimentation driven by artificial intelligence (AI) provides an exciting 

opportunity to revolutionize inorganic materials discovery and development. Herein, we review 

recent progress in the design of self-driving laboratories, including robotics to automate materials 

synthesis and characterization, in conjunction with AI to interpret experimental outcomes and 

propose new experimental procedures. We focus on efforts to automate inorganic synthesis 

through solution-based routes, solid-state reactions, and thin film deposition. In each case, 

connections are made to relevant work in organic chemistry, where automation is more common. 

Characterization techniques are primarily discussed in the context of phase identification, as this 

task is critical to understand what products have formed during synthesis. The application of deep 

learning to analyze multivariate characterization data and perform phase identification is 

examined. To achieve “closed-loop” materials synthesis and design, we further provide a detailed 

overview of optimization algorithms that use active learning to rationally guide experimental 

iterations. Finally, we highlight several key opportunities and challenges for the future 

development of self-driving inorganic materials synthesis platforms.
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1. Introduction
Historically, great innovations in technologies have been driven by the discovery of novel 

materials. Current materials development largely relies on three key steps: (i) identification of a 

new composition and structure of interest, (ii) targeted and scalable synthesis of that compound, 

and (iii) post-processing of the product to carefully optimize its properties1. To accelerate this 

procedure, it is necessary to not only improve the efficacy of each step, but also to integrate all 

three into a closed loop so that they can occur in rapid succession and benefit from optimal 

feedback between them. While the initial identification step has been assisted by large-scale ab 

initio simulations2,3, the latter two generally remain difficult and time-consuming owing to the 

iterative trial-and-error experimental approach required for both synthesis and property 

optimization. A breakthrough to overcome these challenges may be found in autonomous 

experimentation enabled by self-driving laboratories, which aim to aid the human researcher with 

robotic platforms guided by artificial intelligence (AI).

The automation of experiments has long been a topic of interest, with early examples of 

widespread utilization demonstrated in the pharmaceutical industry4. There, high-throughput (HT) 

chemistry platforms have been developed to accelerate drug discovery using combinatorial 

sampling of possible molecules and synthesis conditions, which can be performed in an automated 

and highly parallelized manner to save considerable time and costs5-7. More recently, the advent 

of AI has created a symbiosis between hardware and software, with active learning techniques 

guiding the exploration of design spaces and leading to increased efficiencies relative to 

combinatorial techniques8-10. This has opened the door to more sophisticated applications ranging 

from systematic inspection of retrosynthetic routes in small molecule manufacturing11 to 

performance optimization in organic photovoltaics12. Furthermore, by automating the role of the 

experimenter as opposed to individual instruments, modern systems are flexible and can rapidly 

incorporate improvements in the underlying technology13.

In contrast to organic chemistry, the development of autonomous experimentation for 

inorganic materials remains in its early stages. Given the challenges associated with handling solid 

powders, the limited availability of methods that can reliably characterize bulk samples, and the 

lack of a rigorous theoretical framework describing the factors influencing synthesizability, the 

majority of existing work has demonstrated only partial automation of the experimental process. 

Within the thin film community, for example, HT automation of synthesis and characterization is 

Page 2 of 70Materials Horizons



3

routinely carried out to probe the effects of composition and processing conditions on the 

properties of resulting samples14-16. Similar methods have also been used to study bulk powders 

but are generally more limited with respect to the scope of compounds that can be dealt with17-19. 

Existing workflows are restricted to materials with readily available synthesis recipes, which 

precludes the discovery of novel systems with new and interesting properties. More recently, AI 

has been incorporated into the automation pipeline to achieve closed-loop optimization of 

synthetic routes for nanoparticles formed in continuous flow reactors20 and nanotubes grown via 

chemical vapor deposition (CVD)21,22. While these platforms can be used to maximize the yield 

and purity of a target phase, they rely on a reasonable initial guess for the choice of precursors and 

synthesis conditions so that a measurable amount of the product is consistently obtained and used 

to guide the optimization. In novel compound synthesis and discovery, however, there is typically 

insufficient information available regarding successful reaction pathways, and consequently, the 

majority of synthesis trials fail to produce any amount of the target phase. Therefore, although 

current capabilities are indeed promising, considerable progress is necessary before a universally 

applicable platform enabling autonomous, end-to-end synthesis of inorganic materials can be 

realized.

Herein, we review the progress made toward “closing the loop” of experimental design, 

execution, and learning via the development of self-driving laboratories with a focus on 

applications in inorganic materials science. Accordingly, we consider three major aspects that must 

be automated to reach this goal. First, experimental procedures should be carried out by modular, 

robotic platforms with the capability of synthesizing and characterizing the materials of interest. 

Second, the data obtained from characterization should be interpreted by the machine and 

converted into simple, physically meaningful quantities providing insight into the experimental 

outcome. Last but not least, this information should then be passed to an intelligent decision-

making algorithm that actively learns from previously tabulated data and/or scientific principles 

to suggest new experimental parameters for subsequent tests. Successful design and integration of 

all three aspects is essential to complete the closed-loop workflow illustrated in Figure 1.

With the goal of reaching complete autonomy in the synthesis of inorganic materials, we 

offer perspectives regarding challenges and future directions. To this end, we outline promising 

techniques to automate solid-state synthesis, characterize the resulting samples by using deep 

learning algorithms to interpret X-ray diffraction (XRD) spectra, and make informed decisions 
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regarding subsequent syntheses. The automation of synthesis and characterization would ensure a 

high experimental throughput, freeing up time for the researcher to analyze resulting datasets and 

plan new experiments. An increase in the availability of synthesis data may also assist in the 

development of AI that learns from experimental outcomes – not only to discern whether a given 

synthesis attempt succeeded or failed, but more importantly to hypothesize why it may have 

succeeded or failed. Such predictions generally require insight from human researchers with a 

detailed understanding of plausible reaction mechanisms. Automating this process is a daunting 

task; however, we propose that a useful set of rules for understanding synthesis can be extracted 

from work being conducted in several related areas including theories on synthesizability23, in situ 

characterization of reaction pathways24, and an increasing availability of synthesis data25. If 

developments in these areas are successful in enabling a self-driving synthesis laboratory, it would 

have wide-reaching impacts across the materials science community, providing the opportunity to 

efficiently generate new compounds at an unprecedented rate while reducing the amount of time 

and labor spent by the researcher. 

Figure 1: Schematic showing the general workflow of fully autonomous experimentation for the 

discovery and development of novel inorganic materials.
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2.  Synthesis & characterization
Synthesizing samples is the first major step in the automated optimization of materials properties 

and processes. We note that our initial discussion presented here is restricted to the hardware 

requirements necessary to carry out a synthesis procedure with a given set of parameters including 

the choice of precursors and conditions – algorithms designed to suggest these parameters will be 

reviewed in Section 4. After the samples have been prepared, appropriate characterization 

techniques should be employed to reveal the properties of interest and provide information 

regarding the experimental outcome. The execution of synthesis and characterization can be 

accomplished using robotic systems coupled with real-time and online monitoring to ensure high 

precision and the handling of any operational issues. The ease of automation, however, varies 

depending on the synthesis method and the form of the products. We therefore divide our 

discussion into three major categories: batch or continuous solution-based synthesis, thin film 

deposition, and solid-state synthesis of bulk powders. Moreover, while the focus of this review is 

placed on inorganic materials, we will often highlight related platforms in organic chemistry, 

where automation is more common, to learn from their success and understand how similar 

methods can be extended to inorganic compounds.

2.1 Solution-based synthesis

The batch solution-based approach, whereby reagents are sequentially combined in appropriate 

solvents and subjected to a series of carefully chosen experimental conditions, is often the method 

chosen by organic chemists when synthesizing small molecules26. The automation of this method 

to enable HT screening has been widely adopted. As detailed in previous reviews4,7,27, industrial 

drug discovery systems can routinely conduct thousands of experiments each day. For more 

complex molecules, however, subtle multi-step reaction sequences are required. To automate the 

step-by-step addition of reagents, a modular robotic system known as the “Chemputer” was 

developed by Steiner et al.11 The backbone of their setup, shown in Figure 2, contains a series of 

syringe pumps and six-way selection valves used to transfer reagents between different 

components of the platform. Four modules are implemented to handle each aspect required for 

synthesis and characterization, including the main reactor, liquid-liquid separator, filtration 

apparatus, and rotary evaporator. At the end of the line, chromatography is employed to identify 

and quantify the resulting products. To verify the effectiveness of their platform, the authors 
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employed the system to automatically synthesize three common drugs over the course of several 

days. For all procedures, the desired product was successfully obtained with a yield comparable to 

that generated by human chemists using a standard synthetic procedure.

Figure 2: A (a) schematic and (b) photograph of the Chemputer, an automated platform enabling 

the synthesis of pharmaceutical compounds. The setup is comprised of four modules including the 

reactor, filter, separator, and rotary evaporation, all of which are connected through a series of 

syringe pumps and six-wave valves. Reproduced with permission11. Copyright 2019, AAAS.
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To increase flexibility, Burger et al. produced a mobile robot capable of replicating the 

actions performed by the traditional chemist – e.g., dispensing reagents, handling vials, and 

executing operations on lab hardware13. Because this platform focuses on automating the role of 

the researcher while allowing all other aspects of the lab to be interchangeable, it can in principle 

be applied to diverse sets of experiments by simply swapping out labware and re-programming the 

robot accordingly. This was demonstrated in the study of aqueous photocatalysts for hydrogen 

evolution, for which the robotic chemist successfully conducted 688 experiments over the course 

of eight days. The authors estimate that a comparable number of experiments would have taken a 

human researcher several months to complete, thus highlighting the benefits of automation. 

Flow chemistry represents an alternative synthesis approach that is more widely 

implemented for large-scale manufacturing of organic compounds28. Continuous flow reactors 

pump reagents through a series of interconnected vessels, with reaction stoichiometries set by the 

reagent flow rates and conditions controlled using in-line modules. Rapid flow rates and excellent 

mixing ensure efficient production of target compounds. Moreover, because the systems can be 

pressurized, higher temperatures can be accessed to enable faster reaction rates. As they eliminate 

the need to manually transfer samples between different stations required in batch chemistry, flow 

reactors are readily automated29,30. For example, Bédard et al. built a reconfigurable system to 

autonomously optimize a variety of chemical transformations in a flow reactor31. An alternating 

series of tubing and reaction bays shown in Figure 3 allow reagents to be added sequentially so 

that multi-step syntheses can be performed. To improve the versatility of the flow reactor, a “plug-

and-play” approach is employed whereby six different modules can be interchanged to provide 

unique capabilities such as heating, cooling, and catalysis. Similarly, many different 

characterization techniques including high-performance liquid chromatography (HPLC), mass 

spectrometry (MS), and optical spectroscopy can be implemented to analyze the reaction outcome. 

Applying the platform to three synthetic procedures involving common pharmaceuticals, the 

authors investigated optimal reaction conditions across hundreds of experiments spanning a 

cumulative timespan of less than two days. 
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Figure 3: A schematic showing the alternating series of reaction bays implemented sequentially 

throughout a continuous flow reactor designed to optimize organic reactions. A “plug-and-play” 

approach is used to swap out the modules listed to replicate varied reaction conditions such as 

heating, cooling, or photocatalysis. Reproduced with permission31. Copyright 2018, AAAS.

The promising results for automated solution-based syntheses of organic molecules have 

led to several efforts to demonstrate the automation of inorganic materials syntheses using similar 

methods. For example, to rapidly produce lithium and sodium metal oxides with varied 

compositions, a batch solution-based approach was partially automated using the robotic system 

depicted in Figure 418,19. This platform uses an electronic pipetting tool to transfer stock solutions 

of precursors into microplates, which are heated to mediate reactions between the starting 

materials. Depending on the choice of precursors and temperature, both co-precipitation and sol-

gel routes can be tested at rates of hundreds of samples per day, with the characterization of each 

conducted by XRD.  Comparable techniques have also been applied to automate the synthesis of 

metal halide perovskites from solution using inverse crystallization at high temperatures32. In 

existing workflows based on batch synthesis, however, manual intervention is generally required 

to transfer, dispose of, and replace sample containers between experimental iterations. To automate 
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these processes and fully close the loop, future work may consider integrating a programmable 

robotic arm as demonstrated by the mobile robotic chemist13.

In contrast to batch synthesis, flow chemistry is one of the few methods that has been 

proven successful in making inorganic synthesis fully autonomous. This was first shown by 

Krishnadasan et al. in the optimization of reactions producing CdSe nanoparticles20. Flow rates of 

CdO and Se precursors dissolved in organic solvents were controlled by electronic syringe pumps, 

combined using a Y-shaped reactor, and passed through a heated reaction vessel. Throughout this 

process, in-line spectrometry with a charge-coupled device (CCD) was employed to monitor 

product formation. In separate work, Li et al. used comparable techniques to automate the 

discovery of optically active perovskites. In their platform, precursor solutions were prepared by 

a rotation sampler and injected into a pipeline of temperature-controlled microfluidic reactors 

while in situ monitoring was conducted by optical spectroscopy33. For characterization of the 

synthesized materials, a robotic arm transferred samples from the flow reactor to a separate station 

where circular dichroism was measured using spectrometry. Each autonomous workflow was 

shown to be capable of performing hundreds of experiments at an accelerated rate relative to that 

obtained by a human researcher. 

Despite these successes, the generality of solution-based synthesis for inorganic materials 

remains limited given the constraints that are imposed on the choice of precursors and reaction 

conditions. Both batch and flow syntheses require that the starting materials are soluble in an 

appropriate solvent, which precludes the use of compounds with low solubilities in available 

liquids. This limitation has little effect on the scope of suitable organic compounds, most of which 

have reasonable solubilities in organic solvents, but it is highly restrictive for inorganic materials 

because many cannot be dissolved in common solvents such as water or ethanol. Furthermore, to 

avoid evaporation of the liquid solvent, operating temperatures must be kept relatively low during 

synthesis. Even with the use of pressurization in flow reactors,  C is an upper bound for most 200 °

systems, suggesting that neither batch nor flow chemistry can be used for inorganic materials that 

are synthesizable only at high temperatures. Therefore, although solution-based methods are useful 

where applicable, they do not provide sufficient coverage of the entire chemical space to be used 

exclusively for automated inorganic synthesis. 
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Figure 4: (a) A photograph of the robotic platform that partially automates the HT combinatorial 

synthesis of powder Na-Fe-Mn-O samples through a sol-gel approach. (b) The precursors shown 

directly after solution mixing. (c) The products after being dried and crushed, shown directly 

before firing at high temperature. Reproduced with permission19. Copyright 2020, American 

Chemical Society.

2.2 Thin film synthesis

Partial automation of synthesis and characterization has become increasingly common throughout 

the thin film community, where combinatorial methods are employed to study a range of systems 

such as high-entropy alloys34 and mixed metal chalcogenides35,36. These platforms typically rely 

on physical or chemical vapor depositions techniques to synthesize samples spanning a continuous 

range of compositions, either by sequentially depositing overlapping wedge-shaped layers from 

individual sources or by simultaneously depositing multiple elements (e.g., by co-sputtering) to 

achieve a compositional gradient14. The resulting thin film allows the effect of composition to be 

studied without requiring the synthesis of many individual samples. XRD, optical spectroscopy, 

and resistivity measurements are often used to characterize a grid of points across the sample and 

build a combinatorial library of material properties for the system. By producing a large amount 

of data for a single targeted sample, automation can be constrained to one experimental cycle of 

synthesis and characterization, whereas the subsequent processes of analysis and planning of future 

experiments remain to the researcher’s labor and intuition (i.e., the loop is not closed). For a 

detailed account of existing combinatorial techniques and their applications, we refer the reader to 

past review articles on the subject14,37. Here, we focus on several examples that demonstrate 
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progress made toward closing the loop of synthesis, characterization, and decision-making for thin 

film materials.

In one of the first well-known examples of completely autonomous experimentation for 

inorganic materials science, Nikolaev et al. designed a platform to find the synthesis conditions 

that optimized the growth rate of carbon nanotubes21. This process was automated using wafers 

containing thousands of micron-sized silicon pillars that were coated in a thin layer of catalyst 

material. Each individual pillar served as a microreactor in a CVD process with ethylene as a 

source of carbon. By heating pillars one at a time using a highly focused laser and iteratively 

moving the wafer with a two-axis motion stage, the synthesis of individual samples was precisely 

controlled. Moreover, the same laser acted as an excitation source for Raman spectroscopy, 

allowing continuous in situ monitoring of growth rates. As illustrated in Figure 5, the system was 

shown to efficiently carry out experiments at a rate of 100 samples per day, a significant 

improvement over conventional methods38. We note, however, that the success of this platform 

relies on the use of wafers containing many carefully constructed pillars of precursor material, 

which must be formed in advance and are not necessarily suitable for applications outside of 

microelectronics. 
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Figure 5: A schematic of the Autonomous Research System (ARES) built to study the formation 

of carbon nanotubes throughout varied synthesis conditions. A 532 nm laser was employed to heat 

individual samples of precursors on the wafer while simultaneously providing an excitation source 

for Raman spectroscopy. Reproduced with permission21. Copyright 2016, Nature Publishing 

Group.

To autonomously synthesize, process, and characterize organic thin films, MacLeod et al. 

introduced a self-driving laboratory named Ada12. As illustrated in Figure 6, Ada utilizes a robotic 

arm to transfer vials of fluid between stations on the platform, each of which provides a unique 

capability including sample storage, solution mixing, spin coating, annealing, and characterization. 

A combination of four-point probe resistivity measurements and ultraviolet-visible-near-infrared 

(UV-vis-NIR) spectroscopy were used to study the hole mobility of each sample. Focusing on 

Spiro-OMeTAD, an organic hole transport material used in photovoltaics, Ada was shown to 

successfully carry out 35 experiments in less than 30 hours with guidance provided by a Bayesian 

optimization algorithm (discussed in Section 4.1.3) to maximize hole mobility in the samples. 

Though their platform was constrained to organic films, the methods used can likely be extended 

to inorganic compounds where solution-based precursors are available for spin coating. 
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Figure 6: An illustration of the Ada platform used to optimize the optoelectronic properties of 

organic thin films. Handling and transferring of samples are performed by the robotic arm (a) using 

a combination of tools shown in (b) and (c), whereas storage, synthesis, and characterization of 

samples are conducted throughout the individual modules pictured in (d). Reproduced with 

permission12. Copyright 2020, AAAS.

R. Shimizu et al. extended autonomous synthesis to inorganic thin films using magnetron 

sputtering deposition39. With this method, TiO2-based films with a varying concentration of Nb 

dopants were grown. The partial pressure of oxygen was chosen to be the single experimental 

variable, which set the reducing conditions during synthesis and thereby influenced the amount of 

dopant atoms implanted into the films. After each sample was grown, a robotic arm was utilized 

to transfer it to a separate station for characterization of its electric properties. Aiming to optimize 

the resistivity with respect to Nb concentration, the films were synthesized and characterized in a 

closed loop at a rate of twelve samples per day, whereas an equivalent procedure carried out 

manually is suggested to produce only two new samples per day. Although the observed rate of 
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experiments is not as rapid as the workflows involving CNTs or Spiro-OMeTAD, magnetron 

sputtering deposition is more readily applicable to a wider range of materials and applications.

More recently, S. Ament et al. demonstrated that closed-loop experimentation can be used 

to synthesize metastable materials that would otherwise be difficult to access by trial-and-error40. 

In their approach, an amorphous layer with a composition of Bi2O3 was deposited onto a silicon 

substrate via reactive sputtering. To explore the formation of metastable polymorphs of Bi2O3 

under different synthesis conditions, lateral-gradient laser spike annealing41 (lg-LSA) was used to 

rapidly heat and crystallize samples at varied temperatures and dwell times. Within each 

experimental iteration, optical spectroscopy was applied to measure the reflectivity from a batch 

of samples. Large changes in reflectivity with respect to the synthesis conditions of the samples 

were assumed to signify phase transitions (i.e., formation of new Bi2O3 polymorphs). Hence, phase 

boundaries were determined by choosing subsequent experiments that were expected to maximize 

the gradient of the reflectance. A complete mapping of these boundaries was achieved from 617 

samples that were autonomously synthesized, after which XRD was performed a posteriori to 

verify the corresponding phase identities. A key advantage of this approach was the use of lg-LSA, 

which allowed microscopic regions of the sample to be heated independently of one another. 

Therefore, a large number of temperatures and dwell times could be tested from a single sample. 

Because there are many available deposition techniques, the automation of thin film 

synthesis may prove useful to make a wide range of inorganic materials. In addition to solution-

based methods (e.g., spin coating12), which require precursors to be soluble in an appropriate 

solvent, deposition from a gaseous phase expands possible precursors to materials that can be 

vaporized through heating, sputtering, or irradiation (e.g., for CVD21). Techniques such as lg-LSA 

can also be used to produce reactions or phase transformations in a sample after it has been 

deposited, which further increases the number of accessible phases40 However, the versatility of 

these methods is limited by the applications for which thin films are suitable, which include 

photovoltaics, protective coatings, and electronic circuitry. To generalize autonomous 

experimentation for the synthesis of compounds used for technologies such as batteries, catalysts, 

or functional materials, a solid-state approach must be considered to form bulk powders rather than 

thin films.
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2.3 Solid-state synthesis

Solid-state synthesis, carried out by mixing powder precursors and firing at high temperatures, is 

a widely used and scalable approach to produce inorganic materials. Automating this process for 

HT or closed-loop experimentation, however, remains challenging due to the increased difficulty 

associated with handling solid powders as opposed to liquids or thin films. Working at high 

temperatures for long periods of time also poses potential problems caused by the melting of 

samples and the degradation of containers. Recent efforts have made steps to automate a few key 

aspects of solid-state synthesis for several classes of materials including PbTe-based 

thermoelectrics42, yttrium-doped zirconia43, and Zr-Ti-C-B ceramics44. These existing methods 

increase the rate at which solid-state syntheses are carried out by decomposing the entire procedure 

into modular components, each of which is either automated via robotic systems or designed to be 

conducted in a highly parallelized manner, thereby reducing the time spent by the human 

researcher per synthesized sample. 

Automated weighing and dispensing of powder precursors have been demonstrated with 

several commercial systems45,46. These instruments use gravity to pass samples through a hollow 

glass or plastic tip and into a container, which is placed on a balance and continuously weighed to 

control the rate of dispensing and produce the targeted precursor amount. When too much powder 

is dispensed, small amounts of the sample can be removed using a glass plunger, allowing the 

automated system to reach a precision on the order of micrograms. Once the precursors have been 

dispensed, mixing is typically carried out using a ball mill, which can be designed to accommodate 

many samples at once such that parallelization is possible44. If mechanochemical synthesis is 

desired, high-energy ball milling or highly reactive starting materials can be used to encourage the 

reaction17. If, instead, the goal of ball milling is to obtain a well-mixed sample while avoiding any 

reactions, then relatively inert precursors can be used with low-energy milling42. The 

parallelization of compacting and densification can be achieved by stacking samples on top of one 

another, separated by an inert material, and loading them altogether into a press. Firing of samples 

is readily parallelized, limited only by the size of the reaction vessel. However, unless separate 

furnaces are employed, all materials must be synthesized under the same conditions, which 

prohibits an efficient exploration of all synthesis parameters simultaneously. Ensuing 

characterization (e.g., by XRD) is usually conducted serially, though their operation periods are 
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often short in comparison to the time required for synthesis and are therefore unlikely to represent 

the time-limiting step.

Using HT methods, solid-state syntheses can be performed at a rate of more than 200 

reactions per day17. We stress, however, that all of the existing methods simply automate individual 

components of the synthesis process while still requiring a substantial amount of manual 

intervention between each step. As a result, human efforts constitute a large fraction of the total 

time allocated for the synthesis and characterization and solid powders, and closed-loop 

automation has not yet been established. This shortcoming is illustrated by the Sankey plot in 

Figure 7, which shows that of the total 328 minutes necessary to complete a full experimental 

iteration per sample, 105 minutes are consumed by human efforts. Much of this time is spent 

performing preparative tasks such as sample loading, cleaning, and extraction. These processes are 

generally difficult to automate for solid powders given that their physical properties can vary 

substantially between different samples, and powders can sometimes adhere to container walls. 

After synthesis, further manual intervention is required to transfer samples and prepare them for 

characterization. For example, powders must be well ground and flattened before they can be 

characterized by XRD. While these processes have been partially automated with commercial 

systems47, more specialized characterization techniques remain heavily reliant on human efforts 

(e.g., preparing Ohmic contacts for electrical measurements). Future work is therefore needed to 

address these limitations and progress toward full autonomy. The development of automated 

sample preparation and transfer for solid-state synthesis will be discussed further in Section 5. 
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Figure 7: Sankey plot illustrating the time required to complete each component of synthesis and 

characterization (per sample) throughout the study of thermoelectric materials by Ortiz et al. Any 

effort that must be carried out manually by the human researcher is denoted “human time,” whereas 

all processes automated by the instrumentation is denoted “machine time.” As the workflow here 

is only partially automated to enable HT, but not fully autonomous, a substantial portion of the 

total time required is shown to be allocated to human efforts. Reproduced with permission42. 

Copyright 2019, Royal Society of Chemistry Publishing.

3. Interpretation
In some cases, the process of interpretating data from a cycle of synthesis and characterization is 

straightforward; for example, when measurements yield simple numerical quantities such as 

electrical resistivity or optical absorbance12,48. More generally, however, reliably interpreting 

characterization data is highly non-trivial, requiring detailed analysis by an expert. Such tasks may 

involve spectral data obtained from spectroscopic techniques49, images captured via microscopy50, 

or application-based measures of performance51. As part of the effort to realize self-driving 

laboratories in materials science, recent work has demonstrated the potential for machine learning 
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models to analyze and interpret a variety of characterization data52-54, thereby automating the 

interpretation component of closed-loop experimentation. The difficulty of this task depends on 

the number of variables associated with the data being analyzed – i.e., higher dimensionality and 

an increased amount of information tends to present greater challenges in the automation of 

interpretation. Accordingly, we break down our discussion into methods used for the analysis of 

univariate quantities, multivariate data in one dimension (e.g., spectra), and multivariate data in 

higher dimensions (e.g., images and tomograms).

3.1 Univariate

3.1.1 Surrogate properties

When the property of interest can be represented by a single scalar quantity obtained directly from 

an automated characterization procedure, interpretation is trivial. When univariate properties are 

difficult to measure in an automated way, one may instead choose a “surrogate” property that is 

more easily measured and has some known relation to the property of interest. For example, 

MacLeod et al. designed Ada to optimize the hole mobility in organic thin films12. Considering 

that automating direct and reliable measurements of the hole mobility is difficult because it 

requires the construction of multilayer photovoltaic devices, the authors instead used the 

“psuedomobility,” which is equal to the quotient of sheet conductance over absorbance of the thin 

film and can be measured with four-point probe measurements and optical spectroscopy 

respectively. The actual hole mobility of each sample was shown to be directly related to its 

psuedomobility, and therefore the former can be optimized indirectly using automated 

characterization techniques. 

Another example demonstrating the utility of surrogate properties is given by the 

determination of phase boundaries from combinatorial thin film libraries37,55. A direct approach to 

detect phase transitions would involve performing XRD measurements and interpreting the 

resulting spectra to identify the constituent phases. Although characterization by XRD can be 

carried out in an automated way, the subsequent process of phase identification (interpretation) is 

challenging given that it requires multivariate analysis (as will be discussed in Section 3.2). To 

avoid these difficulties, it is common to replace XRD by simpler characterization techniques 

yielding univariate quantities that vary when phase transitions occur. Common choices for these 

properties include electrical resistivity, optical reflectivity, and mechanical hardness55, each of 
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which are strongly dependent on the phase present. Accordingly, large changes in these properties 

are used to indicate that a phase transition has occurred. 

3.1.2 Reduction to univariate

In some cases, measurements generate data that are initially multivariate but that can be reduced 

into univariate quantities through dimensionality reduction. For example, optical spectra are 

commonly simplified by focusing on a single wavelength or by integrating across a range of 

wavelengths56. Similarly, stress-strain and hysteresis curves can be reduced to univariate quantities 

such as the Young’s modulus or saturation magnetization57,58. These methods are commonly 

implemented in combinatorial thin film studies but have also been extended to work with bulk 

materials in partially automated workflows. During the optimization of shape-memory alloys, for 

example, heat flow curves obtained from differential scanning calorimetry were simplified to a 

single value that represented thermal hysteresis of the samples51. For battery materials, HT 

characterization can be carried out by reducing voltage versus capacity curves into univariate 

quantities such as capacity and energy density59. 

To assist in phase identification, multivariate spectra (e.g., XRD or Raman) can be 

simplified by focusing on a subset of peaks associated with a target phase. For example, Nikolaev 

et al. estimated the growth rates of CNTs by measuring the maximum intensities of two known 

Raman peaks shown in Figure 8 as a function of time21. Similarly, Moosavi et al. monitored the 

phase purity and crystallinity of metal-organic frameworks by measuring the full-widths at half 

maximum (FWHM) of their XRD peaks60. By considering specific and well-defined features in 

the spectra, these approaches avoid the difficulties associated with automating phase identification 

from multivariate data. However, these techniques are applicable only if the desired product forms 

throughout most of the experimental trials, which may not be the case when attempting to 

synthesize novel compounds. Moreover, it disregards the formation of byproducts or impurities, 

which can provide useful insights into why a synthesis attempt failed. 
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Figure 8: (a) To automate the characterization of carbon nanotubes, the intensity of the G and D 

bands, from the Raman spectra shown in (c), are continuously measured throughout each 

experiment. (b) By differentiating the Raman intensity with respect to time, the growth rate of each 

sample is obtained. Reproduced with permission21. Copyright 2016, Nature Publishing Group.

3.2 Multivariate in 1-D

A complete treatment of phase identification requires the analysis of multivariate spectra. For 

crystalline inorganic materials, this entails the application of XRD and comparing the sample’s 

spectrum with reference data from sources such as the International Centre for Diffraction Data 

(ICDD)61. However, this comparison is complicated by variations that occur between measured 

and reference patterns due to defects, strain, off-stoichiometry, texture, and poor crystallinity. As 

a result, interpreting XRD spectra is generally an arduous process that must be carried out by an 

expert. Even with state-of-the-art tools, reliably automating phase identification for complex, 
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multi-phase spectra remains a longstanding challenge. The most popular techniques used to 

complete this task are summarized in Figure 9 and discussed below.

Historically, the analysis of diffraction data has been conducted by decomposing spectra 

into discrete lists of peak positions (d) and intensities (I) which are compared with reference data62. 

Peak search-match algorithms rely on a Figure of Merit (FoM) to quantify the degree of similarity 

between pairs of d-I lists. A widely used metric is the de Wolff FoM, which is inversely related to 

the average discrepancy between observed and calculated d-spacings63. By calculating the FoM 

for all suspected reference phases, the compound with the highest value may be chosen for a given 

XRD pattern. However, the reliability of this method hinges on the ability to extract diffraction 

peaks from the measured spectrum, which becomes difficult in the presence of peak overlap, low 

peak intensity, or strong background signal64,65. These problems are exacerbated when a spectrum 

contains many peaks (e.g., in low-symmetry structures or multi-phase mixtures), and therefore the 

peak search-match approach generally produces limited accuracy. In a study conducted by Le 

Meins et al.66, XRD spectra measured from ten distinct compounds were provided to the broader 

research community with the task of performing phase identification using peak search-match 

algorithms. Based on results collected from 25 participants, only 80% of phases were correctly 

identified on average, even with manual guidance by an expert, thus suggesting the need for 

improved methods if automation is to be attained. 
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Figure 9: Possible techniques for automating the interpretation of XRD spectra. Peak search-

match algorithms rely on the identification of peaks and comparison with reference data using a 

Figure of Merit (FoM). Full-profile methods compare entire spectra measured experimentally with 

reference spectra, typically simulated, using a correlation metric. Deep learning employs neural 

networks trained on reference spectra to classify measured spectra into constituent phases. 

An alternative to the discrete peak search-match approach is full-profile matching, where 

entire spectra are compared with those of reference phases using a measure of correlation such as 

cosine similarity, Pearson or Spearman coefficients, or dynamic time warping67-69. By removing 

the need to explicitly deconvolute individual peaks, analyzing the full profile provides a more 
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robust treatment of complex and low-symmetry XRD patterns. Furthermore, this method can be 

combined with non-negative matrix factorization to identify the combination of compounds that 

best matches a measured spectrum, enabling classification of multi-phase mixtures70. However, 

the reliability of full-profile matching remains limited when experimental artifacts cause large 

changes in peak positions, widths, and intensities. In a study by Iwasaki et al., an accuracy of 70% 

was achieved with dynamic time warping for the classification of multi-phase mixtures comprised 

of alloys spanning the Fe-Co-Ni chemical space71. Misclassifications were largely attributed to 

variations in XRD patterns induced by off-stoichiometry of the samples. To improve upon existing 

methods based on full-profile matching, it is necessary to design an approach that can account for 

the possibility of experimental artifacts. 

Deep learning has more recently been used to automate the interpretation of XRD spectra. 

In the initial study by Park et al., a convolutional neural network (CNN) was trained to categorize 

the crystal symmetry of simulated patterns from 150,000 phases in the ICSD72.  With 20% of 

spectra reserved for testing, accuracies of 81% and 95% were achieved for the classification of 

space groups and Bravais lattices respectively. Nevertheless, characterization of experimentally 

measured spectra is complicated by their differences from simulated patterns arising from various 

artifacts. In later work by Vecsei et al., a neural network was trained on simulated XRD patterns 

to classify symmetry as described previously73. The model was then applied to experimentally 

measured spectra extracted from the RRUFF database, producing a lower accuracy of 54% for 

space group classification. To resolve these shortcomings, simulated spectra in the training set can 

be augmented to include perturbations associated with experimental artifacts. For example, Oviedo 

et al. demonstrated that by stochastically varying peak positions and intensities in simulated 

spectra using for training, the resulting CNN correctly classified the space group for 80% of spectra 

measured from metal halide thin films54. 

In addition to symmetry classification, similar techniques based on deep learning and data 

augmentation have also been used to perform phase identification from experimentally obtained 

XRD patterns74. For example, Maffettone et al. trained an ensemble CNN using simulated spectra 

augmented with changes to peak widths, intensities, and background signals75. Their model was 

tested on patterns measured from samples in the Ni-Co-Al space, with 76% correctly identified. 

To handle multi-phase mixtures, Lee et al. trained a CNN using multi-phase spectra simulated 

from linear combinations of single-phase patterns for 170 compounds in the Sr-Li-Al-O space. 
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Their model achieved a high accuracy of 98% when classifying experimentally measured spectra 

obtained from mixtures of high-purity powders including SrAl2O4, SrO, Li2O, and Al2O3
76. 

However, because the training procedure requires many linear combinations of phases with varied 

weight fractions to be sampled (1,785,405 in total), it restricts the inclusion of experimental 

artifacts owing to combinatorial explosion. Therefore, the model may fail when applied to 

characterize arbitrary samples obtained from a synthesis trial, which often contain substantial 

perturbations in their XRD spectra. With this limitation in mind, a more reliable approach is needed 

to characterize complex spectra produced by multi-phase mixtures, as will be discussed further in 

Section 5. 

In addition to XRD spectra, deep learning has also been extended to automate the 

characterization of materials using Raman and Fourier transform infrared (FTIR) spectroscopy. In 

contrast to XRD, however, simulating Raman and FTIR spectra is more difficult because it 

involves the calculation of vibrational frequencies through ab initio methods. Accordingly, Liu et 

al. instead used experimentally measured spectra from the RRUFF database to train a CNN52. Data 

sparsity was overcome by augmenting the available spectra with stochastic changes in Raman 

shifts for each vibrational spectrum. The model correctly identified 88% of the chemical species 

tested, exceeding the accuracies of techniques that use similarity-based metrics77. These results 

show that a reliable classification of vibrational spectra can be automated in situations where 

suitable experimental data is available; however, this is generally not the case as clean and 

consistently measured vibrational spectra are difficult to find for most chemical spaces. Moreover, 

additional effort is necessary to determine whether deep learning can be used for spectra measured 

from multi-phase mixtures, where peak overlap is likely to be problematic.

3.3 Multivariate in higher dimensions

Imaging techniques have recently found use in partially automated workflows to accomplish tasks 

related to quality assurance or verification that the target materials were indeed synthesized. For 

example, images obtained from scanning electron microscopy (SEM) have been used to guide the 

optimization of fiber quality in polymeric samples by allowing the user to rank the images obtained 

after each experimental iteration78. SEM has also been used to check the quality of graphene79 and 

carbon nanotubes21 after automated growth procedures were carried out. Similarly, optical 

microscopy was employed to ensure a low defect density in organic thin films synthesized by 
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Ada12. In all cases, however, manual analysis of the images was required. If this process could 

instead be automated, the loop between experimentation and interpretation could be closed.

Deep learning is well-suited to handle high-dimensional multivariate data including images 

and tomograms. Its application to inorganic materials was first demonstrated by Al-Khedher in a 

study on CNTs, where a neural network was used to classify the degree of alignment and curvature 

of nanotubes imaged by SEM80. Training was performed on two datasets, each labeled with values 

describing their alignment and curvature: one based on idealized “rope” images representing 

nanotubes in various orientations, and another containing experimentally obtained images 

depicting actual CNTs. By combining these images into a single dataset that was used to train the 

neural network, a classification accuracy comparable to that of a human researcher was achieved. 

A similar analysis of SEM images was designed by Modarres et al. to categorize the shape and 

morphology of nanomaterials using a CNN50. In their work, a training set was constructed by 

manually labeling thousands of experimentally measured SEM images based on ten categories 

including fibers, powders, and nanowires. The resulting model correctly classified 90% of test 

images that were obtained from experiment.

At higher spatial resolution, deep learning has also been used to automate the analysis of 

images obtained with scanning transmission electron microscopy (STEM). Several recent efforts 

have shown that CNNs are capable of mapping out atomic positions and identifying defective 

regions (e.g., vacancies or dislocations) in atomic-scale images81-83. This can be achieved by 

training the model on large sets of experimental data with the locations and sometimes chemical 

identities of atoms or defects manually labeled. Resulting accuracies can match or even exceed 

that of a human researcher, likely because the task being performed requires large amounts of data 

to be analyzed – i.e., a human mapping out hundreds of atoms in an image is likely to make 

occasional mistakes, whereas AI has the advantage of steady consistency. 

In three dimensions, the analysis of mixtures imaged by atomic probe tomography (APT) 

has been automated with deep learning to identify interfacial regions between distinct phases84. 

Madireddy et al. employed a transfer learning technique where a CNN was trained on a large 

number of completely unrelated images with labeled edges such that it could then be applied to 

detect interfaces in APT images. Interestingly, even though the training set appeared very different 

from the test set, accurate phase segmentation was obtained by the model when applied to an alloy 
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containing precipitates suspended in a matrix; though, occasional irregularities occurred when 

compositions smoothly varied and therefore the interfaces between phases were “blurred.”

The largest obstacle faced throughout many of the existing deep learning methodologies is 

the limited availability of training data. The measurement and organization of novel data using 

methods such as electron microscopy and APT are often time-consuming and expensive. 

Furthermore, supervised training relies on manual labelling of features in images, which can be 

tedious and prone to errors – mistakes have been mitigated in past work by relying on more than 

one researcher to label a single set of images82. To avoid these difficulties, training data may be 

simulated rather than measured. However, as opposed to XRD spectra, simulating realistic images 

is challenging and sometimes not possible. Therefore, to generalize the application of deep 

learning for image analysis in materials science, a rapid and more reliable method of tabulating 

data is needed. We note that an automated platform may be suitable for this purpose, given that 

large amounts of data can be generated quickly without much human intervention. If sufficient 

training data cannot be obtained, then unsupervised learning may be employed to reveal 

similarities and differences throughout large sets of images, a particularly useful approach if data 

is obtained in HT.

4. Decision making
Upon conducting a set of experiments and interpreting the resulting data, the next step in the 

closed-loop automation process is to use this information to make decisions regarding the 

subsequent experiments to be performed. These decisions are usually made with the goal of 

optimizing some quantity85; for example, maximizing the yield of a product by modifying its 

synthetic procedure86 or tuning the properties of a material with respect to its structure, 

composition, or processing conditions12,51. Alternatively, decisions can be made to formulate 

experimental tests that reveal information regarding a specific process87. In synthesis, for example, 

this may entail exploring various combinations of reactants and conditions followed by 

observation of their products to construct a network of possible reaction pathways in a system of 

interest. Regardless of the underlying motivations, the desired outcome of decision making 

remains the same: reaching a pre-defined optimum while minimizing time and costs. To this end, 

a variety of active learning techniques exist to iteratively learn from and query data in the design 

space9,88,89. Before reviewing available active learning algorithms, it is first important to 
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understand why active learning is necessary by considering the alternative methods listed in 

Figure 10 and highlighting their shortcomings. 

Figure 10: A schematic illustrating three possible optimization techniques. Combinatorial 

approaches sample many possible combinations of design variables ( ), sometimes chosen 𝜈𝑖

uniformly across the design space. Passive learning employs existing data points (blue dots) to 

form a model of the objective and make predictions regarding the location of its optimum (shaded 

region). Active learning builds upon this approach by suggesting new points at which to evaluate 

the objective (purple dots), from which the information is used to update the initial predictions and 

once again suggest new points to be queried (red dots), forming an iterative loop which is traversed 

until convergence to the true optimum is reached.

A simple and widely used optimization strategy is to perform a brute-force search of the 

design space, thus avoiding decision making altogether. Such is the concept underlying HT 

workflows, where a grid of data points is generated from combinatorial sampling of experimental 

parameters90,91. From this dataset, analysis may then be conducted ex post facto to identify 

relationships among variables and estimate any optima in the objective of interest. As the reliability 

of these conclusions depends on how well the design space has been sampled, a large number of 

experiments are typically necessary to obtain satisfactory results. Consequently, successful 

applications of HT platforms have been limited to problems for which (a) the appropriate 

experiments are inexpensive, quick, and easily parallelized, or (b) the design space of interest is 

relatively narrow. A sufficiently dense sampling of compositions on thin films spanning ternary 
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spaces, for example, can typically be achieved using several hundred samples92,93. In contrast, 

generating a grid of equal density for quaternary systems requires several thousand samples. 

Additionally, process variables may add extra dimensions to the design space. As the number of 

necessary experiments scales exponentially with the dimension of the design space, combinatorial 

techniques quickly become intractable when many variables are introduced. These problems are 

sometimes simplified by partitioning the design space and focusing on a much smaller subset of 

interest94,95; however, this solution is not generalizable because the most interesting region of the 

design space is generally unknown. Therefore, to efficiently explore the entire design space, active 

learning is required.

Contrary to HT experimentation, existing data can be used to learn trends and predict 

optima in the objective function without performing any new experiments. As the learner simply 

observes the environment without interacting with it to query new information, this technique is 

sometimes called passive learning to distinguish it from its active counterpart96. Enabled by the 

development of machine learning models and a growing amount of available data2,3,97, passive 

learning has found widespread use throughout materials science. For a detailed overview of 

common machine learning algorithms and their application in materials science, we refer the 

reader to several recent reviews on the topic98-100. Here, we narrow our discussion to focus on two 

key limitations of passive learning as applied to optimization. First, the accuracy of the model is 

heavily reliant on both the volume and diversity of training data. In many situations, the design 

space of interest is sparsely populated. For example, applying machine learning to inorganic 

synthesis remains difficult because there are often few procedures reported to make a given 

compound, and that information must be extracted from the literature as relevant synthesis 

databases are limited25,101,102. Moreover, even in cases where more data is available, it tends to be 

biased toward specific regions of the design space. This bias commonly originates from a tendency 

for researchers to only publish positive results while leaving negative results unreported103, or 

because many studies pursue minor modifications of an already successful material/procedure. 

Such data bias will limit the diversity of the training set and negatively affect the performance or 

applicability of the corresponding model. In addition to the limitations imposed by the sparsity of 

training data, passive learning models are inherently inept at predicting outliers, instead relying on 

the recognition of general trends in the data. While this capability is sufficient for many studies, it 

becomes problematic for optimization problems where the global extrema are of interest. To 
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overcome these limitations, it is necessary to acquire new data so that the model can continuously 

learn and improve its accuracy, thus ensuring correct identification of optima. 

As will be discussed below, active learning techniques are gaining traction throughout 

materials science, with multiple applications recently demonstrated in automated experimental 

workflows104-107. We emphasize that the decision-making process used in active learning follows 

a natural approach, similar to that of a human expert – performing an appropriate set of tests, using 

the results to build knowledge of the system, and implementing that knowledge to intuitively select 

new tests – typically in a serialized nature as to avoid unnecessary experiments. Considering this 

paradigm, we review two major categories of active learning as applied to decision making in 

optimization: black-box and informed.

4.1 Black-box optimization

In situations where little is known about the system at hand, the corresponding objective function 

can be treated as a “black box,” i.e., an opaque function that must be queried at individual points 

through experimentation or simulation. Performing black-box optimization, a topic that has been 

studied extensively and applied throughout many areas of science and technology, requires the 

consideration of two key constraints108. First, as no analytical form of the objective function is 

available, optimization must be carried out without the use of exact derivatives. Second, the 

objective landscape may generally be non-convex, requiring global instead of local optimization. 

These properties exclude the application of explicit gradient-based and pure local search methods 

respectively. Moreover, extending black-box optimization specifically to experimentation presents 

an additional challenge: evaluation of the objective is usually expensive and time-consuming, 

stressing the importance of reaching convergence in a minimal number of steps8. The high cost of 

data acquisition further excludes algorithms that approximate derivatives via finite differences 

owing to their inefficiency with respect to the number of evaluations required. Instead, a variety 

of efficient and derivative-free techniques have been developed to perform global optimization on 

black-box functions109,110. To shed light on which of these approaches are most suitable for 

accelerating inorganic materials discovery, we review those that have been successfully 

implemented in experimental workflows and outline the major advantages and limitations of each.
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4.1.1 Genetic algorithms

Many of the earliest methods used to replace brute-force optimization were based on genetic 

algorithms (GAs)90. In this approach, an initial batch (or generation) of experiments is conducted 

to evaluate the objective function(s). From the results, a new batch of experiments is suggested 

based on three processes: (i) selection dictates which samples are chosen to contribute to the next 

generation of experiments, (ii) crossover determines how the properties of selected samples are 

merged to suggest new experiments, and (iii) mutation applies random variations to the properties 

of suggested experiments. Each process is controlled by a set of hyperparameters (e.g., the rate at 

which mutation is applied) defined by the user. From the corresponding modifications, new 

generations of experiments are iteratively produced until convergence of the objective function(s) 

is reached. Because GAs impose a bias toward promising regions of the design space by selectively 

sampling experiments where the objective function is expected to be optimal, they generally 

provide increased efficiency relative to combinatorial techniques. GAs are also well-suited to 

handle a large number of variables, both qualitative and quantitative, and can perform well in 

multi-modal design spaces assuming that a sufficiently high mutation rate is used to escape local 

optima111,112.

For experimentation in materials science and chemistry, GAs have found widespread 

application in the discovery of novel catalysts113. In such problems, where the aim is to maximize 

the yield of a desired product phase with respect to the choice of catalytic materials, traditional HT 

methods commonly become intractable because realistic systems have highly complex design 

spaces – industrial catalysts often contain as many as ten elements and can be further complicated 

by the choice of a support material114,115. Addressing this challenge, work in the early 2000s 

pioneered the implementation of GAs on batched heterogeneous catalysis experiments. Wolf et al. 

demonstrated a proof of concept by optimizing the composition of mixed metal oxide catalysts 

containing eight unique components for the oxidative dehydrogenation of propane116. The GA 

achieved significantly increased propene yield within only four generations, corresponding to a 

total of 224 experiments. This number represents an improvement over the previously used 

combinatorial methods, for which thousands of experiments were required in comparable 

systems117. However, the authors emphasize that the GA performs well only after its underlying 

hyperparameters were tuned through a series of tests conducted using a “pseudo-dataset” generated 

by heuristic relationships that approximate the effect of catalyst composition on the reaction yield. 
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Alternatively, to improve upon the accuracy of heuristic relationships, machine learning models 

(e.g., neural networks) have been used to construct pseudo-datasets that assist in choosing the best-

performing hyperparameters for a GA114,118,119. This method is applicable when a sufficient amount 

of experimental data is available to train the model on, and therefore may not be used in novel 

chemical spaces. 

Outside of catalysis, GAs have also been applied to handle synthesis procedures where the 

concentrations of precursors and conditions are varied to optimize the yield and form of a target 

phase. Moosavi et al. designed a robotic platform guided by a GA to carry out experiments with 

the aim of maximizing crystallinity and phase purity in metal-organic frameworks60. Based on 

microwave-assisted synthesis, the search space consisted of nine parameters involving reactant 

ratios, solvent compositions, microwave power, environmental temperature, and reaction time. 

Exploration of these variables was conducted through three generations consisting of thirty 

experiments each. Between each generation, a random forest model was trained on data obtained 

from all previous experiments. The model was used to predict the results of suggested experiments 

and excluded any that were expected to yield unfavorable results (i.e., poor crystallinity or phase 

purity). The authors propose that this method improves the efficiency of the GA, which itself only 

considers results from the previous generation. Indeed, Figure 11 shows that a large fraction of 

the population has converged to a narrow region of the design space by the third generation, with 

the corresponding samples having high crystallinity and phase purity. A similar approach was used 

by Nikolaev et al. to optimize the growth rate of carbon nanotubes with respect to the system’s 

temperature, pressure, and partial pressures of ethylene, hydrogen, and water vapor21. Ten 

generations containing 84 samples each were produced under the guidance of a GA. A random 

forest model was trained between each generation and used to bias suggested experiments toward 

high expected growth rates. By the final batch of experiments, the samples were grown at a rate 

nearly 100  more rapid than in the initial experiments. ×
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Figure 11: Results obtained during the optimization of synthesis conditions for metal-organic 

frameworks, guided by a genetic algorithm. (a) A dimension reduction of trials conducted in the 

9-dimensional parameter space onto a 2-dimensional plane, showing the convergence of 

experiments to an optimal subspace. (b) Evolution of sample crystallinity throughout three 

generations. Reproduced with permission60. Copyright 2019, Nature Publishing Group.

Although GAs are capable of reaching convergence within relatively few generations, each 

population must contain a large number of individual experiments to achieve genetic diversity and 

ensure reliable performance. Depending on the dimensionality of the design space and the 

complexity of the associated objective function, suitable population sizes may range from tens to 

hundreds of samples120. As a result, GAs excel when applied to problems for which parallelization 

of many experiments can be attained while keeping the associated time and costs reasonably low. 

In more general situations, however, experiments tend to be resource-intensive and large-scale 

parallelization can be difficult or impractical. Such cases therefore necessitate optimization 

algorithms that reach convergence in a minimal number of total experiments conducted either 

serially or in small batches. 

4.1.2 Stable noisy optimization by branch and fit

The SNOBFIT (Stable Noisy Optimization by Branch and FIT) algorithm121 combines aspects 

from local and global search strategies to efficiently optimize an objective function. From a given 
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dataset, SNOBFIT employs a branching algorithm to partition the design space into unique sub-

regions, each containing a single known datapoint. Within each region, a local model of the 

objective function is constructed via least-squares quadratic fitting of the contained datapoint and 

its nearest neighbors. These models represent the objective function locally but do not necessarily 

describe it globally – i.e., each quadratic fitting is performed independently using a subset of 

known datapoints. The resulting models are then used to predict and suggest sampling of new 

datapoints in regions where the objective function is expected to be optimal. At the same time, 

sampling is also suggested in sparsely populated regions to ensure the global optimum is not 

missed. 

For automated experimentation, perhaps the most successful application of SNOBFIT is in 

the optimization of chemical reactions in continuous flow reactors122,123. This was first 

demonstrated by Krishnadasan et al., who maximized the fluorescence of CdSe nanoparticles with 

respect to precursor flow rates in a microfluidic reactor20. SNOBFIT was used to minimize a 

“dissatisfaction coefficient” (DC) related to the difference between observed and desired emission 

intensities produced by the samples. As shown in Figure 12, a minimum in the DC was found 

after performing 71 experiments, with the final samples showing a near four-fold increase in 

emission intensity relative to those initially measured. In a similar effort, Li et al. explored 

temperature-composition space to optimize circular dichroism (CD) in inorganic perovskite 

nanocrystals33. Experiments suggested by SNOBFIT quickly identified a local optimum in less 

than 50 trials, but then continued to converge toward an improved solution exhibiting a CD 

intensity twice that of the initial optimum. These results highlight the ability of SNOBFIT to 

escape local optima by sampling sparsely populated regions of the design space as opposed to 

relying only on greedy optimization that only exploits well-sampled regions.

Increasing the number of variables under consideration, Bédard et al. designed a 

reconfigurable flow reactor capable of probing multistep organic reaction sequences and 

maximizing the corresponding yield through optimization with SNOBFIT31. To demonstrate this 

capability, six different series of experiments were carried out for a variety of processes including 

amination, olefination, cross-coupling, and substitution. In all cases, high product yield was 

obtained in less than 50 experiments by varying temperature, flow rates, and catalyst compositions. 

However, the authors note that reasonably tight bounds were placed on the design variables using 

information obtained in previous work, thereby reducing the problem’s complexity. A comparable 
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performance of SNOBFIT was illustrated in the work of Cherkasov et al., where the algorithm 

successfully identified an optimum in 61 trials to minimize a composite objective function 

incorporating product yield and substrate flow rate with respect to three synthesis parameters124.

Figure 12: A visualization showing optimization of the dissatisfaction coefficient (DC) with 

respect to CdO and Se flow rates in the synthesis of CdSe nanoparticles. Black points represent 

experimental results, which are projected onto the bottom plane and colored such that blue/red 

dots correspond to samples with DC values greater/lesser than the median value of 0.26. The 

spectrum obtained from the best sample found (with a DC value of 0.19) is displayed by the inset, 

showing a high emission intensity at 530 nm. Reproduced with permission20. Copyright 2007, 

Royal Society of Chemistry Publishing.
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Although SNOBFIT often improves efficiency relative to combinatorial methods and GAs, 

it displays several shortcomings that limit its applicability to certain optimization problems. First, 

its performance deteriorates when applied to problems with high-dimensional parameter spaces; 

studies have shown that SNOBFIT begins to underperform compared with many other global 

optimization techniques in cases where there are ten or more independent variables to consider125. 

Second, SNOBFIT is not capable of directly handling multi-objective optimization procedures126. 

An alternative route to deal with such problems is to instead optimize a composite objective 

function defined to capture changes in multiple quantities, however, this method gives no 

information regarding the trade-off between properties as would be revealed by the Pareto front. 

Last, SNOBFIT operates by establishing a set of individual models (e.g., quadratic functions) fit 

to approximate local regions of the objective function without providing a global model for the 

entire system. This approach therefore limits interpretability and makes it difficult to draw 

conclusions regarding general relationships between the variables and objectives.

4.1.3 Bayesian optimization

One of the most popular techniques for optimizing costly black-box objective functions is 

Bayesian optimization127-129, which is designed to minimize the total number of experiments 

required to reach convergence. To accomplish this, optimization is carried out on a known and 

differentiable surrogate model rather than on the objective function itself108,109. As shown in 

Figure 13, the surrogate model approximates the objective function using all available data points 

(e.g., from previously conducted experiments). This approximation is given by a probabilistic 

distribution of functions known as the prior, which is actively updated as new datapoints are 

sampled to form a posterior distribution that more closely resembles the true objective function. 

Calculating the prior and posterior are essentially regression problems that can be solved using a 

number of techniques, making Bayesian optimization versatile with respect to the types of data it 

can handle. Two models that are most commonly used for regression are Gaussian processes (GPs) 

and random forests (RFs), which typically work well with continuous and discrete search spaces 

respectively8,127.

To analyze the surrogate model and choose the datapoints sampled during optimization, an 

acquisition function is used. The main task of the acquisition function is to query the objective 

function in a way that balances exploration and exploitation. Exploration aims to sample regions 
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of the design space where uncertainty in the surrogate model is high, therefore aiming to improve 

the accuracy of the model and capture the global optimum. Exploitation uses predictions of the 

surrogate model to sample regions where the objective function is expected to be optimal. A purely 

explorative search requires an excessive number of evaluations to reach convergence whereas a 

purely exploitative search is prone to missing the global optimum, necessitating a trade-off 

between these two extremes. Some commonly used acquisition functions include expected 

improvement (EI), entropy search (ES), and upper confidence bound (UCB) as described in detail 

by past work130. It is important to keep in mind that no single approach is universally suited for all 

optimization problems (in accordance with the “no free lunch” theorem131). Rather, the acquisition 

function should be chosen to best suit the properties of the objective function at hand. For example, 

EI and UCB usually converge more rapidly than ES but are less explorative and therefore less 

suitable for objective functions with many local optima130,132. 
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Figure 13: A schematic of the Bayesian optimization procedure. An approximation to the actual 

objective (solid black line) is given by the surrogate model (dashed black line), which is 

constructed to fit all known observations. Using the expected values and uncertainties (blue) given 

by this model, an acquisition function (green) is built. The maximum of the acquisition function is 

then identified to suggest new points at which to evaluate the objective, leading to increased 

refinement of the surrogate model. Here, a somewhat exploitative approach is used to select new 

evaluations near the predicted optimum. Reproduced with permission133.

One of the first applications of Bayesian optimization to automated experimentation for 

materials design is described by Xue et al.51 The goal of their work was to minimize thermal 

hysteresis effects in NiTi-based shape memory alloys by varying their composition. Although the 

corresponding samples could be represented using three simple variables (x, y, and z in Ni50-x-y-

zTi50CuxFeyPdz), the authors instead chose to map each composition into a higher-dimensional 

feature space containing information regarding the valence electron concentration, atomic radii, 

and electronegativity to capture electronic contributions to thermal hysteresis. To investigate the 

resulting six parameters, several surrogate models and acquisition functions were tested on a 

dataset of 22 randomly chosen experiments. A support vector regression model was found to 

outperform GPs as a surrogate model, and the most suitable acquisition function was identified as 

the knowledge gradient – a slight variant of EI that performs well when dealing with noisy 

objective functions134. Accordingly, this combination was used to perform a series of 58 new 

experiments that converged after ten iterations. Thermal hysteresis was decreased by as much as 

42% relative to the initial samples. Furthermore, the surrogate model was found to accurately 

describe the objective landscape surrounding the optimum as reflected by a close agreement 

between predicted and experimentally measured values in the final few iterations. 

A number of reports have extended Bayesian optimization to a greater variety of material 

systems and properties. This includes a study by C. Li et al., where the synthesis procedure used 

to generate short polymer fibers was optimized to control the corresponding fiber size and shape 

with respect to precursor flow rates and reactor dimensions78. Using GPs and EI as the surrogate 

model and acquisition function, a five-dimensional parameter space was explored in three different 

series of trials, each toward a unique target fiber shape specified by the researchers. With only 20 
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experiments conducted per series, the results were shown to be highly dependent on the target to 

be optimized for. The authors tested whether changing the initial sampling of experimental 

parameters would improve the rate of convergence; however, they found that the results remained 

largely unchanged. We note that the mixed performance of Bayesian optimization in this situation 

can possibly be attributed to the low number of experiments conducted to search the broad, five-

dimensional space of interest.

More recent work employed Bayesian optimization to build upon previous efforts 

involving autonomous carbon nanotube synthesis22. As discussed earlier in Section 4.1.1, this 

problem was originally approached using a GA, which identified optimal nanotube growth 

conditions over the course of 840 experiments21. In contrast, Chang et al. revealed that 

optimization with GPs produced a similar set of optimal conditions in less than 200 experiments, 

therefore confirming the improved efficiency achieved using Bayesian techniques as opposed to 

GAs. However, the work also demonstrated that the performance of Bayesian optimization varies 

with respect to its underlying methods and hyperparameters. For example, when the three different 

kernel functions listed in Figure 14 (a) were used to define covariance, a key similarity measure 

employed in fitting the GPs, the optimized growth rates differed by as much as 15%. Even larger 

discrepancies were found to coincide with the choice of acquisition function, highlighting the 

importance of balancing exploration and exploitation. As shown in Figure 14 (b), both UCB and 

EI perform well, whereas a purely exploitative approach known as the maximum probability 

improvement (MPI) converges to a sub-optimal solution. 
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Figure 14: Results showing the evolution of growth rates measured during the synthesis of carbon 

nanotubes, with optimization carried out using a Bayesian approach. Gaussian processes are 

implemented as the surrogate model and three different kernel functions, listed in (a), are used to 

define covariance. In (b), the Matern52 kernel is employed with three different acquisition 

functions: upper confidence bound (UCB), expected improvement (EI), and maximum probability 

of improvement (MPI). Reproduced with permission22. Copyright 2020, AAAS.

In place of an acquisition function, experiments can also be suggested using reinforcement 

learning (RL), a class of algorithms designed to interact with and learn from the environment. The 

objective in RL is to build a policy function that suggests actions (e.g., experiments) from a given 

set of states (e.g., design variables) to produce an outcome that maximizes a pre-defined reward 

function. By iteratively suggesting actions and observing their outcomes, the policy function is 

improved to give better results (i.e., higher reward) as more data is collected – this is similar to 

refinement of the surrogate model during Bayesian optimization. RL has recently been applied to 

the optimization of chemical syntheses conducted in flow reactors135. For example, Zhou et al. 

designed a policy function based on a recurrent neural network (RNN) that suggested changes in 

the temperature and precursor flow rates to maximize the reaction yield in four different molecular 

syntheses86. As illustrated in Figure 15, the RNN was iteratively refined using all past 
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experimental outcomes to optimize a reward function related to the yield. To avoid being overly 

exploitative, the authors employed a randomized exploration policy whereby new experimental 

parameters were drawn from a probabilistic distribution rather than from a deterministic model. 

Using this policy, maximal yield was achieved across all four reactions in less than 50 experimental 

iterations. For comparison, SNOBFIT did not reach convergence within 50 iterations, supporting 

the improved efficiency of RL when experiments are conducted serially. However, we note that 

RL tends to fail when the reward function is sparse (i.e., when favorable outcomes are rare) and 

therefore may not be suitable for some high-dimensional design spaces. For such problems, a 

parallelized approach is preferred to more rapidly sample the space and identify optimal regions.

Figure 15: (Top) An outline of the RL workflow used to optimize the yield of chemical reactions 

with respect to their experimental conditions. (Bottom) An illustration showing how a recurrent 

neural network (RNN) is iteratively refined suggest experiments that maximize the yield. 

Reproduced with permission86. Copyright 2017, ACS Publications.

Page 40 of 70Materials Horizons



41

To improve upon existing methods and formalize a comprehensive tool for Bayesian 

optimization in the context of chemistry, the Probabilistic Harvard Optimizer Exploring Non-

Intuitive Complex Surfaces (Phoenics) algorithm was developed8. The surrogate model and 

acquisition function in Phoenics are designed to evaluate costly and non-convex objective 

functions through iterative batches of experiments conducted in parallel. Because of its efficient 

rate of training, a Bayesian neural network (BNN) is chosen to approximate the objective function. 

While providing comparable performance to GPs, the time required to train a BNN scales linearly 

with the number of observations whereas GPs scale cubic136. Hence, using the BNN as a surrogate 

model ensures the training step is not rate-limiting in the optimization process, which becomes 

particularly important when the number of evaluations is large (e.g., in high-dimensional design 

spaces). A customized acquisition function is defined to balance exploration and exploitation 

through a control parameter set by the user. Batched experiments are chosen by randomly sampling 

the control parameter such that some experiments are highly explorative, while others favor 

exploitation. This method was tested on a set of multi-modal objective functions (e.g., the Ackley 

and Schwefel functions), with convergence achieved more rapidly than optimizations based on 

GPs and RFs in all cases. 

The Phoenics algorithm has been implemented in the ChemOS software package9 to carry 

out Bayesian optimization with fully autonomous experimental platforms in two studies. MacLeod 

et al. engineered a self-driving laboratory to maximize the hole mobility in organic thin films by 

tuning their annealing time and dopant concentration12. Given the low-dimensional search space 

involving only two parameters, convergence was obtained in less than 30 experiments, yielding a 

near ten-fold improvement in the mobility relative to initial samples. Applying the Phoenics 

algorithm to a more complex problem, Burger et al. designed a mobile robotic chemist that 

performed the necessary experiments to optimize the efficiency of aqueous photocatalysts for 

hydrogen evolution13. Based on a set of educated hypotheses, ten chemical species were identified 

as promising components in the catalysts. Bayesian optimization with Phoenics was used to 

explore the space of concentrations for each component. Despite the high dimensionality of this 

problem, the algorithm successfully reached convergence in about 600 evaluations conducted in 

batches of 16 experiments over the course of eight days. As illustrated in Figure 16, the resulting 

catalyst mixtures displayed hydrogen evolution rates exceeding the baseline values by a five-fold 

margin.
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Figure 16: Results obtained during the automated optimization of hydrogen evolution mediated 

by a photocatalyst with varied composition. (a) Experimental measurements taken throughout a 

series of trial guided by Bayesian optimization. (b) A radar plot showing how the sampling of 

parameters changed over the course of optimization, with the shaded region boundaries 

representing the volume of each component dispensed after distinct numbers of experiments. 

Reproduced with permission13. Copyright 2020, Nature Publishing Group.

4.1.4 Summary

The examples reviewed in this paper support the efficacy of black-box optimization as applied in 

a variety of experimental workflows, with the Bayesian approach providing a particularly efficient 

route toward identifying global optima while minimizing the number of trials required. However, 

the performance of these techniques is limited by their inherently agnostic treatment of the 

objective, i.e., they make no assumptions regarding the underlying properties of the system at hand. 

As a result, black-box optimization methods tend to become intractable when (a) the design space 

is high-dimensional and requires many evaluations to reach convergence, or (b) the majority of 
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evaluations yield trivial results, which occurs if the objective function is constant-valued 

throughout large regions of the design space. Moreover, while black-box optimization methods 

are capable of illustrating trends in the data, further analysis must be carried out to relate these 

trends to physical phenomena. 

4.2 Informed optimization

In contrast to black-box optimization techniques that learn and make decisions based solely on 

relationships between design variables and observed values of the objective function, informed 

optimization gains further insights by incorporating prior knowledge of the system into the 

optimization pipeline. In doing so, it may be possible to increase the efficiency with which the 

design space is explored, improve confidence in the identification of the global optimum, and 

provide results that are directly interpretable. As discussed by von Rueden et al.137, devising an 

informed optimization algorithm requires the consideration of three questions: (1) what is the 

source of prior knowledge, (2) how is the corresponding information represented, and (3) where 

is the information integrated into the workflow? For experimentation in the physical sciences, 

possible solutions to these questions are summarized in Table 1. 

Table 1: Taxonomy of the informed optimization approach. Listed are several common examples 

of knowledge sources, forms of representation, and routes for integration into the optimization 

pipeline. Adapted from von Rueden et al.137 
 

What: Source How: Representation Where: Integration

Physics-based relations

First principles calculations

Past experimental results

Expert intuition

Algebraic equations

Differential equations

Probabilistic relationships

Logic-based rules

Knowledge graphs

Parameter constraints

Guided exploration

Modified outcomes
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Physics-based relations such as Arrhenius equations or chemical descriptors (e.g., 

molecular properties such as dipole moments) are common sources of information that can be 

integrated with optimization algorithms to improve their efficiency138,139. Such information is often 

represented using algebraic expressions that map experimental variables onto an objective function 

– e.g., correlating temperature with reaction rates – which leads to an improved representation of 

the objective function and therefore fewer experiments to identify global optima. Data obtained 

from past calculations or experiments can also be used to bias exploration of the design space 

toward subspaces where the objective is expected to be optimal140. This bias can be imposed by 

creating an ensemble of acquisition functions from all data sources, with each weighted by its 

reliability, and considering the product of all acquisition functions to suggest new experiments. 

Hereafter, we refer to such methods as data fusion. Alternatively, when suitable physics-based 

relations or data sources are unavailable, expert knowledge and intuition can be used to develop 

hypothetico-deductive models that use knowledge graphs or decision trees to iteratively form 

hypotheses and suggest experiments designed to confirm or disprove these hypotheses141,142. As 

these models sometimes contain many possible steps, ML techniques such as Monte Carlo tree 

search or RL have been used to aid exploration143. The hypothetico-deductive modeling approach 

is particularly promising because it provides a high degree of interpretability; however, it also 

requires detailed planning regarding possible experimental outcomes and their implications for the 

system. To highlight the strengths and weaknesses of data fusion and hypothetico-deductive 

modeling, several key examples of their applications in materials science and chemistry are 

discussed below.

4.2.1 Data fusion

In the context of optimization, data fusion refers to the mapping of information from multiple 

sources onto an ensemble model where all knowledge is represented using a single composite 

function144. This method is commonly used to obtain an optimal balance between theory and 

experiment – the former is cheap to evaluate but prone to inaccuracy, whereas the latter is accurate 

but expensive to carry out. For example, we consider the relationship between the thermodynamic 

stability of materials, calculated via density functional theory (DFT), and their synthesizability 

observed in experiment under a given set of conditions. While these two properties tend to be 

correlated for many materials, they do not always agree with one another as kinetic barriers can 
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prevent a system from reaching its equilibrium state (discussed in Section 5.3)145. Bridging the 

gap, Sun et al. employed data fusion to combine DFT-calculated Gibbs free energies of mixing 

with observed instabilities in halide perovskites to guide experiments toward maximizing the 

stability of samples with respect to their composition140. A layout of the process is shown in Figure 

17 (a). After initially performing DFT calculations to predict the free energy of mixing across a 

grid of compositions in the (Cs-MA-FA)PbI3 space, a “physics-informed” Bayesian optimization 

technique was used to model stability and suggest experimental trials. Data fusion was 

accomplished by modifying the EI acquisition function to incorporate a probabilistic distribution 

constructed from a fit of the free energy data. This modification biased the suggested experiments 

toward compositions where the DFT-calculated free energy of mixing was highly negative and 

therefore stability was predicted to be strong. Following the data fusion approach, 112 samples 

were tested over the course of four experimental iterations. As illustrated in Figure 17 (b), 

guidance by DFT enabled rapid convergence to a narrow subspace displaying high stability within 

the first batch of experiments, followed by minor variations in composition throughout the 

remainder of experiments to further optimize the objective. These results demonstrate that DFT 

calculations provide valuable prior insight that can be used to inform optimization and ensure a 

more efficient exploration of the design space.
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Figure 17: (a) Closed-loop process mediating the optimization of stability in halide perovskites, 

(Cs-MA-FA)PbI3), for which free energy data obtained from DFT calculations is integrated into 

the traditional experimental procedure. (b) The expected improvement (EI) acquisition function is 

fit to experimental measurements of stability, then modified to account for predictions of  ∆𝐺𝑚𝑖𝑥

from DFT. (c) After an initial uniform sampling of compositions, experiments (black dots) are 

guided by the Bayesian optimization algorithm, showing convergence to narrow regions of the 

composition space with robust stability. Reproduced with permission140.

Data fusion can also be used to improve the representation of design variables. Shields et 

al. recently developed an informed Bayesian optimization algorithm designed to optimize 

chemical reactions by maximizing the yield of a target phase with respect to the choice of 

precursors and synthesis conditions138. Given a set of promising reaction pathways, molecular 

precursors were represented by chemical descriptors (e.g., dipole moments, molar volumes, and 

electrophilicity) that were calculated in advance using DFT. The relationships between these 

descriptors and the objective function (the target yield) were modeled using Gaussian processes. 

For each experimental iteration, a batch of reactions were chosen according to Thompson sampling 

of the EI acquisition function. The authors first applied their algorithm to optimize the direct 

arylation of imidazoles, for which the design space included 12 ligands, four bases, three 

temperatures, and three concentrations – totaling 1,728 distinct reactions to be explored. As a 

benchmark, all of these reactions were carried out beforehand with HT experimentation, and the 

data was used to set up a game where 50 expert chemists were asked to optimize the reaction by 

iteratively selecting promising precursors and conditions until they believed they had found the 

true optimum (maximum target yield), or until a limit of 50 experiments was reached. Although 

human experts typically identified better-performing reaction pathways in early trials, the 

Bayesian optimization algorithm surpassed the average human performance within three batches 

of five experiments and obtained 99% target yield by the final batch. The algorithm was also 

applied to several research problems with increased design space complexity. For example, the 

Mitsunobu reaction146 was optimized with respect to 180,000 possible reactions derived from 12 

phosphines and five solvents with varied concentrations. In only four batches of 10 experiments, 

the optimizer identified three sets of reactions conditions that gave improved yield over the 
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standard reaction, hence confirming the excellent performance of the algorithm. We note that the 

marked success of this approach relies on (i) a suitable choice of candidate reactions (precursors 

and conditions) based on expert knowledge, and (ii) DFT-calculated descriptors of the design 

variables, which captures electronic and steric relationships between molecular precursors and 

provides an improved representation over one-hot encoding, where precursors are represented by 

dummy variables (e.g., [1, 0, 0, …] and [0, 1, 0, …]) with no relation to one another.

In the place of DFT calculations as an information source, one may alternatively employ 

physical relationships based on theoretical frameworks or empirical observations. For example, 

Ren et al. utilized a data fusion approach to embed physics domain knowledge into a Bayesian 

optimization procedure designed to maximize the efficiency of GaAs-based solar cells with respect 

to their growth temperature139. Given that only temperature was considered as a free variable, a 

simple black-box search method would likely suffice. However, the authors emphasized that such 

an approach does not reveal why that temperature maximizes solar cell efficiency. Instead, they 

developed a hierarchical Bayesian model to reveal relationships between the growth temperature 

and material descriptors including dopant concentrations, carrier lifetimes, and recombination 

velocities – each of which were related to the final performance of the solar cell. To accomplish 

this, temperature was mapped into a latent space represented by parameters that were used to 

calculate the material descriptors via Arrhenius equations, from which the efficiency of the 

corresponding solar cell was predicted using a neural network trained on simulated I-V curves. 

The model was used to guide a series of 25 experiments, with the final batch of samples showing 

an efficiency 6.5% higher than the baseline value obtained from a grid sampling of growth 

temperatures. For comparison, the authors performed similar tests without the influence of the 

Arrhenius equations, i.e., growth temperatures were mapped directly onto the descriptors in a 

black-box manner. This approach led to slower convergence and greater disagreement between 

predicted and experimentally observed properties, therefore supporting the advantages provided 

by data fusion. 

4.2.2 Hypothetico-deductive models

For research problems where the application of data fusion is restricted (e.g., when relevant 

calculations cannot be performed prior to the experiment), hypothetico-deductive models may 

instead be used to actively learn from experimental results, interpret their implications for the 
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system, and propose hypotheses to be tested by subsequent experiments. King et al. pioneered the 

automation of this approach in their design and application of a robotic scientist named Adam141. 

With the goal of identifying the genes encoding a group of enzymes in yeast, Adam was engineered 

to systematically probe a metabolic network describing all known biochemical processes that 

occur in the organism. These networks consist of nodes representing metabolites (i.e., 

intermediates and products) that are connected through edges representing reactions catalyzed by 

a known enzyme(s). If the genes encoding a specific enzyme are removed from the organism 

through mutation, any reaction catalyzed by that enzyme will be slowed147. Based on this concept, 

the authors constructed a decision tree with the following structure: high-level nodes pose 

fundamental questions (what genes encode an enzyme?), mid-level nodes form hypotheses related 

to these questions (a list of suspected genes), and low-level nodes suggest experiments to test the 

hypotheses (measurements of reaction rates in mutated organisms). By traversing this structure 

and iteratively proving or disproving a series of hypotheses, Adam analyzes low-level 

experimental data to propose solutions to high-level questions. The automated platform was 

demonstrated to identify the genes encoding 13 different enzymes in yeast, with all predictions 

confirmed by manual experimentation. However, because the success of Adam was enabled by the 

availability of detailed metabolic networks extracted from bioinformatic databases148,149, extension 

to novel systems would require a re-design of the hypothetico-deductive model to reflect the 

suspected genotype. 

To extend hypothetico-deductive modeling to organic synthesis, a reaction network may 

be used to illustrate possible pathways (i.e., intermediate reactions) originating from a set of 

precursors when synthesizing targeted products. The hypothesized reactions can be verified by 

carrying out the suggested syntheses and measuring the yields of any expected intermediates and 

final products that form using characterization techniques such as NMR. Given the exceptionally 

large number of possible transformations deriving from or giving rise to any arbitrary organic 

molecule, conceiving detailed reaction networks is generally intractable for a human researcher. 

Instead, a variety of techniques have been developed for computer-aided synthesis planning 

(CASP)150,151, whereby information taken from reaction databases along with chemistry-based 

rules and heuristics are employed. In the context of optimization, CASP methods are often used to 

maximize the yield of a desired product through retrosynthetic analysis, i.e., by starting from the 

target molecule and working “backwards” through the network to identify suitable precursors. To 
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this end, Monte Carlo tree search algorithms have been applied to traverse unique branches in the 

reaction network and provide a ranking of promising retrosynthetic routes and precursors150. 

Techniques based on RL have also been used to explore possible reaction routes through a policy 

function that is trained to make optimal decisions at each step in retrosynthetic planning, showing 

improved efficiency relative to Monte Carlo tree search143,152. Despite these successes, automated 

retrosynthesis has not yet been fully integrated into a closed-loop workflow enabled by iterative 

experiment-theory feedback, likely owing to the large number of experiments that would be 

required and the difficulties associated with automated and generalized identification of molecules 

resulting from synthesis.

Simplifying the problem described above, Dragone et al. created a robotic system designed 

to actively explore a reaction network by searching for the most reactive pathways153. Reactivity 

was quantified using a “reaction selection index” (RSI), defined as the mean squared error between 

the infrared spectrum of the product and that of the reactants. As a proof of concept, the authors 

worked with amide synthesis based on the reaction network shown in Figure 18. One core 

molecule was subjected to a three-step reaction, where each step may involve four different 

reagents, resulting in 64 possible pathways ( ). Possible intermediates and products were 4 × 4 × 4

predicted using chemistry-based knowledge of likely transformations. To explore the network, 

four reactions were carried out between the core molecule and each reagent in the first generation. 

The reaction with the highest RSI was then selected and its product was combined with each 

reagent in the second generation to perform four new reactions. By repeating this process across 

the second and third generations, the most reactive pathway was identified (highlighted in Figure 

18) with a final product yield of 27%. This task was accomplished in only 12 experiments, 

significantly reducing the workload relative to a brute-force approach where 64 experiments would 

be necessary to explore all possible pathways. Hence, the advantages of informed optimization are 

realized not only by constructing an appropriate reaction network to reach the desired product, but 

also by exploring the network more efficiently with reactivity as a guiding metric. 
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Figure 18: (a) An illustration of the reaction network considered in the optimization of reactivity 

for a single core molecule undergoing reactions with four possible reagents. Subsequent 

transformations are enumerated throughout three generations, with final products listed in the 

group of nodes labeled with a, b, c, or d. (b) A schematic illustrating the reaction selection index 

(RSI) approach; as opposed to probing all possible pathways, only those with the highest measured 

reactivity are investigated, therefore significantly reducing the experimental workload. 

Reproduced with permission153. Copyright 2017, Nature Publishing Group.
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4.2.3 Summary

A summary of the active learning techniques discussed in this review is presented in Table 2. 

Relative to black-box optimization techniques, both data fusion and hypothetico-deductive 

modeling have been demonstrated to accelerate convergence to global optima through integration 

of physics-based or data-driven knowledge. To choose between these techniques for future 

automated platforms in materials science, consideration may be given to the types of 

properties/processes being studied as well as the ability to extract relevant data from databases or 

calculations. Based on the examples reviewed here, we suggest that data fusion is well-suited to 

optimize materials properties, such as stability or optoelectronic performance, so long as they can 

be calculated (e.g., using DFT) or deduced from empirical relations with design variables (e.g., 

using Arrhenius equations). In contrast, although hypothetico-deductive modeling has so far been 

limited to applications in organic chemistry and biology, we propose that this approach may be 

used to optimize complex materials processes. The synthesis of novel inorganic compounds is a 

prime candidate for hypothetico-deductive modeling because the underlying reactions may be 

decomposed into sequences of reagents, intermediates, and products – each of which can be 

verified through experimentation. However, as will be discussed below, several key developments 

in theory, characterization, and data availability are required before informed optimization can be 

broadly extended to inorganic materials synthesis. 
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Table 2: Active learning techniques commonly used to guide autonomous experimentation. 

Summaries of their key strengths and weaknesses are listed. Common applications demonstrated 

in previous work are also described.

    

Methods Strengths Weaknesses Use cases

Black-box optimization

   Genetic algorithms Can handle many
variables and objectives

Placeholder
Placeholder

Few batches of 
experiments needed

Each batch requires 
many experiments

Placeholder
Placeholder

No model of the
objective is given

Catalyst discovery113-119

   SNOBFIT Typically requires
few experiments

Placeholder
Placeholder

Well-suited to
handle noisy data

Ill-suited to handle
many (>10) variables

Placeholder
Placeholder

Does not apply to 
multiple objectives

Optimization of
flow reactions122-124

   Bayesian optimization Attempts to minimize 
number of experiments

Placeholder
Placeholder

A surrogate model for
the objective is given

Optimization of the 
acquisition function

can be costly
Placeholder
Placeholder

Performance sensitive to 
the choice of model

Optimization of 
material syntheses and 

properties12,22,51,78

Informed optimization

   Data fusion Readily integrated with
black-box techniques

Requires supplementary
information source 
(prior knowledge)

Chemical reaction 
optimization138

Placeholder
Placeholder

Phase stability 
investigation140

   Hypothetico-deductive 
   modeling

Directly interpretable
Placeholder
Placeholder

Applicable to complex
design spaces

Requires substantial 
manual design

by the researcher

Genotype discovery141
Placeholder
Placeholder

Reaction network 
exploration153
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5. Perspectives
The design of novel inorganic materials for any application hinges upon the ability to synthesize 

targeted compounds. The need for an expert to carefully plan and execute synthesis trials, interpret 

their results, and design subsequent experiments makes synthesis a time- and labor-intensive 

process. This limits the amount of information-gathering experiments that can be performed, 

instead requiring that the product be obtained in a black-box fashion (i.e., by trial-and-error). An 

autonomous synthesis system could reduce the time for successfully making new compounds and 

use prior results in a more systematic manner. With this objective in mind, we outline the necessary 

advancements in hardware, interpretation techniques, and decision-making algorithms needed to 

realize automated and closed-loop synthesis of novel inorganic materials. 

5.1 Synthesis

As discussed in Section 2.1, the full automation of solution-based syntheses can be achieved by 

using electronic and programmable syringe pumps to transfer samples between modules that 

perform unit operations such as mixing, heating, and filtration11,13. Although most existing 

applications deal with organic molecules, recent work has shown that similar techniques can be 

used to automate the synthesis of inorganic materials through sol-gel or precipitation methods18-

20, which are useful to produce nanoparticles (commonly metal oxides) so long as there exist 

appropriate precursors with high solubilities in available solvents such as water. To expand the 

scope of compounds that can be made by solution-based techniques, we suggest integrating 

hydrothermal synthesis into future workflows. This approach permits a wider range of starting 

materials since high temperature and pressure lead to increased solubilities. Furthermore, it can be 

used to access compounds that are only metastable under ambient conditions154. The automation 

of hydrothermal synthesis may soon be implemented at the experimental stage of materials 

development as robotic loading and unloading of the autoclave reaction vessel has recently been 

demonstrated in a commercial system155. 

For thin film synthesis, there are many reported workflows that can generate combinatorial 

libraries of samples with varied compositions in an automated and HT manner14,91. However, these 

platforms are distinguished from closed-loop experimentation by a lack of automation for data 

interpretation, decision making, and replacement of samples between experimental iterations. 

These shortcomings prevent an efficient probing of experimental variables beyond composition, 
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including synthesis conditions such as temperature or pressure. Fortunately, the examples 

reviewed in Section 2.2 demonstrate that automated thin film deposition can be integrated with 

robotics and optimization algorithms to develop closed-loop platforms. So far, autonomous thin 

film synthesis has been achieved with CVD21,22, spin coating12, magnetron sputtering39, and 

reactive sputtering with lg-LSA40. These methods alone can be used to produce many types of 

materials, and increased adoption of other techniques such as molecular beam epitaxy and pulsed 

laser deposition support a promising future for the closed-loop automation of thin film synthesis. 

In contrast to syntheses based on solutions or thin films, the automation of solid-state 

synthesis remains limited. As described in Section 2.3, several unit operations such as mixing, 

densification, and firing have been automated or parallelized; however, integrating these 

components without manual intervention between operations is challenging. To overcome these 

difficulties, we consider the advantages of solution-based and thin film syntheses with respect to 

ease of automation. On one hand, transferring of samples dissolved in a solution can be 

accomplished with electronic syringe pumps, whereas the handling of solid powders is more 

difficult. To solve this problem, a semi-solution-based approach may be taken whereby solid 

powders are handled as a slurry to allow transfer using syringe pumps. On the other hand, thin 

films avoid the difficulties associated with sample transfer by performing all experiments 

(including synthesis and characterization) on a single substrate that is more easily handled by 

robotic systems. Extending this concept to solid-state synthesis, automated platforms may rely on 

a multipurpose container that has robust mechanical, chemical, and heat resistance such that it can 

be used throughout the entire synthesis procedure without any degradation or contamination of the 

samples. This approach would therefore remove the need to extract and transfer the materials 

between unit operations. 

5.2 Interpretation

After performing a synthesis trial, phase identification is needed to decide whether a planned 

reaction was successful, or to understand why it may have failed. Because of the wide availability 

of reference patterns for crystalline inorganic materials, XRD is often the tool of choice for this 

purpose61,97. Although automated loading of samples and analysis with XRD can be carried out 

with commercially available systems, interpreting the resulting spectra is a more difficult task. Of 

the methods discussed in Section 3.2, we suggest that those based on machine learning are most 
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promising given three unique advantages. First, they provide a complete end-to-end treatment of 

raw spectra without requiring sensitive pre-processing steps such as peak extraction or baseline 

correction74. Second, machine learning models can account for possible non-idealities (e.g., from 

experimental artifacts) by performing data augmentation across spectra in the training set54. Last, 

ensemble models can be employed to generate probabilistic distributions associated with likely 

phases, therefore providing an estimation of uncertainty associated with the final classification75.

Of the machine learning models previously developed, CNNs are particularly adept at 

handling XRD spectra because they use convolution to decompose complex patterns into feature 

maps representing distinct properties such as peak positions or intensities, which can then be 

related to corresponding phases through a neural network. Indeed, Oviedo et al. have reported 

improved performance of CNNs relative to several alternative machine learning algorithms and 

full-profile techniques when applied to experimentally measured single-phase patterns obtained 

from a combinatorial library of thin film samples54. We note that a key component of their 

algorithm was the incorporation of peak shifts in the training spectra, which reflect the epitaxial 

strain that is common in thin film samples – this augmentation is therefore denoted as “physics-

informed”. A similar approach was employed in the work Maffettone et al., where changes in peak 

intensities were related to possible texture in the samples75. Future work may expand upon these 

concepts to further improve the model’s accuracy and generality by incorporating data 

augmentation designed to account for all artifacts that commonly arise during sample preparation 

and synthesis. If proven successful by rigorous testing on experimentally measured patterns, CNNs 

will prove vital to facilitate phase identification in closed-loop experimental platforms enabling 

autonomous inorganic synthesis. 

5.3 Decision making
Once the compounds produced by a reaction are known, a decision must be made regarding the 

next batch of experiments. Automated decision making for targeted syntheses requires either many 

experiments or advanced knowledge of the underlying objective function. For solid-state synthesis, 

the use of high temperatures and long heating times typically precludes a large number of 

experiments performed in parallel. Furthermore, unlike reactions between organic molecules, 

which can often be decomposed into a series of unit operations involving functional group 

additions/removals156, solid-state reaction mechanisms are less well understood. Due to the bulk 

nature of materials, reaction sequences based on nucleation and growth are not easily predicted, 
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and therefore the objective function that governs inorganic synthesis is unknown. When a 

measurable amount of the desired product is consistently formed throughout a set of experiments, 

the objective function can be simplified by performing black-box optimization to maximize the 

target yield31,116,124. However, when dealing with more complex syntheses involving novel 

compounds, an informed optimization approach is better suited to overcome the low success rates 

of many trial reactions. As described in Section 4.2.2, the complexity of objective functions 

governing organic syntheses can often be reduced by designing reaction networks, which map 

input parameters (such as precursors) onto possible experiments outcomes (intermediates and final 

products)150,153. With hypothetico-deductive modeling, promising pathways in the network can be 

hypothesized and verified by performing stepwise reactions and measuring the yields of expected 

products. While current applications of reaction networks remain mostly limited to small 

molecules, similar concepts may be extended to inorganic materials synthesis if an improved 

understanding of solid-state reactions is realized.

To build a reliable reaction network, it is necessary to predict which phases are likely to 

form from a set of specified precursors and synthesis conditions. This task is challenging for solid-

state reactions because many factors can prevent a system from reaching thermodynamic 

equilibrium, and therefore inorganic materials synthesis is often treated as a black box that must 

be probed with trial-and-error experiments. The combination of in situ characterization and 

computational modeling of thermodynamics is however making progress in rationalizing synthesis 

pathways. For example, Bianchini et al. monitored the synthesis of sodium metal oxides to 

highlight the importance of intermediate phase selection and its effects on the reaction products23. 

The authors argued for two types of reaction pathway controls. When the driving force is large, as 

in the initial reaction between precursors, the pathway is dictated by the compositionally 

unconstrained reaction energy – i.e., the first phase that forms during high-temperature synthesis 

is the one which locally maximizes the free energy reduction at the precursor interfaces, regardless 

of the overall composition of the mixture. This phase then evolves to the equilibrium ground state 

for the overall composition of the mixture through transformations that are either kinetically or 

thermodynamically controlled. When the remaining driving force is low, metastable intermediates 

were observed when facile transformation mechanisms from previous phases along the pathway 

allowed them to lower the free energy of the system faster than through the formation of the 

equilibrium phases.
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Metastable intermediates that accompany reactions with low thermodynamic driving 

forces are often templated by structural similarities with preceding phases. For example, in the 

synthesis of KBiS2 from K2S and Bi2S3, McClain et al. showed that K3BiS3 initially formed as an 

intermediate because it shares a similar motif to the structures of the starting materials157. The 

authors propose that the distorted octahedral KS6 and BiS6 coordination environments in K3BiS3 

serve as transition states between the distorted octahedral (tetrahedral) complexes of Bi2S3 (K2S) 

and the ideal octahedral environments in KBiS2. In addition to structure, the selectivity of 

intermediate phase formation can also be controlled by environmental conditions such as 

temperature and partial pressures of gaseous species. This was demonstrated by Todd et al. for the 

synthesis of YMnO3 from a combination of Mn2O3, YCl3, and Li2CO3 as precursors158. They found 

that a high oxygen fugacity favors the formation of LiMnO2 and YOCl as intermediates over Y2O3 

and Mn2O3. Moreover, because the former pair of compounds are layered, their high diffusion 

rates enable rapid formation of the target (YMnO3), further clarifying the role of kinetics in 

dictating reaction pathways between solid precursors. Alternatively, when compounds arise from 

molten phases rather than from solids, the first intermediate to form is usually the phase with the 

lowest barrier to nucleation. For example, Shoemaker et al. found that a single metastable phase, 

K5Sb2S8, initially nucleated from a melt formed by Sn and K2S5
159. This novel compound was 

transient in the reaction sequence, later decomposing to a mixture of K2Sn2S5 and K4Sn2S8, which 

is the thermodynamic ground state.

The utility of the concepts described above are highlighted in the work of Miura et al., 

where the influence of precursors on resulting reaction pathways taken throughout the synthesis 

of YBa2Cu3O6+x (YBCO) was studied160. In agreement with the work of Bianchini et al.23, it was 

observed that initial reaction occurred at interfaces with the largest thermodynamic driving forces. 

The first intermediates were shown to drive the reaction along a pathway that led to rapid synthesis 

through a low-temperature liquid phase, which would have been inaccessible if other intermediates 

had formed. These findings suggest that precursors can be carefully selected to control reaction 

pathways and enable the formation of targeted products. However, as opposed to organic 

molecules, where reactions can be rationalized by considering molecular-level interactions (i.e., 

breaking and forming individual bonds), predicting kinetic contributions to solid-state reactions is 

challenging because they involve concerted displacements and interactions among many species 

over extended distances, making first-principles approaches difficult. 
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To simplify the analysis of solid-state reactions, McDermott et al. developed an algorithm 

that predicts all possible pathways between a set of precursors and final product(s), with each 

pathway decomposed into a sequence of pairwise reactions161. The thermodynamic driving forces 

associated with each pathway are used to calculate a cost function, from which suspected reaction 

sequences are ranked from most to least favorable. As an example, the authors demonstrated that 

their algorithm was able to predict the reaction pathway taken during the synthesis of YMnO3. 

However, to extend this approach to more general syntheses of arbitrary compounds, it is necessary 

to incorporate factors beyond thermodynamic driving forces. As described in the previous three 

paragraphs, metastable intermediates that form more rapidly than the equilibrium ground state 

often dominate when their driving forces for formation are comparable. Hence, although difficult 

to calculate directly, future algorithms may benefit from an estimation of transformation rates 

based on structural descriptions, since structures can serve as templates for nucleated phases. An 

initial approach was recently published by deriving a structural descriptor from classical nucleation 

theory to help indicate which reactions are plausible162. Further advances in the prediction of 

reaction pathways should also address the potential for melting and preferential nucleation from 

molten phases that form during high-temperature syntheses.  

It is clear that more work is needed to improve our understanding of the underlying 

objective function that governs solid-state synthesis, and an increased adoption of in situ 

characterization would be helpful for this purpose. The information gained from in situ 

measurements is vital to validate any predictions made by the aforementioned theories and could 

be used to modify or extend their rules accordingly24. Additionally, any knowledge regarding 

intermediates that form during a synthesis trial provide direct insight into why a synthesis attempt 

succeeded or failed158,159,163,164. Therefore, the identification of intermediate phases is particularly 

useful in the optimization of inorganic materials synthesis because it allows us to understand why 

the target phase was or was not formed. This knowledge can also be reincorporated into the 

experimental procedure to actively guide materials synthesis. For example, Rakita et al. used in 

situ synchrotron X-ray absorption spectroscopy to monitor the oxidation of copper samples placed 

in a controlled reaction environment163. By continuously observing changes in the average Cu 

oxidation state with respect to the partial pressure of the oxidant, more or less gas flow was fed 

into the reaction vessel to target an average oxidation state of Cu1+. Although this state is difficult 

to obtain manually as it requires a precise balance of Cu0 and Cu2+ species, the autonomous 
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workflow successfully formed samples with an average oxidation state near Cu1+ through active 

control of the reaction environment.

Unfortunately, the availability of in situ characterization techniques with high resolution 

and a fast scan rate remains limited, especially within the context of automated platforms. While 

methods such as thermogravimetric analysis or differential scanning calorimetry can sometimes 

be used to indicate when a reaction or phase change has occurred, they do not provide a means of 

identifying which intermediate phases formed. For this purpose, spectroscopic or diffraction-based 

techniques are necessary. However, obtaining reliable in situ data typically requires that high-

intensity radiation or neutrons be used, which can be obtained only with high-energy sources (e.g., 

a synchrotron or nuclear reactor). Therefore, in the absence of improved in-lab diffractometers, we 

suggest that an automated synthesis platform can potentially replicate the information gained from 

in situ characterization by carrying out reactions across a range of temperatures, quenching after 

predetermined annealing times, and performing ex situ measurements on the resulting samples. 

This approach would provide discrete snapshots of the reaction pathway, and the throughput of 

automated platforms may enable sufficient measurements to mimic traditional in situ methods.

In the place of information obtained using new experiments, previously reported data can 

be tabulated and analyzed to reveal statistical trends, develop models, and validate predictions. In 

recent years, large-scale databases and application programming interfaces (APIs) that provide 

experimental and/or calculated materials data sets have become increasingly popular. For example, 

the ICSD contains hundreds of thousands of experimentally determined crystalline structures97, 

and the Materials Project contains a variety of DFT-calculated properties across a comparable 

number of materials2. For information regarding experimental synthesis routes, however, there 

exists only a limited amount of well-structured data with sufficiently high quality to be coupled 

with autonomous systems. To overcome this shortcoming, NLP efforts have been developed and 

applied to collect and curate synthesis data in relevant literature, such as synthesis conditions and 

resulting phases25,101,102,165. Though, because of inherent biases in published results, more work is 

needed to address the lack of negative examples (i.e., failed synthesis attempts), which limits the 

ability to learn which factors contribute to an experiment’s success103,166. Interestingly, the 

potential of coupling NLP with autonomous synthesis platforms has been demonstrated by the 

work of Mehr et al., where a fully integrated system was built to carry out the synthesis of organic 

compounds with experimental parameters parsed directly from the literature167. With the 
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increasing development of text-mined inorganic synthesis databases165,168, we suggest that similar 

methods may be applied to power autonomous inorganic synthesis platforms. 

5.4 Summary

With the growing development and adoption of self-driving laboratories in materials science, time 

can be freed up for the researcher to work on high-level tasks involving conceptual formulation 

and interpretation, while leaving low-level, manual efforts to be carried out by the robotic 

system169,170. These high-level tasks may include choosing the candidates to be synthesized based 

on prior knowledge such as structure-property relationships, designing the experiment such that 

all parameters and bounds are chosen to ensure maximal efficiency, and analyzing the 

corresponding results to ascertain broader scientific implications (e.g., a clarification of factors 

influencing synthesis) which inform further experimentation. Indeed, the sparsity of existing 

theories for solid-state reactivity emphasizes the ample work left for the human to develop these 

concepts and enable self-driving laboratories to meet their full potential in inorganic materials 

science. The lack of these established theories should not however precede the development of 

autonomous systems as expanding available datasets and automating time-consuming tasks will 

drive the development of more predictive theories for the directed synthesis of novel inorganic 

materials.
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