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Photocatalytic hydrogen production is a promising alternative to traditional hydrogen production. To
implement photocatalytic hydrogen production the development of efficient, sustainable, and stable
catalysts is necessary, and overcoming the current challenges surrounding high dimensional search
spaces requires both computational and experimental efforts. Utilizing photo driven processes, stable
colloidal metal catalysts can be formed in situ for efficient hydrogen production from water. When
considering colloidal catalysts, stability is typically a concern solved through the addition of supports
or ligands. Here, poly(ethylene glycol) methyl ether thiol acts as a stabilizing ligand eliminating the
need for catalyst supports while providing stable and active nanoparticle catalysts for more than 45
hours of reaction time and illumination. These systems utilize molecular photosensitizers, water re-
duction catalysts, stabilizing ligands, water, a sacrificial reductant, and organic solvents, posing new
challenges pertaining to the optimization of multi-variable systems. Design of experiments (DOE)
is applied to accelerate the understanding of variable interactions and is used as a tool to rapidly
optimize the compositions of Au, Cu, Ni, and Fe containing systems. Through a collaboration lever-
aging computation and experimentation (both high throughput and characterizations), optimized
performance peaks were obtained for each of these metals alongside distinct mapping of expected
activity associated with photosensitizer, metal, and ligand concentration variations. With the highly
digitized workflow, this study allowed for comparative generalizations to be made regarding photo
driven hydrogen production for all four metals.

1 Introduction
1.1 Hydrogen Evolution
Renewable hydrogen (H2) production is a critical component in
the effort to mitigate climate change. H2 as an energy carrier
has gained increased attention in the energy sector as it can be
used in areas including transportation, directly as heat through
combustion, and chemical synthesis.1,2 As a result, sustainable
H2 production is an active area of research. As the global popu-
lation grows and the push for renewable practices continues, the
demand for H2 will grow.1 As of 2017, approximately 96% of
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global H2 production was produced by steam reforming of non-
renewable sources (oil coal, and natural gas).3 This process pro-
duces significant quantities of greenhouse gases, and a renewable
approach is desirable. Photo-driven water reduction (a H2 evolv-
ing reaction often referred to as HER) requires only a photosensi-
tizer (PS), sacrificial electron donor, and water as proton source,
replacing the previous carbon intensive feedstocks.4 This system
has the capacity to directly convert solar irradiation to H2 in a
carbon neutral or negative manner based on the choice of donor.
To make photo-driven water reduction a viable option for HER,
active and stable catalysts are required to facilitate the reaction.

Photocatalytic systems can directly harness light energy
through the use of a molecular PS.5–7 This process bypasses tra-
ditional photoelectrocatalytic processes which require the use of
an external electrical current and voltage to drive a reaction.8

In traditional photoelectrocatalytic processes, either molecular
catalysts or heterogeneous catalysts are used. Molecular cata-
lysts at times suffer from degradation after extensive light illu-
mination.9,10 Hetergeneous catalysis with the use of nanoparti-
cles (NP) have emerged as promising catalysts due to their high
surface area and tunable chemical and physical properties.11–13
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Additionally, in situ generated NPs have the added advantage of
eliminating complex synthetic processes. Due to the advantages
of the direct utilization of light energy and NP heterogeneous
catalysts, there has been increased interest in improving these
systems for photocatalytic HER.4,7,14–19 The role of nanostruc-
ture has been studied extensively for electrocatalytic HER,13 how-
ever, studies involving unsupported metallic NP, especially those
in base metals, or insitu particles in visible light driven systems
are more limited.20

1.2 Photocatalytic HER with NP Catalysts

Photocatalytic HER typically involves a multi-step process. The
light energy from an illumination source excites the PS, and in
a reductive quenching regime, the excited PS gains an electron
from the sacrificial electron donor.4,21,22 One potential next step
is to use the reducing power of the PS to either reduce dissolved
metal salts or reduce protons into H2.4,21–23 The system de-
scribed has been studied before for different mono and bimetallic
systems.7,18,24,25 One study looked at Cu2+ reduction to Cu for
HER in a system containing fluorescein, triethanolamine (TEOA)/
triethylamine (TEA), and metal salts in an aqueous solution.18

The aims of that study were to quantify H2 production, identify
NP formation, and determine differences in activity for TEOA and
TEA in the system.18 Another study was performed for the reduc-
tion of Fe3+ to Fe for HER in a similar system.24 That study aimed
to optimize on TEA or TEOA as the sacrificial electron donor, the
enhancement of HER with the addition of supports, and optimiza-
tion of different metal salt concentrations.24 Yet another study
looked at Ni based systems that used graphitic carbon nitride to
obtain stable NPs for photo-driven HER.26

Similar studies exist for other monometallic species such as Co,
Au, and Pd, however, these studies are limited in the capacity for
number of experiments performed and hence exhaustive compo-
sition ranges for testing.27 As a result, their survey of the com-
position space is likely to be incomplete. Few studies mention
the addition of stabilizing ligands as opposed to supports.18,24 A
comparative analysis of different metals is lacking in these stud-
ies. Generalizations of some of these findings across different
metals would provide a better understanding of the role of in situ
NP formation for HER heterogeneous catalysis. Some limitations
including exhaustive studies of the composition space and simul-
taneous variation of different components are inevitable given
the complexity of these systems and the long experimental time
frames required. Additionally, these experiments are not easy to
study because changing multiple concentrations of each variable
simultaneously can significantly increase the complexity of anal-
ysis. Our work aims to target some of the limitations mentioned
in generalizing trends, rapidly optimizing the composition space,
and digitizing a reactor workflow.

One way to address some of these limitations in the screen-
ing space is by a high throughput approach advised by a design
of experiment (DOE) framework. The high throughput experi-
ments allow for a wide variety of reaction conditions at the same
time, while the DOE advised experimental design will map out the
chemical space by optimizing the experimental design to output

the greatest amount of information with the least amount of tri-
als. We previously introduced a parallelized photoreactor system
which can measure H2 production in 108 well plates.7 H2 gener-
ation is measured using a colorimetric chemosensitive tape which
turns progressively darker as H2 is produced. The reactor was
calibrated using the addition of pure H2 gas.6,7 Previous studies
showed high quantitative agreement with this method was com-
pared with traditional gas quantification approaches such as gas
chromatography.5,28 The 108 well plate is sealed with this de-
tection tape and is illuminated for an experimental time of ~15
hours. As the experiment progresses, the tape on wells that gen-
erate H2 will darken, indicating which compositions are active.
An added benefit of these experiments is that they occur at room
temperature under ambient conditions without noble gas purging
of the air head spaces.

This study utilizes this high throughput experimental method-
ology and a DOE framework to understand relationships and de-
pendencies in these multi-component systems. We aim to opti-
mize the PS, ligand, and metal composition space for four met-
als (Au, Cu, Fe, and Ni). Au and Cu were chosen because the
atomic and composition arrangements of Au and Cu containing
NPs have been extensively studied29–31 and they have typically
exhibited resilience to oxidation and degradation.6,32 Fe and Ni
were chosen to due to their stability potentials in the presence
of Poly(ethylene glycol) methyl ether thiol (PEGSH),33 their non-
noble metal classification, higher earth abundance, and the more
limited understanding of Ni and Fe NPs for HER under atmo-
spheric photocatalytic environments. The photosensitizer (PS)
was chosen for optimization since preliminary studies indicated
that the PS concentration has a strong influence on activity and
can be a limiting factor. Previous studies6 indicate that the role of
a stabilizing ligand enhances catalytic activity, but it is not always
clear what the best ligand concentration is and if it differs for dif-
ferent metals. PEGSH was chosen as our stabilizing ligand in this
study due to its affinity for the four metals in these studies.6,33–35

Finally, the metal identity and concentrations were investigated
to identify different HER activity responses as these variables are
manipulated. The two primary goals of this study are to utilize
high throughput experiments advised by DOE to optimize the PS,
metal, and ligand space to find optimal compositions to achieve
maximum H2 production and generalize trends for Au, Cu, Ni,
and Fe NP catalyst HER using photocatalytic methods. We have
made use of a parallel reactor design to explore with great gran-
ularity the chemical space surrounding several metals and their
supported in situ synthesized water reduction catalysts. Using a
computational approach toward design of experiment, we were
able to rapidly determine performance peaks within each metal.

2 Methods

2.1 Experimental

2.1.1 Photocatalytic H2 Evolution Experiments

Photocatalytic H2 evolution experiments were performed with an
in house designed parallelized photoreactor which enables up to
108 reaction wells to be monitored simultaneously. This system
utilizes H2 detection tape (DetecTape Hydrogen Detection Tape-
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Midsun Specialty Products, Item DT-H210015-PF4) as a means of
colorimetric chemosensitive detection of H2 and has been exten-
sively reported on and calibrated in previous publications.5,7,28,36

Reactions for this work were prepared using an automatic liquid
dispensing robot (Hamilton Nimbus4) directly dispensing into the
108 reaction wells which were then transferred to the parallel
photoreactor, capped with a gas impermeable fluorinated poly-
mer film, silicone and plexiglass before being illuminated on the
instrument using two 100-watt blue LEDs (Chanzon High Power
Led Chip 100 W, 440450 nm/3000 mA/DC 3034 V). Solutions
of metal salts and the photosensitizer (PS = Ir(Fmppy)¬2dtbbpy
PF¬6 where Fmppy → 4’-fluoro-2-phenyl-5-methylpyridine, and
dtbbpy → 4,4’-di-tert-butyl-2,2’-bipyridine, synthesized according
to literature)36 were prepared in DMSO. Solutions of PEGSH and
TEOA were prepared in deionized water. The total volume of
in each reaction well was 440 microliters, with multiple round
experiments having a refill of the PS solution (100 microliters)
and TEOA solution (20 microliters) and replacement of Detec-
Tape between rounds. Quantification of images after reactions
was performed using an in house developed program in Wolfram
Mathematica.5,7

An internal standard was added in six wells of each plate. This
internal standard was chosen because it is a molecular species
that is not subject to NP growth variations, and is expected be
more uniform in activity.5,37 The solution is a 420 microliter vol-
ume composed of 400 microliter methoxy ethanol, and 20 mi-
croliters of a 60% (w/w) TEOA solution in water. It contains 1
mM Eosin Y (as a PS), and 1 mM Cobalt(III) bis(BF2-annulated-
dimethylglyoxime) pyridine chloride, both from methoxy ethanol
solutions.

2.1.2 Materials

Iron chloride (FeCl2 4H2O, 98%), gold(III) chloride
trihydrate(HAuCl4 3H2O, 99.999%), and ruthenium chlo-
ride (RuCl3 XH2O, 43.55% Ru by mass) were purchased from
Sigma-Aldrich (St. Louis, MO). Cobalt chloride (CoCl2, 97%),
copper chloride (CuCl2, 98%), triethanolamine (TEOA), and
nickel chloride (NiCl3, 98%) were purchased from Alfa Ae-
sar (Haverhill, MA). Poly(ethylene glycol) methyl ether thiol
(PEGSH avg MW = 1kDA) was purchased from Laysan Bio Inc.
All reagents were used as received unless indicated. NANOpure
(Thermo Scientific, 18.2 MΩ·cm) water was used to prepare all
aqueous solutions.

2.1.3 X-ray Photoelectron Spectroscopy (XPS) Experiments

Prior to XPS analysis, the resulting catalysts were dialyzed in wa-
ter to remove excess DMSO and TEOA. The solution from one re-
action vial was transferred to a Slide-A-Lyzer Mini dialysis device
(Fisher Scientific) in 50 mL of water. After dialyzing overnight,
the particles were removed from the polypropylene cup and di-
luted in 15 mL Falcon tubes to a total volume of 8 mL. The parti-
cles were then centrifuged at 4,000 rcf for 10 min. The super-
natant was removed and discarded, and the pellet was resus-
pended in minimal solvent using sonication. The samples were
prepared by drop casting an aliquot of washed NP onto p-doped
(boron) silicon wafers (University Wafer, Boston, MA) that had

been cleaned for ultrahigh vacuum analysis. XPS spectra were
obtained using an ESCALAB 250XI XPS with a monochromated,
microfocused Al K X-ray source (Materials Characterization Labo-
ratory, Department of Chemistry, University of Pittsburgh, PA) at
a spot size of 900 µm. Survey and high-resolution spectra were
collected with a pass energy of 150 and 50 eV and a step size of
1.0 and 0.1 eV, respectively. All spectra were charge referenced to
adventitious carbon (284.8 eV) and fitted using Thermo Scientific
Avantage software.

2.1.4 Transmission Electron Microscopy (TEM) Experiments

Transmission electron microscopy (TEM) samples were prepared
by drop casting an aliquot of the unwashed solution onto a
carbon-backed 200 mesh Cu TEM grid (Ted Pella, Inc.), dried
under ambient conditions after wicking excess solvent through
the grid, and stored under vacuum prior to analysis. A Hitachi
H-9500 microscope operating at 300 kV (Nanoscale Fabrication
and Characterization Facility, Petersen Institute of Nanoscience
and Engineering, University of Pittsburgh, PA) was used for
all imaging. Images were analyzed using Digital Micrograph
v2.10.1282.0 (Gatan, Inc.) and/or ImageJ v 1.47d (National In-
stitutes of Health, USA) software.

2.2 DOE approach
Our current experiments occur in a 108 well plate. There are mul-
tiple solutions that are added to the wells to make each of the 108
well reactors - DMSO, PS, PEGSH, metal, water, and TEOA. The
main benefit to using this high throughput experimental setup
lies in the ability to survey many composition variations and ob-
tain large quantities of activity information from each experimen-
tal run. That benefit also means, though, that in this multiple
component system, there can be a large number (n) of tunable
variables and discerning the quantitative importance of each one
is non-trivial. The standard way to better understand the roles of
each component in the system is to hold n−1 variables constant
while varying one variable of interest.37,38 Though this process
can isolate the contributions of each variable somewhat defini-
tively, it does require many experimental trials, and associated
with that, resources, time, and energy to exhaust the space. Ad-
ditionally, this process limits the opportunity to explore interac-
tions between multiple factors. Without exploring variation in
the multidimensional space, valuable compositions could be left
unexplored.

A more intentional approach to understanding the relationship
between multiple variables is with a DOE framework. DOE de-
signs are based heavily in statistics, and there are several distinct
experimental designs that include several factors (system compo-
nents) or levels (composition values) while identifying relation-
ships between the factors.39 DOE aims to extract maximum infor-
mation with minimum experimental trials.

This study aims to optimize the concentrations of three factors
- metal, ligand, and photosensitizer (PS). The initial experiments
are created to broadly survey the composition space at three lev-
els (high, medium and low concentration) for each of the three
factors (metal, ligand, and photosensitizer). A Box-Behnken de-
sign was initially used to generate the composition values for each
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component. For each metal, 15 wells were designed per experi-
ment to survey the three-dimensional space where three wells
were the center points. The remaining 12 wells were made up
of different compositions where each factor was varied at three
levels - high, low, and center concentration values. The ini-
tial bounds were chosen based on prior experiments of different
metal and ligand concentration variations and finite well volume
limitations. The experimental design was converted into input
files to be read by the Hamilton robot hosted in the Bernhard
lab that fills the 108 well plate with the delineated solutions and
their respective volumes. When the results of the ~15 hour ex-
periment are returned, a simple linear model (equation 1) was
created using an ordinary least squares objective function.

maxH2 = J+Ax1 +Bx2 +Cx3 +Dx1x2 +Ex1x3 +Fx2x3+

Gx2
1 +Hx2

2 + Ix2
3 (1)

In this model, each letter is a fitted constant that quantifies the
importance of the associated term. x1,x2,x3 each represent metal,
ligand, and PS concentration respectively. By using a DOE anal-
ysis Python package created for this study,40 the data was ana-
lyzed, and an optimal composition was predicted with the model.
The new prediction was then used as the new center points of the
DOE design, and a tighter sampling space was tested with tighter
composition bounds. This process was iterated until the optimal
composition prediction no longer changes. The entire workflow
is outlined in Figure 1.

Fig. 1 The iterative computational and experimental workflow consisting
of experimental design, experimentation, and analysis.

2.3 Collaborative workspace

This project has experimental and computational contributions
across two institutions, and three academic departments. Each
108 well-plate yields data for each well including images, derived
data from image analysis, and characterization of post reaction
mixtures on select reaction wells. It was necessary to develop a
shared workspace to share data and analysis in the project.

To make a robust and collaborative space where all collabora-
tors can access the data and analysis, Google Drive was chosen
as the data sharing platform due to its flexibility in file system
sharing, Colab notebook integration, and general user-friendly
nature. The Google Colab notebooks are the main computational
drivers on this platform. Using Colab, the experimental input files
are generated, and once the experiments are run and uploaded,
the output files are subsequently processed in Colab. The experi-
mental design, input file creation, and post experimental process-
ing is done with the help of two python modules- doe_analysis
and gespyranto.40 Both modules have been developed alongside
this project to aid in data management and analysis and can be
found in the SI†.

Google Drive can also be synced to a local computer where
analysis can be done with other tools, e.g. a Jupyter or Mathe-
matica notebook. Google Colab files are saved as .ipynb files that
are compatible with Jupyter. Unfortunately, other Google Drive
files including Google Docs, Sheets, Slides and Jamboards cannot
be locally downloaded or viewed.

Each experiment is organized in a directory within the project
folder that contains input files, top and bottom images of the
plate, and output files. The input files contain information re-
garding volumes and identities of different solutions in each well,
as well as metadata critical to identifying plates. With the use
of plate descriptions, and general plate design layouts, the inter-
pretability of the plate is such that the data viewer has context,
and this structure gives sufficient flexibility allowing the plates to
be processed using the same flow even as the experiments change.

Using our developed data workflow, we can parse through the
data directories to extract out relevant information for process-
ing. gespyranto can read an experiment directory (or set of di-
rectories) into a searchable dataframe, display heatmaps and time
series plots of the plate activity, and even automatically generate
plate summary notebooks for each experiment. When discrepan-
cies arise or surprising results are found through the analysis of
the entire data set, these plate summary notebooks allow us to
quickly look at specific well activities and time series graphs to
discern any unusual behaviors.

A crucial feature of the Google Drive ecosystem is that any col-
laborator can read any file in the project in their browser from
a url. This provides interactive read access to all the data and
analysis to all collaborators in the project, without requiring any
software installation.

3 Results and Discussion

3.1 Target Variable

In DOE, it is necessary to choose a target metric for exploration.
One of the key measurements we make is the production of H2 in
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each well. There are two ways we chose to quantify trends in this,
either a property of the rate of H2 production, e.g. the maximum
rate, or the amount of H2 produced, e.g. the maximum produced
in each experiment.

The rate is related to the time derivative of the H2 production.
In this case, the rate of H2 production can be found by smoothing
the time series data from each experiment and obtaining the max-
imum slope from these smoothed curves. This process relies on
smoothing functions and may be susceptible to noise fluctuations.
Another possible activity metric is the maximum H2 obtained by
the end of the experiment. This measure is the highest reported
H2 value in a time series curve - typically this point is attained
at the end of the experiment. When plotting both the maximum
rate vs the maximum value of H2, a correlation was observed in
Figure 2 between the two metrics for all four of the metals in the
study.
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Fig. 2 Correlation between the maximum H2 vs maximum H2 production
rate for all experiments within this study. The different symbols indicate
the different metals that were tested.

Since the correlation between the two metrics is relatively
strong, we decided to use maximum H2 as the target variable
since it does not require further data manipulations, is not reliant
on smoothing functions, is less susceptible to deviations due to
noise fluctuations, and it is an unambiguous measure of activity
in this work.

3.2 Identifying Active PS Concentration
The PS is a critical component in this system because it harnesses
light energy and enables the reduction of both the metal salts and
protons to H2. Previous studies utilized 0.25mM of PS which ap-

peared to be a sufficient concentration for the photodriven system
without the presence of PEGSH.6,7 Upon further experimenta-
tion in the ligand and metal space, the H2 production time series
curves became indistinguishable for different metals. In this case,
the rate limiting step was not the catalyst surface performance
but the PS energy transfer capabilities, hence the system was in
a PS limiting regime. We included PS concentration as a tunable
variable in the following experimental system.

The initial plate design was performed using the Box Behnken
design since it is more suited towards three factor experiments
and requires fewer trials to survey the composition space than
other designs like central composite designs. The PS composi-
tion space that was surveyed was from 0.05 mM to 1 mM. The
metal, ligand, and PS concentrations were refined using the three
variable linear equation (1). After two iterations of refining the
compositions of ligand, metal and PS, the predicted optimal PS
values were consistently near the upper end of the composition
space. It was not practical to continue increasing the PS concen-
tration since the PS is an expensive material, and the reactor vials
are of finite volume.

To conserve PS while still ensuring we were not operating in a
PS limiting region, we conducted experiments on solely PS con-
centration variations. We tested the PS concentration range from
0 to 1 mM PS while holding the metal and ligand concentrations
constant at both 1 mM metal and 1 mM PEGSH and at 0.5 mM
metal and 1 mM PEGSH. As seen in Figure 3, though the activity
continues to increase as PS concentration increases, the marginal
increase in activity becomes negligible after about 0.4 mM for all
four metals.

The two graphs illustrate that for both Figure 3 A and B, though
the activity values differ, the curvature trends are similar in the
flattening out behavior after 0.5 mM PS. The above experiments
are also important since they confirm that at 0.5 mM PS, the re-
action is not PS limited, and there is diminishing marginal benefit
by continuing to add PS. We claim that the reaction is not PS lim-
ited due to the general differentiation between the different metal
activities at 0.5 mM PS. In the case of Au and Fe in Figure 3 B,
the similarities in curves may instead be a result of similar surface
properties for HER.

The benefits to limiting the PS are both from an economic and
modeling standpoint. By limiting the PS to 0.5 mM, the expen-
sive Ir based PS can be conserved. This will reduce downstream
costs for larger reactors or longer timescale experiments. From a
modeling standpoint, by fixing the PS concentration at 0.5 mM,
the composition optimization reduces from a three dimensional
problem to a two dimensional one. Since the optimization prob-
lem no longer requires varying the PS concentration, the two de-
grees of freedom remaining are metal and ligand concentrations.
Once the PS studies were complete, the following experiments
were fixed at 0.5 mM PS.

3.3 Identifying Optimal Composition Regions

The DOE design used for optimizing the two-dimensional (metal
and ligand) space is the central composite inscribed (CCI) model.
CCI was chosen due to its comprehensive sampling around a
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Fig. 3 A. PS dependence with 0.5mM metal and 1mM PEGSH. There
is a significant increase in activity from 0.05 to 0.25 mM PS at 0.5
mM metal. After this initial rapid increase, the activity is less sensitive
to PS concentration. B. PS dependence with 1 mM metal and 1 mM
PEGSH. Again, there is a significant increase in activity from 0.05 to 0.4
mM PS. Though the activity continues to gradually increase, the activity
improvement is not as substantial and the differentiation between the
activities for different metals indicates this is not a PS limiting region.

given center point. The model used to fit the data is the same lin-
ear polynomial expression containing crossed and squared terms
of the independent variables as seen in equation (1). Since the
PS concentration was now fixed at 0.5 mM, all x2 terms were
also fixed at 0.5 mM. The first iteration was a sparse and broad
sampling of the composition space. As more iterations were com-
pleted, the model was continually updated, and more points were
sampled in a tighter composition range around the optimal. Opti-
mal convergence was achieved when the prediction µmolH2 op-
timal was within 1 µmolH2 of the prior prediction. This was
achieved within 6 iterations for the 4 metals.

3.3.1 Model and Raw Data Agreement

The expected result of the iterative DOE and high throughput pro-
cess is a high density of sampled experimental points around the
predicted and actual optimal composition. After each iteration,
the model was refined and would predict new optimal points as
more data was considered. Since the data for each metal was
collected over the course of multiple plates (experiments), it be-
came important to normalize the data so that variations between
experiments could be accounted for.

An internal standard was introduced and was run in six wells
on the 108 well plate. The purpose of the internal standard was to
provide a consistent measurement that should perform the same
from plate to plate under the same external conditions. The in-
ternal standard was assessed for consistency and can be found in
the SI†. As a result, any variation seen in internal standard perfor-
mance can be considered an external factor variation that affects
the performance of the entire plate. The raw data points were
normalized by introducing a multiplying factor to the different
plates based on how the internal standard performances differed
across plates.

The predicted space generated by the model was plotted as a
contour map as seen in Figure 4, and the raw data was overlaid
with the same color legend. The expectation is experiments with
compositions which lie along computationally generated contours
will approximately match the activity delineated by that contour.
Figure 4 only contains the Au and Ni results since similarities were
seen with Cu and Fe. The complete set of 4 metals can be found
in the SI†.

For all of the metals, the bright raw data points fall closely
around the high predicted optimal red points. This indicates con-
structive predictive capabilities. Interestingly, Au and Cu have
similar shapes as do Ni and Fe. The predicted optimal for all four
metals are denoted in Table 1.

Table 1 The predicted and experimental optimal concentrations, and
activity for the metal and ligand space.

Metal Au Cu Ni Fe
Predicted Metal mM 1.41 1.55 1.27 1.22
Experimental Metal mM 1.5 1.4 1.1 1.5
Predicted Ligand mM 0.81 0.85 0.97 1.08
Experimental Ligand mM 1.14 0.81 1 0.9
Predicted µmol H2 20.17 15.55 21.40 20.54
Experimental µmol H2 22.77 17.92 24.30 22.71
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Fig. 4 A. Au model and raw data space. B. Ni model and raw data
space. The raw data is plotted as a scatter plot, and the model predicted
space is in the contours. The color denotes activity where bright colors
are areas of high activity and dark colors are areas of low activity. The
expectation is that the color of the raw data points closely match the
colors of the model generated contours. The red point is the model’s
predicted optimal activity located at the respective composition.

For Au and Cu, the optimal predicted points lie around 1.5 mM
and 0.8 mM PEGSH seen in both Table 1 and Figure 4. The model
indicates lower sensitivity around the PEGSH concentration and
higher sensitivity for the metal concentration based on the fre-
quency of contours in the PEGSH and metal axis respectively. Ad-
ditionally, the contours are broader near the peak indicating a
larger region in which optimality can be achieved. For Fe and Ni,
the optimal predicted point lies around 1.25 mM metal and 1 mM
PEGSH. The model has higher sensitivity with the PEGSH content
and has a lower sensitivity around the metal concentration. These
trends are seen in the variation in predicted vs actual concentra-
tions in Table 1. For Au and Cu, the metal concentration predicted
and experimental values are within 0.1 mM, and the ligand con-
centration predicted and experimental values are within 0.2 mM.
For Ni and Fe, the ligand concentrations are much more similar
with about 0.1 mM between predicted and experimental, and the
metal concentrations were up to 0.3 mM between prediction and
experimental. As seen in Table 1, in all cases, the predicted opti-
mal is less than the maximum reported activity. This is likely due
to the presence of lower activity points near the optimal (Figure
4 causing the model to under predict). The activity uncertainty
for data points is approximately 3µmol H2 based on the internal
standard well variability. Taking the experimental data uncer-
tainty, the model’s predicted activity is within 3 µmol H2 from
experimental observations.

3.3.2 Standard Error Reduction

Based on the developed linear model, optimal metal and ligand
compositions were predicted. The predicted composition based
on the previous experiment was tested as a center point in the
following experiment using a CCI design. By using the predicted
optimum as a center point, the CCI design ensures the compo-
sition space around the center point is sampled uniformly with
replicates performed for the center point. The results of the ex-
periment were used to update the model parameters leading to a
new predicted optimal. After a series of iterations, the combined
model prediction and DOE design lead to a reduction in standard
error for the predicted optimal composition in all four metals.

An analysis of the optimal composition prediction performance
is sufficient in assessing model viability since the purpose of this
study was to specifically identify the optimal composition region.
It is less important to consider the errors in the regions away from
the optimal since they were not heavily sampled. For all four met-
als tested in this study, the standard error of the optimal predic-
tion from first to last experimental iteration dropped to around
0.2 µmol H2. Given the error associated with our experimental
data, a standard error of the prediction of 0.2 µmol H2 is reason-
able. This consistent reduction in the optimal predicted standard
error leads to higher confidence in the predicted composition val-
ues and in the optimal composition region.

3.3.3 Stability Analysis

In previous studies a decrease in activity was observed when the
metals aggregated.6 When a stabilizing ligand was introduced
into the system, the particles no longer aggregated, and instead,
they remained colloidal and functional for HER.
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Fig. 5 The standard error (SE) is plotted as a function of the metals
and the different iterations. The first iteration SE is displayed in green,
and the SE from the last iteration is displayed in orange. There is a
consistent decrease in SE from the first iteration to the last across the
metals. The SE denotes variability in the target metric prediction.

The addition of PEGSH has led to prolonged activity of these
photodriven systems without the requirement of heterogeneous
supports.6 Based on our previous study, we have reason to be-
lieve that the addition of PEGSH elongates the period of catalytic
activity for NPs. This is confirmed by the high activities observed
in the presence of sufficient PEGSH and low observed activities
in the absence of PEGSH. We have reason to believe this is a re-
sult of increased stability.6 Though the high throughput experi-
ments confirmed high activity, additional characterization studies
are needed to confirm the stability of the particles after longer ex-
perimentation times. TEM micrographs were taken from the best
performing wells for each metal after 45 hours of illumination.

Fig. 6 TEM micrograph and NP size distribution at 1.4 mM metal and
1 mM PEGSH.

The TEM micrograph for Au show distinct particles indicating
stability after 45 hours of illumination. Cu, Ni, and Fe showed
similar stability in the form of distinct particles (see SI†). The
complete TEM micrographs and particle size distributions can be
found in SI†. This is consistent with prior knowledge of all four
metals being stabilized by PEGSH.35,41 The particles remained
distinct, and did not aggregate even after 45 hours of experi-
mental time allowing for the catalytically active surface to remain
functional.
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3.3.4 Characterization of the Active NPs

Following the high throughput experiments and prior to any fur-
ther characterization, there was limited knowledge about the ac-
tual NP catalysts that had formed in these systems. Upon the com-
pletion of an experimental run, we definitively know how much
of each component was in a given well (e.g. metal, PS, PEGSH,
etc), but we do not the composition of the colloidal particles seen
in the TEM micrographs. It is clear that metal salts are being
reduced to form particles, however, the chemical composition of
those particles is unclear.

It is not practical to run detailed studies on all compositions due
to the high monetary and time costs associated with characteri-
zation. Instead, we identified the best performing compositions
(wells) for each metal to study further. XPS was performed on
wells containing metal and ligand concentrations near the opti-
mal predicted values of each metal to identify the NP composi-
tion. To complete the identification, the XPS spectra from each
metal was compared to literature XPS spectra for different metal
containing compositions.42–45

Fig. 7 XPS spectra of Au, Cu, Ni, and Fe NPs. Composition of wells
were with 1mM PEGSH and between 1 to 1.4 mM metal.

The XPS spectra from Figure 7 indicate metallic Au and Cu
formed. This is likely due to the fact that Au and Cu have suffi-
ciently high reduction potentials of 1.5 eV for Au3+ and 0.34 eV
for Cu2+ vs. the standard hydrogen electrode (SHE).46 In con-
trast, Ni and Fe did not produce fully metallic NPs and instead the
Ni sample contained both metallic Ni and Ni oxide (NiO) and the
Fe sample contained Fe sulfide. Iron sulfide is not a new material
for HER. A previous report47 indicated it is less active than noble
metals, and prone to corrode or form oxidation products when
in NPs form. Our studies indicate the iron sulfide NPs have com-
parable H2 activity values to the Au NPs and they show stability
with PEGSH even after > 45 hours of illumination.

4 Conclusions
It is reasonable to discuss the advantages of this DOE driven pro-
cess as opposed to systematically testing all of the combinations
within the space. If we were to map out the space by testing all of

the combinations, for a 0 to 2 mM range with increments of 0.1
mM for both metal and ligand concentrations, we would require
400 data points for each metal. If we then include the PS varia-
tion at 5 levels, that would come out to 8,000 total wells for the
4 metals. Finally, we would need at least 1 additional replicate
per composition to test reproducability, leading to 16,000 wells.
Instead, by utilizing DOE and developing a model that would de-
scribe relationships between these 3 variables, the entire study
surveyed less than 1,000 wells. Not only does the DOE approach
provide a mathematical relationship in a multi variable system,
but it allows for more than a 10 times reduction in experimental
trials.

Our iterative DOE and high throughput experimental approach
led to a highly optimized screening of a high dimensional exper-
imental space, and optimal composition spaces (metal, PEGSH,
and PS) for Au, Cu, Ni, and Fe were identified. Using the DOE and
high throughput experimental approach, we leveraged a digitized
methodology towards reaction engineering where the workflow
of experimental design and subsequent data analysis seamlessly
advised the following experiments until further iterations were
not necessary. This workflow has allowed for improved collabo-
ration, more efficient screenings of a high dimensional space, and
better understanding of how different components interact in a
complex colloidal aqueous system. By employing both DOE and
high throughput methods, surveying this high dimensional space
was greatly accelerated, and without them, an optimization of
this scale would definitively require significantly more trails, ef-
fort, and time as indicated prior.

Our findings provide insight into in situ particle formation and
allow us to generalize trends across Au, Cu, Ni, and Fe HER cata-
lysts in photodriven systems. We identified sufficient PS concen-
trations of 0.5 mM for a metal loading up to 1.2 mM. Additionally,
operating future studies in a composition space of ~1 mM metal
and 1 mM PEGSH allows for the best chance for high HER activ-
ity in our system. Our framework presented here can be utilized
for more complicated systems including bimetallic colloids and
variation in the identity of stabilizing agent.
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