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Machine Learning for Phase Behavior in Active Matter
Systems

Austin R. Dulaney,∗ and John F. Brady

We demonstrate that deep learning techniques can be used to predict motility-induced phase sepa-
ration (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at
the particle level. Using a fully connected network in conjunction with a graph neural network we
use individual particle features to predict to which phase a particle belongs. From this, we are able
to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute,
dense, or coexistence region. Our predictions are compared against the MIPS binodal computed
from simulation. The strong agreement between the two suggests that machine learning provides an
effective way to determine the phase behavior of ABPs and could prove useful for determining more
complex phase diagrams.

1 Introduction
Since its inception, the field of active matter has been domi-
nated by studies of motility-induced phase separation (MIPS).
The majority of these studies focus on developing a theoretical
framework to describe clustering behavior and the accumulation
of active particles at boundaries. Due to the striking similar-
ities between classical and active phase behavior, the creation
of thermodynamic-like frameworks has been of particular inter-
est but continues to be a source of debate.1–5 A key difficulty
surrounding this approach is the lack of a well-defined notion
of temperature and free energy—as these systems are far from
equilibrium—which results from the intrinsic swimming motion
of active particles.

Adhering to the structure of traditional thermodynamic frame-
works has resulted in several definitions of a non-equilibrium
chemical potential,6–8 each of which predicts an active binodal
but fails to predict the correct coexistence pressure measured in-
side the phase envelope from simulation. The shortcomings with
the current chemical potential definitions do not preclude its ex-
istence but necessitate alternative measures for determining the
phase boundaries. Large scale computer simulations provide a
means to computing system pressure, which can provide insights
into the phase behavior through the mechanical instability cri-
terion. While this method is robust and has shown great suc-
cess,2,9,10 it inherently has a steep trade-off between accuracy
and computational cost. Determination of the phase boundary re-
quires the change in system pressure with volume fraction to be
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zero. To make such a judgment one either needs to finely sweep
volume fraction space or rely on fitting functions to smoothly fit
the pressure data. Both methods are highly dependent on the
quality of the pressure data obtained at each point in phase space,
and large fluctuations in active pressure make this a difficult task,
especially deep in the coexistence region.2,9

To overcome these limitations we turn towards methods used
to characterize other inherently complex materials. Recently,
there has been a surge of interest in using machine learning algo-
rithms to aid in material characterization.11–14 While early stud-
ies were predominantly interested in materials containing explicit
symmetries or those confined to two-dimensional lattices,11,12

there has been some development in classifying amorphous ma-
terials.14

In this study, we leverage the developments in machine learn-
ing to aid in characterizing the observed phase behavior in sus-
pensions of active Brownian particles (ABPs). ABPs are an im-
portant minimal model system for determining the behavior of
self-propelled colloids, bacteria, and other living organisms. The
key feature that distinguishes an active colloid from a passive one
is the driven and persistent nature of its motion. This distinct
characteristic of its dynamics gives rise to a wealth of interesting
behaviors including self-assembly,15 clustering,16,17 and motility-
induced phase separation.1–5 As such, active materials have gar-
nered interest from the chemical and material science communi-
ties for novel drug delivery methods, remediation strategies, and
material design methods at the microscale.15,18,19

Due to the nonequilibrium nature of these systems, it is diffi-
cult to develop analytic theories that can accurately predict the
more complex collective behaviors. Thus, we look towards ma-
chine learning to aid in this endeavor, as it has been used to infer
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dissipation from static images of active systems20 and is of inter-
est to the active matter community at large.21 Machine learn-
ing algorithms are capable of discerning difficult—and poten-
tially nonintuitive—nonlinear relationships among system vari-
ables, which would otherwise go unnoticed. These algorithms
also have the benefit of readily handling multi-body correlations,
which are exceptionally taxing or intractable through traditional
analytic means.

Using a combination of deep learning and large-scale simula-
tion, we focus on characterizing the phase behavior of particles
in a suspension of active Brownian disks. We use machine learn-
ing to predict particle phase at a per particle level for simulations
conducted at different regions in phase space. We then use these
phase labels to get an estimate for the fraction of particles in each
phase present at a given point in phase space. This fraction is then
used to determine the system phase behavior. The manuscript is
outlined as follows. In section 2.1 we define the implementation
of the active Brownian particle model used in our simulations. We
then outline the datasets generated for use in our machine learn-
ing model in section 2.2. Here we also discuss the feature selec-
tion used for our machine learning model. In section 2.3, we de-
scribe the machine learning model architecture used in this work
and provide details on the training procedures. In section 2.4, we
discuss the input features used for our model. In section 3, we
discuss the representation of our simulation snapshots as graphs.
In section 4, we present our results in the form of predictions of
the phase behavior for suspensions of ABPs at different regions in
the phase diagram. Finally, in section 5 we discuss the implica-
tions of this work and future directions.

2 Methods

2.1 Simulation Details

Suspensions of monodispersed, purely active particles are mod-
eled using the active Brownian particle (ABP) model. The ac-
tive motion is characterized by an intrinsic swim velocity U0 =

U0q—where q is the particle orientation—which reorients on a
timescale τR. Particles of radius a interact through a Weeks-
Chandler-Anderson (WCA) potential with cutoff radius rcut =

(2a)21/6 and depth ε = 200Fswima, where Fswim = ζU0 is the mag-
nitude of the force resulting from the product of the translational
drag ζ and swim velocity. Here we assume particles reorient via a
stochastic torque LR governed by zero-mean white noise statistics
with variance 2ζ 2

Rδ (t)/τR, where ζR is the rotational drag coeffi-
cient. Particle positions and orientations can be evolved in time
using overdamped Langevin dynamics

0 =−ζ Ui +Fswim
i +∑

i6= j
FP

i j, (1)

0 =−ζRΩi +LR
i , (2)

where Fswim
i = ζU0qi is the swim force of particle i, FP

i j is the
interparticle force between pair i, j, Ui is the velocity, Ωi is the
angular velocity, and ζ and ζR are the translational and rotational
drags, respectively. The angular velocity is related to the particle
orientation by ∂qi/∂ t = Ωi×qi. Normalizing position and time by

a and τR, respectively, results in the dimensionless reorientation
Péclet number PeR ≡ a/l, which is the ratio of a particle’s size
to its persistence length l =U0τR—the distance traveled between
reorientation events.2

We performed independent simulations of 40,000 particles for
10,000τR for various combinations of the two governing nondi-
mensional parameters: the packing fraction φ and PeR. To avoid
introducing an additional force scale PeR was varied by changing
τR at a fixed value of U0. All simulations were conducted using the
HOOMD-Blue software package.22,23 Hydrodynamic interactions
have been neglected.

2.2 Datasets
Our machine learning model is structured to predict phase iden-
tity at a per particle level, similar to what was done by Ha et
al.24 This results in a binary classification task in which particles
can be members of the gas phase or the dense phase. For sim-
plicity, we ignore the second-order hexatic transition present in
two-dimensional hard disk systems and treat the hexatic phase as
part of the dense phase.

We use the simulations outlined in section 2.1 to produce
datasets for each point in phase space represented by a (φ ,PeR)

pair. For each of these phase points, we look at 6 snapshots spaced
1,000τR apart from the last 5,000τR timesteps. We do not use any
data in the first half of the trajectory to allow the system to reach
steady state. From these snapshots, we construct a feature set for
each phase point which consists of 240,000 entries. Predictions of
the phase behavior at each phase point are averaged across each
of the 6 time points to reduce bias from a single configuration.

2.3 Learning Framework
Here we give a brief overview of neural networks and describe
the architecture and training routine used in this work.

Neural networks have shown great potential for predicting par-
ticle phase for both two-state and amorphous phase-separated
systems.13,14 The most common neural network employed is
the fully connected feedforward network. Feedforward networks
are composed of layers of transformations modified by nonlinear
functions. These layers can be stacked resulting in the output of
one layer acting as the input of the following layer. The basic
form for a layer f is f (x) = g(Wx+ b), where g is the nonlinear
activation function, x is the vector input data, W is the weight
matrix, and b is a vector of biases. When constructing a fully con-
nected network the activation functions g for each layer need not
be the same, and additional regularization terms can be added
to prevent overfitting to training data. Some common activation
functions are the sigmoid, hyperbolic tangent, and rectified lin-
ear unit (ReLU), defined as g(x) = max(0,x). Once constructed, a
network is given an objective, or loss, function to minimize and
updates the weight and bias terms through either gradient de-
scent† or a more sophisticated algorithm like Adam.25 Here we

† Gradient descent is an iterative method for locating the local minima of a function
by determining the steepest gradient of the function with respect to its independent
variables and updating them so as to move towards the optima.
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are interested in a binary classification and thus use binary cross
entropy to compute loss

L =−(y log(p)+(1− y) log(1− p)), (3)

where L is the loss, y is the binary indicator of whether the posi-
tive class is the correct label for a given observation, and p is the
probability that an observation is of the positive class.

Recent advances in machine learning have resulted in the adop-
tion of graph convolutional neural networks (GNNs), which uti-
lize graph theory to add information on the spatial proximity
of training data.26–28 These are similar to traditional convolu-
tional neural networks (CNNs), which rely on convolution and
connected layers to make predictions. The primary uses for CNNs
have been been in the areas of computer vision and natural lan-
guage processing, due to the inherent structure of image and text
data. Similarly, GNNs use convolutions and the inherent structure
of the data, but adjacent training points need not be distributed
on a rectilinear grid like an image or sequentially like in text.28

In both architectures, the input matrix is convolved with a set
of matrices—the convolution layer—to produce output matrices.
These convolution layers are equivariant under translation and
rotation, making them highly effective at learning abstract fea-
tures of an image or graph while simultaneously reducing the
number of parameters.

The amorphous configurations found in particle-based phase-
separated systems can benefit from traditional CNNs,14 but this
requires spatial discretization of the system which may vary with
particles of different sizes. We avoid this when looking at MIPS in
active disks by using a GNN to provide information on the local
structure to the network.

Our training and model architecture is as follows. We first train
a supervised deep neural network (DNN) on data in the single-
phase region above the critical point. After the supervised net-
work is trained, we predict particle labels for a simulation of in-
terest. These predictions are then taken and those that predict
the phase with a >90% confidence are used as seed labels in a
semi-supervised GNN. We then take the simulation snapshot and
represent it as a graph, which we will discuss in more detail in
section 3. We then train a GNN for each graph. The training in
this step is structured as a transductive, or semi-supervised, learn-
ing problem. For each graph we use the seeded particle (node)
labels to propagate labels to the remainder of the graph. We use
the same features from the DNN, but instead of learning a very
general problem, we are using confidently labeled particles to in-
fluence the labels given to their neighbors. In this work, we use
the graph attention network (GAT) architecture27 for our GNNs
implemented using the DGL software package.29 The resulting
prediction from the GNN is then weighted against the prediction
provided by the DNN in the first step.

A flowchart of our learning process is outlined in Fig. 1. The
purple, orange, and teal lines of the GAT convolution represent
the different attention heads for the layer. Each attention head
serves as a means to create feature abstractions.27 The coeffi-
cients αi, j are learned weight parameters which determine the
weighted importance of neighbor j on particle i. The attention

GAT Convolution

GAT Convolution

GAT Convolution

Partial Labeling

Fully Connected 

Neural Network

h1

h2

h3

h7
h4

h6

h5

α12 α32 α35

α36

α37

α34

Fig. 1 The learning architecture used in this work to predict particle
phase labels. First, a particle feature matrix is fed into a fully connected
DNN. Simultaneously particles are connected to form a graph structure.
The graph is partially labeled using the most confident (>90%) labels
from the DNN and is then used with the feature matrix as inputs into a
GNN consisting of three GAT convolution layers with a final softmax acti-
vation function. The resulting label probabilities from the GNN are then
averaged with the label probabilities output from the DNN to achieve
the final label probabilities. Each particle is then given the most proba-
ble label.

heads from each node are then concatenated or averaged to pro-
duce the layer output, which may be a label probability or feature
abstraction. Details of the GAT implementation can be found in
the work by Veličković et al. 27 Further details of the model archi-
tecture used in this work are presented in appendix B.

2.4 Feature Selection
In order to label individual particles, our feature space is limited
to quantities that can be computed on a per-particle basis. This
includes Voronoi volume, the number of first shell Voronoi neigh-
bors, and the average of first shell Voronoi volumes. We repeat
this averaging process for the second and third shell neighbors
as well to incorporate information about the local environment.
We also include the hexatic and translational order parameters
defined as ψ6(i) = 1/n∑

n
j ei6θi j and G6(ri j) = ∑

n
j ψ6(i) ·ψ∗6 ( j), re-

spectively, where n is the number of Voronoi neighbors, ri j is
the vector connecting pair i j, θi j is the angle between ri j and
the reference vector (0,1), and ψ∗6 (i) is the complex conjugate of
the hexatic order parameter. The Voronoi volumes and the hex-
atic and translational order parameters were computed using the
Freud analysis software.30 In order to account for some of the
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

Fig. 2 Simulation snapshots and respective graph structures for different regions of phase space colored by particle Voronoi volume. We look at the
weakly active (PeR ∼ 0.11) (a),(e) dilute and (b),(f) dense regions, (c),(g) the region near the critical point (PeR ∼ 0.047), and (d),(h) deep within the
coexistence region (PeR ∼ 0.011). For each simulation, the snapshot is of the entire simulation box.

dynamics we include the force-orientation autocorrelation Fi ·qi

and the particle speed Ui = F/ζ .
Our initial set of features is paired down using a boosted ran-

dom forest to remove highly collinear features in order of impor-
tance. The final feature set is comprised of the Voronoi volume,
number of third shell neighbors, hexatic order parameter, transla-
tional order parameter, and the force-orientation autocorrelation
in order of importance. The process of removing collinear fea-
tures is discussed further in appendix A and the correlation ma-
trices for the full and final feature sets are shown in Fig. 5. It
is interesting to note that the number of third shell neighbors is
ranked highly in importance because the model might be learn-
ing the order-disorder hexatic transition. Lastly, we take each of
our features and average them across all first shell neighbors to
create an additional set of aggregate features. This aggregation
step improved the performance and training stability of our DNN
in the first step of our model.

3 Graph Representation
The MIPS transition is markedly similar to the liquid-vapor tran-
sition seen in traditional thermodynamic fluids with the two co-
existing phases both being disordered. In thermodynamic fluids
one could measure local density and use spatial density discon-
tinuities to distinguish between the coexisting phases. However,
this is difficult to do in practice as we are constrained to finite
systems in simulations. Regions close to the critical point are sub-
ject to large density fluctuations which make it difficult to observe
persistent macroscopic phase domains. Therefore, we need an al-
ternative way to gather this similar type of local structure in the
system. We do this by representing the system as a graph.

For each simulation snapshot, we represent the system as a
graph where each particle is a node in the graph and connec-
tions are made between first shell Voronoi neighbors, resulting in

a fully-connected graph. Since the boundaries are periodic, one
can imagine the simulation plane being wrapped such that the
top and bottom edges connect to form a cylinder and the left and
right edges connect forming a three-dimensional, toroidal shape
as depicted in Fig. 2(e)–(h). While the shape of the graph is
three-dimensional, each node is constrained to the surface of the
toroidal object.

In Fig. 2, we present simulation snapshots at different points
of the phase diagram with their corresponding graph represen-
tations. Each particle and corresponding graph node are col-
ored based on the Voronoi volume fraction of that particle. The
graphs in each region of the phase diagram possess unique mor-
phologies and characteristics. The gas phase [see Fig. 2(a),(e)]
is marked by a uniform graph with a rough surface. The dis-
order in the phase prevents a smooth surface from forming and
any structure present is short-range. If we next look at a pri-
marily dense system [Fig. 2(b),(f)], we see that the graph rep-
resentation still has bumps on the surface, but they are not as
sharp. The increased system density causes jamming and reduces
the magnitude of fluctuations, which results in longer-range mor-
phological features. When we approach the critical point [see
Fig. 2(c),(g)], the graph starts to form "lumps" which are con-
nected by coarse sections of the surface. This results from mixing
regions with dense and dilute phase features. We can think of the
connecting coarse regions as articulation points in the graph sur-
face, which become less pronounced with lower activity. As we go
deep into the coexistence region, the dense region is made up of
a single large crystal providing clear spatial domains for the two
phases, as shown in Fig. 2(d). The distinctive regions manifest as
a coarse mesh for the dilute phase—similar to Fig. 2(e)—and a
smooth surface for the dense phase with perturbations resulting
from crystalline defects [see Fig. 2(h)].

The clear distinction in graph structure in the different phase
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Fig. 3 Simulation snapshots for different regions of the phase diagram
with particles colored based on their predicted phase. Each snapshot
depicts the entire simulation box.

regions lends support for the use of graph neural networks to
aid in predicting particle phase. The use of local structure also
serves to help make decisions for particles near phase interfaces
and regions which may be marked by large density fluctuations.

4 Results
Here we present the results from our machine learning model.
Our model was trained on very dilute (φ < 0.2) or very dense
(φ > 0.7) phase points above the critical point and deep within the
coexistence region. Training points from deep within the coexis-
tence region were labeled by inspection and particles near phase
interfaces were not used for training. The model was then used
to predict particle phase below the critical point (Pecrit

R ∼ 0.047).
Figure 3 presents the snapshots of particles shown in Fig. 2(a)–
(d) colored by their predicted phase labels. It can be seen that
our model is highly capable of distinguishing particle phase in the
homogeneous phase and deep within the coexistence region. The
most challenging region is near the critical point as these particles
are more difficult to readily distinguish from inspection.

Therefore, to evaluate performance in this region we take the
predicted particle labels for each phase point and compute the
fraction of dilute particles Fg present and average this across all
T = 6 time points for a given (PeR,φ) pair. This is represented by

Fg =
1
T

T

∑
t=0

(
1− 1

N

N

∑
j

y j(t)
)
, (4)

where y j is the predicted label of particle j and N is the total
number of particles. In our model the positive case is the dense
phase (y j = 1) and the null case is the dilute phase (y j = 0). To
account for small fluctuations in prediction we consider a point to
be in the dilute region if Fg >95% and to be in the dense region if

Fig. 4 The PeR–φ phase diagram for purely active Brownian particles. We
show the spinodal (black dash-dotted line) and binodal (purple dashed
line) predicted by Takatori and Brady2 along with the binodal computed
from slab simulations (purple points). A fourth-order polynomial fit (solid
purple line) is used to give a more complete picture of the computed
binodal. The shaded region represents one standard deviation above and
below the predicted fitting parameters. The remaining points on the
graph are colored based on their predicted region of phase space from
our machine learning model. We use a cutoff of >95% gas fraction to
be considered gas (blue) and <5% gas fraction to be considered in the
dense phase (red). Every value for gas fraction between those values is
considered within the coexistence envelope. Here we show PeR values in
the range 0.0468–0.0374.

Fg <5%. Any other value of Fg is labeled as coexisting as we are
only considering points below the critical point (Pecrit

R ∼ 0.047).
The rationale for our choice of cutoff values for Fg is presented in
appendix C.

Figure 4 presents the MIPS phase diagram with points colored
based on which phase the system is predicted to be in using our
machine learning model. We compare the predicted phase against
the binodal predicted by Takatori and Brady2 (purple dashed
line) and treat the binodal computed from slab simulations (pur-
ple points) as the ground truth we are trying to achieve. The
solid purple line is a fourth-order polynomial fit of the computed
binodal. The spinodal predicted by Takatori and Brady (black
dash-dotted line) is shown for completeness. We find remarkable
agreement between the binodal obtained from simulations and
our machine learning predictions.

Please note that in this instance we are comparing how close
our predicted results are to the simulation binodal and how close
the results presented by Takatori and Brady2 are to the simula-
tion binodal. The binodal computed from simulation can serve as
a ground truth because we can measure the pressure in the system
directly. Getting an accurate measure of the change in the system
pressure with volume fraction becomes increasingly difficult near
the critical point, which is why we use the polynomial fit to get
a sense of where the binodal lies. It is clear that our new ma-
chine learning-based model much more accurately captures the
dilute branch of the binodal than the analytic theory presented
by Takatori and Brady.2

From Fig. 4 it is clear that predicting dilute particles is more
challenging than predicting dense particles. We suspect this diffi-
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culty arises from the large tail in the distribution of Voronoi den-
sities for particles in the dilute phase. This ambiguity in the den-
sities becomes increasingly prominent the closer you are to the
critical point and is why one could not simply use a naive ap-
proach like selecting a cutoff for Voronoi densities to predict the
phase fraction. Ha et al. observed a similar type of overlap for
particle density distributions when studying the phase behavior
of a Lennard-Jones fluid.24

5 Conclusions
We have created a machine learning model to predict the phase
identity of individual active Brownian particles. Our results in-
dicate that single-particle parameters are sufficient for learning
particle phase when some amount of structure is included in
the system. We have also shown that the MIPS phase transition
can be predicted using this machine learning model. From our
model optimization and feature analysis, we conclude that kine-
matic features—such as particle speed or the force-orientation
correlation—are important for distinguishing the phases present
in the MIPS transition (see appendix A and Fig. 6), unlike the tra-
ditional liquid-vapor transition present in thermodynamic fluids.
The directed motion present in active systems results in a stronger
separation for particle speeds and longer correlation lengths than
would be seen in traditional systems when considering phase
identity near the critical point. Ha et al. were able to successfully
characterize particle phase of a Lennard-Jones fluid with high ac-
curacy using a convolutional neural network and only three struc-
tural features,24 but we find that our model performance steeply
drops off near the critical point if we do not include at least one
of the kinematic features mentioned above.

We have demonstrated that the local structure plays an impor-
tant role in determining the phase behavior of active systems.
Our graph representations of the system possess unique charac-
teristics specific to their region of the phase diagram—which can
be learned using a general graph neural network framework with
attention. This matches the results from Swanson et al. and Ha
et al. who included structure via a message-passing network and
convolutional neural network, respectively, to characterize amor-
phous materials.14,24 It is important to remember that while the
simulation and graph representations are transferable, the graph
representation creates local connections that can be used by the
machine learning algorithm to improve the prediction.

We believe machine learning can be used for more challeng-
ing classification problems. It would be straightforward to extend
our framework to also distinguish between the hexatic crystalline
phase and the disordered dense phase to produce a more com-
plete phase diagram. Our model is already capable of learning
the importance of the third shell average Voronoi volumes, which
act as a surrogate for the third peak in the radial distribution
function. This peak provides a way to distinguish between liquid
and solid phases. We also feel a more specific model could be
created to directly predict which region of the phase diagram the
system is in by performing classification at the graph-level instead
of the node-level (as was done in this work). A graph-level classi-
fier can then be readily generalized using an unsupervised learn-
ing scheme, where the model is learning distinctions between the

present phases. Classification at this level can also serve to char-
acterize micro phase separation. In our node-level classification
we predict phase labels at the particle level and do not account
for macroscopic spatial correlations, but our model could serve
as a baseline to find regions where the dense and dilute particles
exist before using a graph-level classifier to determine if micro
phase separation is present or not.

The learning architecture used here should also readily gen-
eralize to active systems with thermal noise, polydispersity, or
higher dimensionality. These deviations from the problem fo-
cused on in this work would result in different distributions for
feature values, but should still maintain similar relationships be-
tween features. The graph network can be further extended to
include edge features, which would allow for more complicated
or varied interparticle interactions and should prove to be a useful
tool in the characterization of other amorphous systems. Extend-
ing our current model to predict phase behavior in three dimen-
sions can be done by taking various planes of a three-dimensional
simulation and treating each as a snapshot of a two-dimensional
system. Averaging over several slices of the simulation would re-
sult in the final prediction for the phase fraction of the specific
phase point at that moment in time. This can then be averaged
over instances in time to create a phase diagram like that pre-
sented in Fig. 4.
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A Feature Correlation and Importance
The correlation matrix for our full initial feature set is presented
at the top of Fig. 5. In the figure we have used a shorthand no-
tation where φ is the Voronoi volume fraction, φi is the Voronoi
volume fraction averaged over the ith shell neighbors, Ni is the
number of neighbors in shell i, U is the particle speed, F · q is
the force-orientation correlation, ψ6 is the hexatic order param-
eter, and G6 is the translational order parameter. The hexatic
and translational order parameters are broken into their real part,
imaginary part, magnitude, and angular components represented
by ℜ(·), ℑ(·), | · |, and (·)6,θ , respectively. Features were dropped
in order of the strength of the measured collinearity with other
features. When considering a pair of collinear features, the fea-
ture that contributes the least to the total importance is removed.

We use a simple boosted random forest to compute feature im-
portance. Our random forest classifier is made up of 1000 esti-
mators, with a max decision tree depth of 8, and trained for 30
epochs with early stopping. Our boosted random forest is imple-
mented in XGBoost. This classifier is then used to compute the
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Fig. 5 The correlation matrix for the (top) full and (bottom) reduced
feature sets. Strong positively (red) and negatively (blue) correlated
features are removed in the reduced feature set.

SHAP feature importance (see Fig. 6).31 The color in Fig. 6 in-
dicates the value of the feature in the line, and the actual SHAP
value indicates how important a feature value was for predicting
the positive (dense) case. As an example, from Fig. 6(top) we
see that φ3 is the most indicative feature, and large values of this
feature strongly indicate that the particle is dense, whereas very
low values indicate that the particle in question is likely dilute.
The SHAP analysis for the full feature set is not very insightful
due to the presence of strong collinearity, but it can still be used
to determine which feature to drop from a pair of highly collinear
features. After removing a feature the importance is recalculated
as this can change as the feature set changes. The final corre-
lation matrix for the features used in this work is shown at the
bottom of Fig. 5, and the final feature SHAP values are shown in
the bottom of Fig. 6. There is greater diversity in the SHAP val-
ues obtained, and now the volume fraction as the most important

Fig. 6 Feature importance for the (top) full and (bottom) reduced fea-
ture sets computed using SHAP. The color corresponds to the magnitude
of a given feature. The SHAP value presents how important a feature is
at predicting the positive class.

feature, which is in line with our physical intuition.

B Model and Training Details
The trained DNN used in this work is 5 layers with batch nor-
malization and dropout on some of the layers for regularization.
The number of layers in the network, size of each layer, batch
normalization, and dropout values were determined from 1,500
rounds of hyperparameter optimization with the Hyperopt pack-
age.32 The hyperparameter optimization was performed in three
stages, each of which was 500 rounds. We first optimize the learn-
ing rate to speed up future training as much as possible. The op-
timal learning rate lr = 3× 10−3 was used for the remaining op-
timization rounds with a batch size of 32. The next round of op-
timization focuses on the number of neurons in the network, the
number of layers, and the activation function used for the layer
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Table 1 The specific model architecture of the trained deep neural
network used for the results presented in this work

Layer Size Activation Batch Norm Dropout
1 128 ReLU – –
2 128 LeakyReLU a True 0.69
3 128 LeakyReLU a True 0.35
4 64 LeakyReLU a – 0.75
5 2 SoftMax – –

a LeakyReLU activation function has negative slope α = 0.1

Table 2 The architecture of the graph network portion of our model

Layer Size Activation Attention Heads
1 8 LeakyReLU a 2
2 8 LeakyReLU a 2
3 8 LeakyReLU a 2
4b 2 SoftMax –

a LeakyReLU activation function has negative slope α = 0.2
b This is a fully-connected layer used to get the final prediction

(between ReLU and LeakyReLU). The final optimization round is
focused on regularization and tunes the batch normalization and
dropout for each layer in the network. Our final chosen parame-
ters are presented in Table 1.

The GNN model architecture used in this work was explored
manually. The graph network is intentionally kept small as this
was shown by Veličković et al. to be effective at transductive
learning.27 The parameters of our GNN are shown in Table 2.
Each layer in the network is a GAT convolution layer except for
the last one, which is a fully-connected layer to give the outputs.

C Gas Fraction Cutoff Values
Here, we discuss the rationale for the gas fraction cutoff values
(>95% for gas and <5% for dilute) used in Fig. 4 to determine
whether a simulation has coexisting phases or homogeneous di-
lute or dense phase present. Since the prediction of the behavior
of each phase point results from the individual particle predic-
tions at that point, it would be intuitive to use the testing ac-
curacy of our machine learning model to determine our cutoff
values, but this requires there be ground truth labels to compare
our predictions against. Fluctuations near the critical point make
it impossible to confidently label particles in this region, requiring
the labeled test data to come from the homogeneous phases on
either side of the binodal or deep within the coexistence region
where the phases are strongly separated. This results in no “dif-
ficult” testing data—as we had to provide confident ground truth
labels ourselves—which results in very high test accuracy (>99%)
for our supervised model. This issue is compounded by the fact
that our graph neural network uses a semi-supervised learning
scheme, meaning the majority of the particles have no ground
truth data to compare against. We are then left with a measure of
accuracy that is greater than the true accuracy.

Ultimately, we want to compare the phase behavior at a point
in phase space to the binodal computed from slab simulations
(purple circles in Fig. 4). Our fourth-order fit of the slab sim-
ulation data (purple line) is provided with the 95% confidence
interval (purple shaded region) to create a full picture of the bin-

odal. Since we are assuming 5% error in the binodal computed
by our slab simulation data, we use the same error as a heuristic
for the final cutoff values from the machine learning prediction.

Notes and references
1 Y. Fily and M. C. Marchetti, Physical Review Letters, 2012, 108,

235702.
2 S. C. Takatori and J. F. Brady, Physical Review E, 2015, 91,

032117.
3 D. Levis, J. Codina and I. Pagonabarraga, Soft Matter, 2017,

13, 8113–8119.
4 J. U. Klamser, S. C. Kapfer and W. Krauth, Nature Communi-

cations, 2018, 9, 5045.
5 A. P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri and

J. Tailleur, New Journal of Physics, 2018, 20, 075001.
6 S. C. Takatori, W. Yan and J. F. Brady, Physical Review Letters,

2014, 113, 028103.
7 S. Chakraborti, S. Mishra and P. Pradhan, Physical Review E,

2016, 93, 052606.
8 S. Paliwal, J. Rodenburg, R. van Roij and M. Dijkstra, New

Journal of Physics, 2018, 20, 015003.
9 Y. Fily, Y. Kafri, A. P. Solon, J. Tailleur and A. Turner, Journal

of Physics A: Mathematical and Theoretical, 2018, 51, 044003.
10 A. Patch, D. M. Sussman, D. Yllanes and M. C. Marchetti, Soft

Matter, 2018, 14, 7435–7445.
11 J. Carrasquilla and R. G. Melko, Nature Physics, 2017, 13,

431–434.
12 E. P. L. van Nieuwenburg, Y.-H. Liu and S. D. Huber, Nature

Physics, 2017, 13, 435–439.
13 P. Suchsland and S. Wessel, Physical Review B, 2018, 97,

174435.
14 K. Swanson, S. Trivedi, J. Lequieu, K. Swanson and R. Kondor,

Soft Matter, 2020, 16, 435–446.
15 S. A. Mallory, C. Valeriani and A. Cacciuto, Annual Review of

Physical Chemistry, 2018, 69, 59–79.
16 J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine and P. M.

Chaikin, Science, 2013, 339, 936–940.
17 C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,

G. Volpe and G. Volpe, Reviews of Modern Physics, 2016, 88,
045006.

18 W. Gao and J. Wang, ACS Nano, 2014, 8, 3170–3180.
19 S. Ebbens, Current Opinion in Colloid & Interface Science,

2016, 21, 14–23.
20 L. Tociu, G. Rassolov, E. Fodor and S. Vaikuntanathan, 2020.
21 F. Cichos, K. Gustavsson, B. Mehlig and G. Volpe, Nature Ma-

chine Intelligence, 2020, 2, 94–103.
22 J. A. Anderson, C. D. Lorenz and A. Travesset, Journal of Com-

putational Physics, 2008, 227, 5342–5359.
23 J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A.

Millan, D. C. Morse and S. C. Glotzer, Computer Physics Com-
munications, 2015, 192, 97–107.

24 M. Y. Ha, T. J. Yoon, T. Tlusty, Y. Jho and W. B. Lee, Journal
of Physical Chemistry Letters, 2018, 9, 1734–1738.

25 D. P. Kingma and J. L. Ba, 3rd International Conference on

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 9Soft Matter



Learning Representations, ICLR 2015 - Conference Track Pro-
ceedings, 2015.

26 T. N. Kipf and M. Welling, 2016.
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