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Abstract: When a poroelastic gel is released from a patterned mold, surface stress drives deformation and 

solvent migration in the gel and flattens its surface profile in a time-dependent manner.  Specifically, the gel 

behaves like an incompressible solid immediately after removal from the mold, and becomes compressible as 

the solvent is able to squeeze out of the polymer network.  In this work, we use the finite element method (FEM) 

to simulate this transient surface flattening process.  We assume that the surface stress is isotropic and constant, 

the polymer network is linearly elastic and isotropic, and that solvent flow obeys Darcy’s law.  The short-time 

and long-time surface profiles can be used to determine the surface stress and drained Poisson’s ratio of the gel.  

Our analysis shows that the drained Poisson’s ratio and the diffusivity of the gel can be obtained using 

interferometry and high-speed video microscopy, without mechanical measurement.

Keywords: surface flattening, surface stress, poroelasticity, Darcy’s law, diffusivity, drained Poisson’s ratio

1. Introduction

Most conventional engineering materials resist deformation by their bulk mechanical properties, such as 

elasticity, plasticity, and the like.  For these materials, the mechanical role of the surface is utterly negligible. 
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However, when a material is soft enough, surface stress is known to play a significant and sometimes dominant 

role, requiring re-thinking a wide range of mechanical phenomena and properties 1,2.  Surface stress effects are 

typically felt over a characteristic length scale, the elasto-capillary length, , where E is Young’s ~ /c sl E

modulus of the bulk and  is the magnitude of the surface stress. For conventional stiff materials (e.g., metals s

and ceramics), the value of elasto-capillary length is immeasurably small, on the order of angstroms. For soft 

solids, such as elastomers and gels with elastic modulus in the MPa to kPa range, respectively, the 

corresponding value of elasto-capillary length is on the order of tens of nanometers to tens of microns or larger. 

This affects a wide range of interesting phenomena and properties. For instance, surface stress can flatten sharp 

features by smoothing corners and undulations 3–5, drive instabilities 6, stiffen fluid-solid composites 7, 

significantly affect the opening of cracks 8–10, invalidate the classical theories of Hertz and Johnson-Kendall-

Roberts (JKR) for contact mechanics without and with adhesion 11–16, alter solvent flow in porous media 17,18, 

and invalidate the classical Young equation for partial wetting 1,19–28.  

These recent investigations have addressed only the simplest constitutive behavior that a soft solid surface 

can have: the surface behavior is represented by an isotropic, homogeneous, and strain-independent stress, 

equivalent to the surface tension of simple fluid interfaces. This simple surface behavior is assumed in this work. 

It is a reasonable assumption since many soft solids – such as gels, elastomers, and most biomaterials – either 

contain a significant solvent component or have molecular structures that comprise chain-like molecules that 

locally are fluid-like.  However, it must be noted that complex surface properties such as surface elasticity 

(strain-dependent resistance to stretching) and surface bending (resistance to surface curvature change) are 

known to exist in many physical systems.  For example, recent experiments by Jensen et al.29 have shown that 

soft gel surfaces can have considerable elasticity.  Similar to lipid bilayers, surfaces of soft solids can also resist 

surface bending moments, e.g., a thin silica film that forms on the surface of an elastomer (e.g., 

polydimethylsiloxane) exposed to ultraviolet ozonolysis (UVO) or oxygen plasma.30,31  Lapinski et al.32 recently 

demonstrated that, after UVO treatment, the surface of a commonly used PDMS has significant surface stress, 

considerable extensional elasticity and surface bending stiffness, and their results were confirmed by a finite 

element analysis (FEA).  Here we note that constitutive theories in which a surface can elastically resist an 

arbitrary amount of bending, stretching and shearing have been proposed by Steigmann and Ogden,33 Gao et 

al.34, Gurtin and Murdoch35 and Green.36.  A summary of these models and some exact solutions illustrating the 

different manners in which surface stiffening and surface bending affect structural behavior can be found in Liu 

et al.37

Much of the work on the role of surface stresses in soft materials has focused on time-independent elastic 

deformations, with few studies that handle time-dependent deformation mechanisms such as flow of solvent or 

viscoelasticity in the bulk 38–44.  Here we note that poroelasticity in soft materials has been studied for a long 
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time and is an active research field 45–49.  However, the interplay between poroelasticity and surface elasticity 

has begun to be considered only recently 17,50,51. 

There are several ways to measure poroelastic properties of gels, such as by confined compression 52,53, 

indentation 48,49, beam-bending 54, fluorescence recovery after photobleaching (FRAP) 55, electronic speckle 

pattern interferometry (ESPI) 56, and nuclear magnetic resonance (NMR) spectroscopy 57. For example, Hu et al. 
48 use the indentation method to determine the shear modulus, Poisson’s ratio and diffusivity of hydrogels. In 

their test, a rigid indenter is pressed into the gel to a fixed depth, and the resulting force is recorded. The 

measured instantaneous force determines the shear modulus, the ratio of instantaneous and equilibrated forces 

determines the drained Poisson’s ratio, and the force relaxation curve determines the diffusivity. However, none 

of these methods considers the effect of surface stress on the measurements.

The present work is partially motivated by our recent interest in developing a technique to measure surface 

rheology in soft solids 5,32.  This technique is shown schematically in Fig. 1(a-c). Gel samples are created by 

replica-molding a soft gelatin-based organogel with 70/30 glycerol/water as solvent into a much stiffer 

patterned PDMS master consisting of periodic ridges, as shown in Fig. 1(a). (In a previous work 58 the master 

mold had a rippled surface and the solvent for gelatin was water.) The initial surface height of the pattern is 

denoted by , and the width of the ridge and the spacing between the ridges are both equal to .  (In the 0h w

previous experiments 5,32,  is about a few microns and  is on the order of tens of microns.)  The length of 0h w

the ridges in the out of plane direction is much larger than any relevant scales such as w and .  When the gel 0h

is released from the geometric constraint at time  (the undeformed configuration just before the removal is 0t 

shown in Fig. 1(b)), the surface stress of the gel-air interface flattens the gel surface instantaneously, reducing 

the surface height to  (Fig. 1(c)). The reduction in the heights, i.e. the peak-to-valley distances ( ) of the h ℎ

surface features when the gel surface is exposed to air, can be measured using optical interferometry 5,32.  For 

the samples with a glycerol/water solvent there was insignificant subsequent deformation. Presumably, the 

viscosity of glycerol/water mixture was high so solvent flow was insignificant in the time frame of experiment 

and could be neglected.

Here we ask the following question: can we analyze quantitatively the case in which the gel has a sufficiently 

high permeability so solvent flow can occur?  Intuitively, we expect that at the instant the gel is removed from 

the mold, it behaves like an incompressible elastic solid since solvent flow takes finite time.  At sufficiently 

long times (to be specified below) the gel behaves as a compressible elastic solid (with the drained Poisson ratio 

) as solvent squeezes out of the polymer network. Hence the surface profile is expected to change over time.  

Part of our goal in this work is to investigate if the time-dependent surface profile measured in experiments 

can be used to determine properties such as the surface stress, drained Poisson’s ratio, and diffusivity of the gel 
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without making contact with the material.  In most experiments, the ridges are quite shallow (i.e., ).  As 0h w

a result, the deformation due to surface stress is sufficiently small to allow the bulk behavior to be represented 

by linear poroelasticity. In this work, we further assume that the chemical potential of the solvent in the gel is in 

equilibrium with the external solvent in the air (i.e., air with saturated humidity), hence the gel does not dry or 

swell.

The outline of the paper is as follows. In Section 2, we briefly review the field equations of linear 

poroelasticity. In Section 3, we use the finite element method (FEM) to simulate the time-dependent surface 

flattening process. In section 4, we then discuss how to extract material properties from the results. Summary 

and discussion are presented in section 5.  

Fig. 1. (a) The soft gel is cured in a PDMS mold with periodic ridges and channels.  These ridges and channels 

are parallel to each other and their length in the out-of-plane direction  is much longer than any in-plane 3x

dimensions.  (b) The shape of the gel and PDMS after release in the absence of surface stress.  (c) The actual 

shape after release.  Surface stress flattens the surface of the soft gel sample.  Since the elastocapillary length of 

PDMS mold is on the order of nm, there is no observable deformation of the mold due to its surface stress.  (d) 

Schematic of finite element model.   

2. Field Equations Summary
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The channels and ridges are assumed to be infinitely long in the  direction.  This simplification allows us 3x

to model the deformation as plane strain where the out-of-plane displacement is identically zero and the 

continuum fields are independent of .  For the sake of clarity, we briefly review the plane strain theory of 3x

linear poroelasticity.  Details can be found in the previous works 59–62.  The gel is modeled as a fully saturated, 

elastic, porous medium occupying a two-dimensional region  with a surface . We assume that the 0 0

drained network is elastic and isotropic, while the skeleton of the network and solvent phase are incompressible. 

The material point position in the gel is denoted by  ( ) at time . The time-dependent displacement x 1,2  t

filed is denoted by .  In plane strain, the out of plane strain components are identically zero, and the in-plane u

strain - displacement relation is  

 in , (1) , , / 2u u       0

where lower-case Greek subscripts range from 1 to 2, and  denotes partial derivative with respect to ,  ,
x

i.e., . The stress-strain relation for stress tensor , strain tensor , and pore pressure  is    ,
/ x

     p

 in , (2)22
3
GG K p             

 
0

where  and  are the shear and bulk moduli of the drained network, respectively, and  is the Kronecker G K 

delta. Here, summation convention over repeated indices is used. The sign convention is that stresses are 

positive when they are tensile, and pore pressure is positive when it is compressive. The bulk modulus  is K

related to the shear modulus  byG

, (3) 2 1
3(1 2 )

G
K









where  is the drained Poisson’s ratio of the gel.  In the absence of body forces and ignoring inertia, the stress 

tensor  satisfies the equilibrium equations

 in . (4), 0   0

Solvent flow in the gel is assumed to be governed by Darcy’s law, i.e., the solvent flux  is proportional to the J

spatial gradient of the pore pressure p by

, (5a),
kJ p 

 

where  is the permeability and  is the viscosity of the solvent.  In the literature, Darcy’s law often takes k 

another form as
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, (5b),
w

w

kJ p 
 

where  is the hydraulic conductivity and  is the weight density of the solvent, thus . wk w / /w wk k 

Combining the mass conservation, Darcy’s law, and equilibrium equations, Biot 60 showed that 

, (6)2
cD

t








 


 2 1

1 2
w

c
w

G kD


 





where  is the 2D Laplacian.  is often referred to as the cooperative diffusivity of the gel.  cD

In contrast to standard poroelasticity theory, here the gel surface supports surface stress and does work by 

stretching.  We assume stretching of surface is resisted by a constant isotropic surface stress . The surface s

equilibrium equations require the discontinuity of the stress across the interface to be balanced by the Laplace 

pressure induced by surface stress 2,37.  For example, if the surface is traction free on , we haveT

 in , (7)sn    T

where  is the unit outward normal to , and  is the in-plane curvature of the deformed surface profile.  n T 

It should be noted that  is part of the solution, making poroelastic problems more difficult to solve 

analytically.

3. Finite Element Analysis

Given the complexity of the field equations, it is difficult to obtain closed-form solutions. Therefore, we 

simulate the transient process using a finite element method (FEM). The finite element model is illustrated in 

Fig. 1(d) and implemented in a commercial software, ABAQUS. Due to symmetry, only a half-wavelength 

sample is modeled (shaded region  in Fig. 1(b)). The initial surface height  is much less than the period 0 0h

 , i.e., . The thickness of the gel sample is a few times the wavelength.  The polymer network is 2w  0 2h w

modeled as an elastic solid with a shear modulus  and drained Poisson’s ratio . The hydraulic conductivity G 

and weight density of the gel are  and , respectively, and they are assumed to be constant. The fixed wk w

coordinate system  is shown in Fig. 1(d): in the undeformed configuration, the origin  coincides with  1 2,x x O

the middle point of the top flat region of the ridge-channel structure (  is labeled by the red point in Fig. 1(b)). O

After deformation, the material point occupies  with respect to the same coordinate system, thus  1 2,y y

. We parametrize the deformed surface profile by  as .  The boundary conditions y x u    1y   1 2 1,y y s y

are: no horizontal displacement, shear traction, or solvent flux is allowed on the left and right edges of ; on 0

the bottom edge of , the vertical displacement, shear traction and solvent flux are all zero; and on the top 0
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edges (indicated by the blue lines in Fig. 1(d)), the pore pressure is zero and surface stress is applied. The initial 

condition is that pore pressure is zero everywhere in the gel.  In small strain poroelastic theory, this condition 

states the chemical potential of solvent is continuous across the interface 46.  This condition can be satisfied by 

exposing the sample to an environment of saturated solvent vapor pressure.  This also prevents drying of the gel, 

which can drastically change its mechanical properties 63–66. 

Continuum coupled displacement and pore pressure elements CPE4P are used in our FEM. Special user-

defined surface finite elements are attached to the top edges to model the constant surface stress.  These user-

defined surface elements have been reported in our previous works 28. 

4. Results

The following normalization is used to expedite the analysis.  The normalized coordinates are , 1 1 /x x w

, , and .  Thus, the normalized deformed surface profile is , 2 2 0/x x h 1 1 /y y w 2 2 0/y y h    1 1 0/s y s y h

normalized surface height is , and the elastocapillary number is .  Time  is normalized by 0/h h h /c sl Gw t

a characteristic time , which is proportional to the square of a characteristic length of the gel.  There are three t

length scales in our problem: the initial surface height , the elasto-capillary length , and the 0h /c sl G

wavelength .  Conceptually, the solvent in the gel needs to migrate over these length scales to equilibrate. 2w

Since  and , we use as the characteristic length and define , where  is the w h cw l w 2 / ct w D  cD

diffusivity defined by (6). We normalize time  by  and define .  We will justify this t t 2/ct D t w

normalization in Section 4.2.

4.1 Surface profiles and heights at short and long times

We first consider the limiting cases of surface profiles at short and long times.  The finite element results of 

surface profiles at  (blue dashed line) and  (red dotted line) are plotted in Fig. 2(a), where0t  t  

, , and . The surface profiles have been shifted vertically so that the 0 / 0.04h w  / 0.2c sl Gw  0.2 

lowest position in both is set to zero.  Fig. 2(a) shows that the gel corners are noticeably rounded compared to 

its sharp-edged ridge-channel mold.  The gel surface is also significantly flattened by surface stress with no 

change in wavelength. The gel further flattens as the solvent is squeezed out and the gel becomes more 

compressible, eventually reaching its equilibrium shape as .1t 

Alternatively, the short- and long-time solutions can be obtained by studying the deformation driven by 

surface stress for an elastic solid: the instantaneous response of the porous medium behaves like an 

incompressible elastic solid, while at long times the porous medium behaves as a compressible elastic solid with 

Page 7 of 17 Soft Matter



8

the drained Poisson’s ratio . Hui et al. 67 have recently provide an analytical solution to determine the 

flattened surface profile for any initial surface profile of a linear elastic half space, provided that surface stress 

is isotropic and constant. Using our notation, the deformed surface profile is given by

, , (8)   1 1
1

1 cos
2 n

n
s y a n y





    
 

2sin / 2
1 1 /

n e
s

n
a

n n Gw


   


   

where  is the Poisson’s ratio of the elastic solid. We determine the short and long times solutions using e

 and ( ) in (8).  These analytical results are shown as squares and circles, respectively, in Fig. 0.5e  0.2e  

2(a). Clearly, there is a very good agreement between numerical and analytical short and long times solutions.

Next, we investigate the change in surface height during solvent flow.  Let us denote the surface heights at 

short and long times by  and , respectively.  The corresponding normalized heights are  and sh lh 0/s sh h h

 respectively.  In Fig. 2(b), we plot the normalized short- and long-time surface heights versus the 0/l lh h h

elasto-capillary number .  As expected, our FEM shows that the surface height decreases as the elasto-cl

capillary number increases and is further reduced as the gel relaxes over time. The surface heights  and  sh lh

can also be computed using (8),  and    1 10, 0.5 1, 0.5e e
sh s y s y      

, respectively.  We find   1 10, 0.2 1, 0.2e e
lh s y s y      

, (9a)
   

1,3,... 1,3,...

4sin / 2 4sin / 2
1 / 2 1 / 2s s

n n c

n n
h

n n Gw n n l
 

   

 

 

 
       

 

. (9b)
 

 
 

 1,3,... 1,3,...

4sin / 2 4sin / 2
1 1 / 1 1l s

n n c

n n
h

n n Gw n n l
 

      

 

 

 
         

 

The analytical predictions are plotted as symbols in Fig. 2(b) for comparison. Again, they match well at the two 

limits of short and long times.
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Fig. 2. (a) Initial profile of the gel surface (black solid line), comparison of FEM solution (blue dotted line) with 

analytical solution (8) (for , squares) just after gel is release from mold ; comparison of FEM 0.5e   0t 

profile at long times (red dotted line) with (8) (for , circles).  (b) Normalized surface height for 0.2e  

short (blue) and long times (red) versus elasto-capillary number .  Analytical results are represented by cl

squares and circles, and FEM results are represented by dotted lines.  The black dotted line is the simplified 

expression for short time given by (10). 

From (9a), we notice that  is a function dependent on  only. This is because that at short times, the gel sh cl

behaves as an incompressible elastic solid with , independent of the drained Poisson’s ratio .  In a 0.5e  

previous work, this feature allowed us to use (9a) to extract the magnitude of surface stress, provided that ,  sh w

and  were known.  The short-time surface height  and wavelength  can be measured, for example, by G sh 2w

optical interferometry, and the shear modulus  of the gel can be obtained independently in a separate test. To G

avoid evaluating the series (9a), we provide an approximate expression for the short time surface height, i.e.,

. (10)20.5997 1.055 1appr
s c ch l l  

The prediction of (10) is plotted in Fig. 2(b) as a black dotted line. It agrees with the analytical solutions and 

FEM well.  Equation (10) allows one to determine  from .cl sh

The drained Poisson’s ratio can be determined using  and .  To see this, (9b) implies that  depends on sh lh lh

both  and .  Let us suppose that  has been determined using  measured in experiment (using (10)), then cl  cl sh

one can determine  by substituting  into (9b).  This relation between ,  and  is given graphically in  cl sh lh 
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Fig. 3.  Using this contour map, one can determine the drained Poisson’s ratio from measured values of  and sh

. It should be noted that, unlike the procedure of determining the surface stress where a separate test is lh

needed to measure the shear modulus, the drained Poisson’s ratio can be completely determined by measuring 

the surface heights at short and long times in experiments.

Fig. 3. Contour plots for normalized short- and long-time normalized height of the channel-ridge surface in 

which each contour line corresponds to a drained Poisson ratio of the gel.   

4.2 Relative Height Relaxation Curve

In the previous section we have provided a procedure by which the elasto-capillary number (and hence the 

surface stress) and the drained Poisson’s ratio  can be determined using  and  measured in experiments.  v sh lh

In this section we show that the diffusivity of the gel, , can also be determined by measuring a quantity cD

called relative surface height, which is defined as .  This dimensionless quantity reflects    /l s lh h h h   

the transient surface flattening process over time;  relaxes from one to zero as the gel approaches equilibrium.

A straightforward dimensional analysis implies 

, (11)0 , , ,ch lf t
w w

    
 

where  is a dimensionless function.  Fig. 4(a) shows that  is insensitive to  as long as .  To f  0 /h w 0 / 1h w 

investigate the surface stress effect on , represented by elastocapillary number , we plot  against   /c cl l w 

 for different  in Fig. 4(b).  The elastocapillary number  is chosen to be between 0.1 to 0.4, which are t cl cl
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typical values observed in experiments 2,5,32. The drained Poisson’s ratio is 0.2 in these simulations.  From Fig. 

4(b), it is evident that the effect of  on the relative surface height versus time is small, in the sense that the cl

maximum difference of  (for a fixed value of  ) for different curves is much less than the total time (over 7 t 

decades) where the variation occurs.  Fig. 4(b) also shows that the gel reaches equilibrium when  is on the t

order of one. This confirms that our conjecture that the characteristic time  should scale with the wavelength t

.   2w

The number of arguments in (11) is now narrowed down to two; that is,

. (12) ,f t 

We plot the relative surface height relaxation curve for different drained Poisson’s ratios  in Fig. 5(a). It 

shows that the characteristic time to equilibrate decreases as  increases, which is to be expected.  This is 

because when , the time it takes to equilibrate is zero as the gel surface height cannot be further reduced 0.5 

by surface stress.  More interestingly, we observe that the curves for different  are parallel – suggesting a 

master curve can be produced by shifting the curves horizontally in a log-log plot. We find that if a new 

characteristic time is defined as , and we re-normalize time  by  20.5 / ct w D   t

, (13)
 

new
20.5

cD ttt
t w 



the relative height relaxation curves corresponding to different  collapse to one single curve, as shown in Fig. 

5(b).  This rescaling indicates that  is a function of a single dimensionless time.  A fit for the master curve is

(14)   new new newexp 2.674 1.647f t t t    

which is plotted as symbols in Fig. 5(b).  Remarkably, (14) provides a very good fit to the FEM results for all 

.  The usefulness of this result is that the diffusivity  can be obtained by comparing the experimentally newt cD

measured time dependence of the relative height relaxation curve to (14).  Similar to the procedure to extract the 

drained Poisson’s ratio, the cooperative diffusivity  of the gel can be determined by the graphing surface cD

height versus time.  It is not necessary to measure any other material properties.
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Fig. 4. The relative surface height  is approximately independent of (a) height and (b) elasto-capillary number.

Fig. 5. (a)  versus normalized time . (b)  plotted against new normalized time . The  /t t t  /newt t t

square symbols are obtained from eq. (14).  

5. Summary and Discussion

In this work, we have proposed a test by which the surface stress, the drained Poisson’s ratio and the 

diffusivity of a gel can be measured simultaneously.  This test is based on measuring the time-dependent surface 

profile of a periodic ridge-channel gel structure. The time dependence of the surface profile is due to poroelastic 

flow caused by the flattening effect of surface stress.  We carried out finite element analysis to support our 

analysis.  The determination of surface stress requires knowledge of the shear modulus. However, the drained 

Poisson’s ratio and the diffusivity can be obtained with no mechanical testing.
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We illustrate more quantitatively how this might work experimentally.  For a typical hydrogel, the diffusivity 

is on the order of  m2/s 68–70.  A typical value for surface stress is mN/m.  If we use a periodic 1110cD  70s 

ridge-channel geometry with height  mm and wavelength  of 1 mm, then the elasto-capillary 0 0.1h  2w

number  for samples of this geometry is on the order of .  For a hydrogel with modulus /c sl Gw
2140 Nm

G



on the order of kPa, the elasto-capillary number is of order 0.1.  The characteristic relaxation time 

. This time scale allows sufficient time to perform the measurements.  For example, to 2 4~ / ~ 10 sct w D

capture the full time-dependent behavior of the relative height curve, an image exposure time of 1s is necessary. 

In modern image technologies (e.g., high speed video microscopy), images can be easily acquired with 1 μs 

exposure time 50, which is more than sufficient for our needs. To measure smaller structures, one can decrease 

diffusivity by replacing water with a water-glycerol mixture to swell the gel 71.  The pure glycerol solvent will 

increase the viscosity and hence decrease the diffusivity by three orders of magnitude.  This justifies the 

feasibility of using surface flattening method to determine both poroelastic and surface material properties in 

experiments.  

It is also interesting to note that for sufficiently large elastocapillary number , the series of the final 1cl 

equilibrium shape obtained using (8) is given by 

, (15a)     1 12

1 2, 1
2 1c

c

s y l y
v l




  


where

. (15b) 
 

 1 12
0

( 1) cos
2 1

n

n
y n y

n
 











In particular, the normalized peak to valley height is inversely proportional to  and is given bycl

, (15c)       22 2
0

4 ( 1) 41
1 12 1

n

c
nc c

Ch l
l ln   






  

 


where is the Catalan’s constant.0.9159655941...C 

In this work, we assume that the material is linear poroelastic. However, soft solids can exhibit viscoelastic 

behaviors.  Viscoelastic relaxation decreases the shear modulus, resulting in increasing elastocapillary length 

with time and promoting the flattening effect of surface stress.  In contrast to the poroelastic relaxation time, 

which is quadratic in the sample wavelength, the viscoelastic relaxation time is independent on the geometry. 

Thus, one can experimentally distinguish between the surface height relaxation due to solvent flow and surface 

height relaxation due to viscoelastic relaxation of the gel networks. The coupling of poroelastic and viscoelastic 

effects at the same time scale is beyond the scope of this work, and it needs to be studied in the future work.  
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Another limitation in our model is that surface stress is assumed to be isotropic and constant, and large 

deformation effect is completely ignored in our analysis. In addition, it is known that surfaces of very soft 

polymers can have significant surface elasticity (the “Shuttleworth Effect” 72), and small strain linear elasticity 

theory is no longer valid when the ridge-channel structure becomes deep 5. One approach is to use numerical 

methods like nonlinear finite element modeling. A few nonlinear transient finite element methods to study 

coupled solvent diffusion and large deformation have been developed recently 45,73,74. One can supplement these 

models with a surface finite-element model to study the complicated surface flattening relaxation process. 

Further, we assume that the squeezed-out solvent is sufficient thin (not filling up the valleys) so that the 

surface stress still exists to drive the deformation. To justify this assumption, we first plot the solvent flux field 

 on the interface at time  and  in Fig. 6. We use , , and j new 310t  new 1t  0 / 0.04h w  / 0.2c sl Gw 

 in the FE simulation, and normalize the solvent flux by , i.e., the normalized flux . 0.2  /w wk G w w

w

w
k G


J j

The direction and magnitude of the normalized flux field is indicated by the red arrows in Figure 6.  The 

magnitude of the flux is actually very small, since the flux is normalized by .  If we take 
 

(1 2 )
2 1

w c

w

k G v D
w v w






 m2/s and  mm, a normalized flux value of 1 corresponds to  m/s.  At very short times 1110cD  2 1w  810

( ), the solvent is leaving the gel on the top surface and the maximum outward flux occurs at the top new 310t 

corner, while the solvent is entering the gel on the bottom surface and the maximum inward flux occurs at the 

bottom corner. At the characteristic time ( ), the flux becomes negligible and a different feature emerges: new 1t 

the maximum outward and inward fluxes occur at the peak and valley of the surface, respectively. Integration of 

the solvent flux over the time and the entire interface gives the total volume change of the solvent. We find that 

the total volume leaving the gel till a very long time  is about , which is negligible compared new 5t  00.029h w

to the sample size. It lends support to our assumption. 

Finally, future work needs to consider more realistic boundary conditions which allow for non-equilibrium 

drying of the gel.
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Fig. 6. Normalized flux at time (a)  and (b) . The black curve is the deformed surface profile new 310t  new 1t 

of the ridge-channel structure.  The red arrows represent the direction and magnitude of the flux and the scale 

bar in (a) and (b) indicates the magnitude of the flux.  
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