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Abstract

Using theory and simulation, we model the mechanical behavior of gels that encompass 

loops and dangling chain ends. If the loops remain folded and dangling ends are chemically inert, 

then these topological features just serve as defects. If, however, the loops unfold to expose the 

hidden (“cryptic”) binding sites and the ends of the dangling chains are reactive, these moieties 

can form bonds that improve the gel’s mechanical properties. For gels with a lower critical 

solubility temperature (LCST), we systematically switch on the possible unfolding and binding 

events. To quantify the resulting effects, we derive equations for the gel’s equilibrium and dynamic 

elastic moduli. We also use a finite element approach to simulate the gel’s response to deformation 

and validate the analytic calculations. Herein, we show that the equilibrium moduli are highly 

sensitive to the presence of unfolding and binding transitions. The dynamical moduli are sensitive 

not only to these structural changes, but also to the frequency of deformation. For example, when 

reactive ends bind to exposed cryptic sites at and relatively high frequency, the storage 29 CT  

shear modulus is 119% greater than the corresponding equilibrium value, while the storage 

Young’s modulus is 109% greater than at equilibrium. These findings provide guidelines for 

tuning the chemical reactivity of loops and dangling ends and the frequency of deformation to 

tailor the mechano-responsive behavior of polymer networks.
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I. Introduction

Polymer gels typically contain topological “defects”,1including both loops and dangling 

chains. If the loops are permanently closed and the dangling chains are chemically inert, then these 

features do not contribute to variations in the elasticity of network as the material undergoes 

deformations, and hence, are effectively wasted with respect to tuning the dynamic properties of a 

gel.2 On the other hand, if the loops unravel to expose buried binding sites (i.e., “cryptic” sites3,4) 

and the dangling chains include reactive end groups (Fig. 1), then the system can form new bonds, 

which will affect the material’s global response to deformation. Here, we derive expressions to 

analyze how the equilibrium shear, bulk and Young’s moduli, which characterize the stiffness of 

the material, depend on the chemical reactivity of the loops and dangling chains. Consequently, 

we can determine how to exploit these defects to tailor the materials’ equilibrium behavior. To 

understand how these materials respond to time-dependent deformations, we also derive 

expressions for the dynamic moduli when this material is subjected to oscillatory deformation. To 

verify the results obtained from the analytic calculations, we carry out simulations on a single 

element of the gel using the gel lattice spring model (gLSM)5–7, which utilizes a finite element 

approach to characterize the materials properties. Taken together, these studies provide guidelines 

for tuning the time-dependent deformations and the reactivity of topological defects to achieve the 

desired mechanical properties for a wide breadth of applications. 

We specifically focus on the gel systems depicted in Fig. 2, where all the gels encompass 

the same structural elements, i.e., loops and dangling chains in polymer strands that lie between 

two consecutive, permanent crosslinks. Using our analytical model, we specify that the loops can 
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unfold and refold with certain probabilities, which depend on the state of deformation. We also 

specify the strain-dependent probabilities of the binding and unbinding between the exposed 

cryptic sites and the reactive ends groups. As illustrated in Fig. 2, we systematically switch on and 

off various structural transformations in the gel to pinpoint how different folding and binding 

events contribute to the mechanical responses of the material to static and dynamic deformations.

The gel in our system is taken to be poly(N-isopropylacrylamide) (pNIPAAm), which 

exhibits a lower critical solution temperature (LCST)8. Hence, the gel shrinks above the volume 

phase transition temperature ( ), which is approximately  for pNIPAAm, and swells in cT 33 C

volume as the temperature is lowered below . Notably, we observe a crossover temperature, , cT sT

beyond which the mechanical stiffness of the gels with no binding and unfolding and the gels with 

all possible binding and unfolding events  undergo an exchange in mechanical behavior. (Note the 

crossover temperature  is different for the shear modulus and the bulk modulus.) Interesting, for sT

, the permanently folded gel has a higher moduli than the gel undergoing both folding and sT T

binding. 

We also observe intriguing behavior in analyzing the frequency dependent response of the 

gel systems (in the limit of small deformation). In particular, we find that the isothermal frequency 

scans for the shear moduli show no dependence in the mechanical property for the systems, where 

the dangling chains do not undergo binding. For the dynamic Young’s modulus, the sample 

undergoing folding and/or binding shows a dependence on frequency only at high frequency 

values, as the frequency dependent response depends on the kinetic rate constants of folding and 

binding. 

We emphasize that although the gel samples all have the same elements or units i.e. the 

loops (cryptic sites) and dangling linkers, the dynamic behavior of the gel can be finely tuned by 

Page 3 of 38 Soft Matter



4

tailoring the chemical reactivities9 of  these units and hence, modify the mechanical response of 

the system. The permissibility of some transitions to happen and inhibiting some transitions lead 

to different mechanical response of such gel system (see Fig.2). This can help in creating synthetic 

materials having the basic elements but based on the need of the material property, the reactivity 

of these units can be turned on or off like a switch.

Through these studies, we devise an approach for creating materials with hidden length or 

materials that can exhibit self-stiffening or self-reinforcing behavior. Namely, by tuning the 

chemical reactivity of the units making up the gel sample, a variety of mechano-responsive 

behaviors could be achieved. Our theory can provide guidelines in designing materials with desired 

mechanical properties.

II. Methodology

Before detailing the specifics of our calculations, we provide an outline of our approach to 

facilitate the ensuing discussion. To obtain the analytical expressions for the equilibrium shear and 

bulk moduli, we carry out linearization of the stress tensor around the steady state (equilibrium 

solution of the gel system i.e., when the total stress on the system is zero) at a given temperature. 

From linear elasticity10, the linearization of  the stress tensor yields the Lamé constants; these Lamé 

constants are related to the shear and bulk modulus. The equilibrium shear modulus is obtained 

from the contributions to the stress tensor that are linear in strain. The resulting expression for the 

shear modulus only depends on the equilibrium swelling properties of the gel system at the given 

temperature. Thus, knowing the equilibrium properties of the swollen gel, equilibrium kinetic 

values, such as probability of unfolding and binding, can directly yield the value of the shear 

modulus. The bulk modulus describes the response of the system when it is uniformly deformed 

in all directions, and hence the system changes volume. For the calculation of the bulk modulus, 
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we consider the spatially isotropic contribution to the stress tensor due to variation in volume. The 

volumetric stress shows dependence on the linearized variations of the kinetics of folding and 

binding, and the value of the equilibrium bulk modulus is calculated accordingly.  The Young’s 

modulus is related to the shear and bulk moduli, and is thus obtained indirectly once the values of 

the shear and bulk moduli are obtained numerically.

 As a mode of verification, we carry out single element gLSM simulations to obtain the 

equilibrium moduli. Thus, for the equilibrium moduli, in the gLSM simulation, we carry out strain-

controlled deformations.  First, we calculate the equilibrium shear modulus, which describes the 

system’s response to a deformation applied parallel to one surface (e.g., the top of a rectangular 

object), while the opposite surface (the bottom) is held fixed. This deformation leads to a change 

in shape, while the volume remains constant. In a gLSM simulation, instead of computing bulk 

moduli, which would require isotropic compression of the gel sample from all sides, we directly 

carry out simulations to characterize the stiffness of the system (Young’s modulus) by applying a 

tensile deformation. The sample is pulled along a surface by a small amount (e.g., the top face), 

while the bottom face is held fixed. The faces on the sides of the rectangular sample move in 

response to the deformation. By calculating the force normal to the top face and dividing by the 

applied strain, we can calculate the equilibrium Young’s modulus. Note the volume is not 

preserved in tensile deformation. 

The dynamic moduli depend on both temperature and the frequency. The linearized stress-

strain is calculated by applying a Fourier transform, and in this scenario, the Lamé constants 

become the convolution kernels. In particular, equating these Fourier transformed expressions, we 

calculate the dynamic shear modulus and the dynamic bulk modulus. From the latter values, we 

obtain the dynamic Young’s modulus, which characterizes the system’s response to tensile 
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deformation. Using these expressions for the different moduli, we calculate the storage modulus. 

We also carry out single element gLSM simulations to calculate the dynamic shear modulus where 

the deformation applied was similar to the equilibrium scenario i.e. deforming the top face and 

keeping the bottom face fixed. To obtain the dynamic modulus, the deformation applied is a cyclic 

sinusoidal deformation. The amplitude of deformation was kept small, ~1% strain, to ensure that 

the strain applied is in the linear elasticity regime. The dynamic response of the gel depends on the 

formation and breaking of temporary crosslinks, which depend on the past history of deformation 

through the relative strain tensor. In the gLSM simulations, accounting for the temporary crosslink 

contribution thus requires storing large data sets and becomes computationally intensive. Also, the 

shear deformation is a volume preserving deformation. As a demonstration, we thus only carry out 

simulations to calculate the shear modulus. We also derive the analytical value of stress for the 

case of simple shear and tensile deformation in the Supplementary Information (the SI, Section 

S5).

A. Theoretical model

We utilize our recently developed model for permanently cross-linked, swollen polymer 

gels that encompass loops and dangling chains that act together to re-inforce the network in 

response to deformation11 . In the previous studies, we focused solely on the case where the ends 

of the dangling chains are chemically reactive and bind reversibly to the exposed cryptic sites, thus 

forming additional temporary crosslinks. In Fig. 1, this polymer network is drawn in green and the 

permanent cross-links are shown in grey. The ends of the dangling chains are capped by reactive 

sites (in yellow) and can bind to the exposed red sites. The sites that are chemically inert are shown 

in black. We demonstrated that a decrease in temperature or an applied force can drive the loops 
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in this LCST gel to unfold and expose the red sites. We referred to the red sites as “cryptic” sites 

because they are hidden unless the gel is deformed. When the exposed cryptic sites bind to the 

reactive yellow ends, the equilibrated structure displays “struts” that reinforce the network, as 

indicated by a significant decrease in the volume of the gel and shifts in volume phase transition 

temperature. Notably, the decrease in volume can range from 44% to 80% of the initial volume 

(see below). Once the temperature is increased or the deformation is removed, the reversible bonds 

with the dangling chains are broken, the loops refold and the gel returns to its original state. In this 

way, the system can repeat this self-reinforcing behavior in response to later perturbations. 

In the present study, we go beyond this one case and consider how the reactivity of the 

different potential binding sites affects the overall mechanical properties. Within all the cases 

examined here, the loops are assumed to be closed in the as-fabricated gel. Every subchain in the 

network contains  Kuhn segments; for subchains containing loops, the  segments lie within n l l

the loop. The dangling chains contain  Kuhn segments. We assume that the time scale for the m

breaking and reforming of a bond between the reactive groups (red-red or red-yellow) is longer 

than the time scale associated with the conformational changes of the chain. In this case, the 

binding and unbinding, as well as the folding and unfolding, can be described by the equations for 

the chemical kinetics in the network.

Given the presence of these different reactive sites, we anticipate that the dynamic behavior 

of the gel can be finely tuned by tailoring the chemical reactivities9,12,13 and hence, the possible 

binding interactions within the system. To test this hypothesis, we now consider four different 

scenarios that can be attained by chemically modifying the reactive species. The four scenarios 

are: 
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System I: The ends of the dangling chains are chemically non-reactive, so they cannot 

participate in binding. The loops are permanently in the unfolded (open) conformation and the 

exposed sites do not react with the inert dangling ends.

System II: The ends of the dangling chains are chemically inert but the cryptic sites in the 

loops are reactive, so the loops can undergo the reversible folding-unfolding transformations. 

System III: The cryptic sites form permanent bonds with each other and maintain the loop 

in the folded state, so that binding of the dangling chains cannot occur. 

System IV: The ends of the dangling chains are chemically reactive and can bind reversibly 

to the exposed cryptic sites, thus forming additional temporary crosslinks. The loops can also 

undergo reversible folding and unfolding. The equilibrium behavior of this system was described 

in ref. 11.

At the outset, we define the relevant parameters and state the simplifying assumptions in 

the model. (Since the model builds on our previous work,11 we provide further details in the SI.) 

Here,  and  denote the respective concentration of subchains encompassing the loops and lc dc

dangling chains. Given  is the fraction of subchains with unfolded loops, the total concentration Up

of the exposed cryptic sites is . The parameter is the fraction of exposed cryptic 2c U ln p c B

sites that are bound to the dangling chains and hence, the concentration of the latter sites is

. We assume that there are two dangling chains per subchain and hence, the total ( )b
c B cn n

concentration of the reactive end-units is . The concentration of end-units (and hence, 2d dn c

dangling chains) bound to the cryptic sites is , where  is the fraction of bound B dc p n  Bp

dangling chains. Since  , then . Lastly, the amount of the subchains ( )b
cn c B U l B dp c p c 

encompassing loops is equal to the amount encompassing dangling chains. Notably, the network 
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does not contain other types of subchains. For these cases,  , where,  and 1 1
0 02l dc c c    0c

 are the respective concentrations of polymer strands and the volume fraction of polymer in the 0

undeformed network. The volume fraction of polymer in the deformed state of the system is . 

Notably, in the theory of rubber elasticity, the cross-link density, , (by definition) characterizes 0c

the undeformed sample. The value  is hence interpreted as the density of temporary 1
0 0 Bc c p  

cross-links.

The fraction of unfolded loops, , as a function of time  is described by the following Up t

rate equation: 

   (1)2/ (1 ) (1 )U r U f B Udp dt k p k p   

where,  and  are the respective rate constants (0)( ) exp[ ( ) / ]r r R n Bk R k F R k T (0)( ) ( )f c fk R P R k

for the rupture and formation of the labile bond between two cryptic sites. The values of  and rk

 depend on the distance (R) between the ends of the subchain that form the loop, as discussed fk

in detail below.  is the  rate of rupture at zero force, and  is the force applied to the ends )0(
rk )(RFn

of a chain of  segments. Additionally,  characterizes the sensitivity of the bond to the applied n R

force;  and  are the respective Boltzmann’s constant and temperature. The probability of Bk T

contact of the loop ends is given by and  is the rate of rupture at zero force. Further )(RPc
(0)
fk

details are provided in Sec. S1 of the SI.

Equation (1) is a modification of the equation in our model for polymer chains with loops 

developed previously.14 For simplicity, we ignore the formation of labile bonds between two 

exposed cryptic sites that belong to different subchains. When the loops unfold, the end-groups of 
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the dangling chains can bind to the exposed cryptic sites (Fig. 1). The reaction rate constants for 

the complex formation, , and the unbinding 4/3 1/3 2/3
0 0( ) exp[ ( / ) ( ) ]complK K a b n m l     

of the loops, , depend on the network structure and state of (0)( ) exp[ ( ) / ]uB uB m BuBK R k F R k T 

deformation.11 is the rate constant of complex formation,  is the size of a monomer,  is the 0K 0a b

Kuhn length,  and  are the respective reaction rate constant at zero force and the force (0)
uBk uB

sensitivity parameter, and  is the force applied to the ends of a chain of  segments. The ( )mF R m

rate equation for the fraction of bound dangling chains, is written asBp

   (2)1
0 0/ (1 )(1 )B compl U B B uB Bdp dt c K p p K p     

At a constant degree of swelling,  is a constant; the values  and  are obtained by solving  Up Bp

the combination of eqs. (1) and (2). Note that the fraction of cryptic sites bound to the dangling 

chains, , is not an independent variable and is obtained from . The detailed B B B Up p

expressions for the rate constants are provided in Sec. S1 of the SI.

 

B. Modeling the dynamic response of the gel to deformation

To describe the dynamic behavior of the material under deformation, we characterize the 

properties of the system at two moments of time,  and . In particular, we determine  by  t ( , )t 

averaging the relative principal strains, namely, , where  31/2 2 2
1( , ) 3 ( ) ( )i iit t     

  ( )i 

and , , are the principal strains calculated at the moments of time  and , ( )i t 1,2,3i   t

respectively. Additionally, we calculate the function , which determines the number of ( , )t 

cross-links that were created before the time  and still exist at time . The time derivative  t 

 determines the number of cross-links that exist at time  and were created during the ( , ) /t    t
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period of time from  to . To specify the functions  and , we write the  d  ( ,0)t ( , ) /t   

formal solution of eq. (2) for the fraction of bound dangling chains :Bp

  (3)
0 0

( ) (0)exp[ ( ,0) ] exp[ ( , ) ] ( )
t t t

B B uB uB Bp t p K d K d K d


            

In the above equation, the rate of binding  is defined as( )BK t

   (4)1
0 0 ( )(1 )( )B compl B U BK c K p p p    

and depends on time  through the time-dependent fractions of unfolded loops, , and bound t Up

dangling chains, , and the time-dependent volume fraction of polymer, . Correspondingly, Bp 

the functions  and  are calculated as( ,0)t ( , ) /t   

   (5)
0

( ,0) (0)exp[ ( ,0) ]
t

B uBt p K d   

   (6)( , ) exp[ ( , ) ] ( )
t

uB Bt K d K


     


   
 

The rate constant of unbinding  in eqs. (5) and (6) is calculated according to eq. (S1.6) ( , )uBK t 

in the SI, and depends on both the time  and the time of bond creation . The latter dependence t t 

arises because a newly formed cross-link experiences no force at the moment of creation , and 

the force acting on it at the time  depends on the relative chain extension . t ( , )t 

The constitutive equation that provides the stress-strain relationships in the material is 

formulated11,14,15 from the free energy density (see Sec. S2 of the SI for details) to obtain the 

following equation for the stress tensor :σ̂

   (7)el FH elˆˆ ˆ ˆ( , ) ( )T t    σ σ I σ
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where  is the unit tensor. It is convenient to introduce the function  defined as Î ( )x

 and , where  is the Langevin function. We express 1 1( ) (3 ) ( )x x x   L 1/2
0 ( ) ( )n n   ( )xL

 , the elastic stress due to the freely jointed chains (FJC), in terms of these variables: elσ̂

  (8)

0 0

0

0 0 0 0
0

ˆˆ (1 )
2

ˆ[ ( ) ( )]
4

el U U
c v np p

n ln n l

c v n n l

     


 


     
                

  

σ B

I

In eq. (7),  is the osmotic pressure of the polymer in the system according to the Flory-FH ( , )T 

Huggins model

    (9)2
FH ( , ) [ log(1 ) ( , ) ]T T          

The interaction parameter  is related to the Flory-Huggins interaction parameter ( , )T 

 as . The last term in eq. (7) is the elastic ( , )FH T  ( , ) ( , ) (1 ) ( , )FH FHT T T         

stress due to the temporary cross-links:

(10)

0
el 0 0

0

0
0 0

0 0

( )( ,0) ˆ ˆˆ ( ) ( ,0) ( ,0)
2

( )( , ) ˆ ˆ( , ) ( , )
2

t

mtt c v t t
m

mtc v t t d
m

  


      
 

   
    

  

  
      



σ b I

b I

The equilibrium swelling of a gel that contains both cryptic bonds and dangling chains with 

reactive ends is determined by solving  eqs. (1), (2), and (7) in the steady-state limit, i.e., by solving 

the system of equations , , and . To determine the equilibrium value / 0Udp dt  / 0Bdp dt  ˆ σ 0

of , we note that  at , and that  and  at equilibrium. elˆσ ( ,0) 0t  t   ˆ ˆ( , )t  b I ( , ) 1t  

Page 12 of 38Soft Matter



13

According to eqs. (3), (5), and (6), the probability of binding can be calculated as 

. Then, the following equilibrium limit of eq. (10) is given as: 
0

( ) ( ,0) ( , )
t

Bp t t t d  



 



(11)1
el 0 0 0 0 ˆˆ (2 ) ( )Bp c v m   σ I

Finally, we note that the equilibrium value of the rate constant of unbinding , eq. (S1.6), uBK

should be calculated at the chain extension , because  depends on the relative strain.1  uBK

C. Dynamic elastic moduli of the gel

In addition to parameters characterizing the gel’s structural composition, we determine the 

gel’s mechanical properties, which depend on temperature and frequency of the deformation. 

Similar to an isotropic solid, the gel systems can be characterized by two elastic constants: the 

shear and the bulk moduli. The shear modulus describes the system’s response to shearing and the 

bulk modulus describes the material’s response to uniform deformation along all directions. To 

characterize these mechanical properties, we perform a linearization of the constitutive equations 

around the steady state of the gel, i.e. . In the absence of relaxation, linearization of the stress ˆ 0σ

tensor results in

(12)ˆˆ ˆ ˆ( ) tr[ ( )] 2 ( )t t t   σ ε I ε

where  and   are the first and second Lamé parameters, respectively, and  is the infinitesimal   ε̂

strain tensor. (Note that in eqs. (12)-(15), we use the symbol  for the first Lamé parameter 

according to tradition. For the rest of the paper, the symbol  is reserved for the degree of 

swelling.) 

If relaxation takes place, the Lamé parameters become the convolution kernels, and the 

stress-strain equation is conveniently formulated via the Fourier transform:

(13)ˆˆ ˆ ˆtr( ) 2       σ ε I ε
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The Fourier transform is defined here as . The (complex) dynamic ( )exp( )f f t i t dt 



 

shear  and bulk  moduli are related to the Lamé parameters as10 G K

(14)G 

(15)2
3

K    

The dynamic Young’s modulus of the gel  is calculated through the shear and bulk moduli E

as10

(16)9
3

K GE
K G

 


 




The frequency-dependent storage and loss moduli are given by the respective real and imaginary 

parts of eqs. (14)-(16). Recall that the storage modulus characterizes the energy stored in the 

material and the loss modulus characterizes the energy dissipated by the system (e.g., as heat). 

Finally, the equilibrium values of the elastic moduli are obtained by taking the limit  in eqs. 0 

(14)-(16). Section S4 of the SI provides detailed derivations of the dynamic moduli of the gel. 

The elastic moduli of a swollen gel depend on the frequency of deformation, ,  due to 

the volumetric and chemical relaxation processes in the system. In the case of simple shear 

deformation, only chemical relaxation takes place in the gel because volume does not change under 

shear. The storage and loss shear moduli,  and , respectively, are given by the following G G

equations (see Section S4 in the SI):

(17)
( ) 2

0 ( ) 2
( / )

( )
1 ( / )

st
uB

st
uB

K
G G G

K





   



(18)
( )

( ) 2
/

( )
1 ( / )

st
uB

st
uB

K
G G

K





  


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In eq. (17),  is the equilibrium shear modulus calculated as0G

(19)( ) ( )0
0 (1 )

2
st stst st st

U U
st

c nG p p
n ln n l

  
  



                     

The subscripts and superscripts “st” denote a steady state value at a given temperature . The T

equilibrium shear modulus is proportional to the crosslink density , and depends on the degree 0c

of swelling  and fraction of unfolded loops  at the steady state. The value  in eqs. (17) st ( )st
Up G

and (18) characterizes contribution of the relaxation processes to the dynamic shear modulus

(20)( )
0 0

0
( ) stst

BG c m p


 

where  is the fraction of bound dangling chains in the steady state. Equation (20) shows that ( )st
Bp

only dangling chains bound to the exposed cryptic sites contribute to the dynamic shear modulus. 

Namely, shear affects the temporary crosslinks. Finally, as seen from eqs. (17) and (18), the 

characteristic relaxation time associated with the bound dangling chains is , where  ( )1/ st
uBK ( )st

uBK

is the steady state value of the reaction constant for unbinding.

To calculate the bulk modulus, we consider the spatially isotropic contributions to the stress 

tensor due to variations of volume:

(21)

( ) ˆˆ ˆ( ) tr[ ( )]
3

ˆ( ) ( )

v vol st vol
st

stst

vol vol
U B

U B stst

t t

p t p t
p p

  
 

 

 
 

                
     

          

σ ε Ι

Ι

where,

(22)

2
0

0

0 0 0 0 0
0 0

(1 )
2

( ) ( ) [ ( ) ( )]
2 4

st
vol U U

B FH

c np p
n ln n l

c m p c n n l

       


     
 

     
                

 
     

 
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Equation (21) indicates that the volumetric stress is also affected by the unfolding and binding 

processes occurring in the gel, as expressed through the terms proportional to  and , ( )Up t ( )Bp t

respectively. Linearization of the non-linear chemical kinetics equations for and  results in Up Bp

the following linear equations for  and  which, in turn, are linear functionals of .Up Bp ˆtr ( )tε

ˆtr ( )UU UBU U U

BU BBB B B

p p Kd t
p p Kdt

  
  

       
              

ε

A detailed discussion of the above expressions is given in Section S4 of the SI. 

For the dynamic moduli, the equations for  and  are solved in terms of the Fourier Up Bp

transforms:

1ˆ ˆ ˆ( ) trU U

B B

p K
i

p K





 


 
   

    
  

I Γ ε

Finally, the complex dynamic bulk modulus  is expressed in the following form:K

(23)

2

1

3

ˆ ˆ( )

2
3

volFH

st

Uvol vol

BU B stst

K

K
i

Kp p

G





 
  

 





  
      

       
              



I Γ

The above equations show that the dynamic bulk modulus  has three characteristic frequencies:K

,  . 1/2(1,2) 2
0

1 ( ) 4
2 2

UU BB
UU BB UB BU   

        (3) ( )
0

st
uBK 

Thus, the bulk modulus not only depends on the volume fraction  , but also on the steady state 

value of the reaction constant for unbinding and unfolding.
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In contrast to the simple shear deformations, tensile deformations of a swollen gel can 

result in variations of the gel volume. Hence, relaxation of the volume fraction of polymer in the 

course of tensile deformations contributes to the dynamic Young’s modulus of the gel and, in 

general, has to be taken into consideration. The volumetric variations in swollen gels occur due to 

diffusion of solvent within the gel body and between the gel and the external solution. Therefore, 

the relative contribution of the volumetric variations to the dynamic Young’s modulus depends on 

the gel size. 

To simplify the problem, it is instructive to consider two limiting cases. One case 

corresponds to the situation when the volumetric relaxation is so fast that it can be taken as 

instantaneous. This scenario is characteristic of sufficiently small gel samples and slow 

deformations. In Section S4 of the SI, we calculate the dynamic bulk modulus  in the limit of K

instantaneous volumetric relaxation, and then use eqs. (16)-(18) to obtain the dynamic Young’s 

modulus, .E

Another characteristic limit corresponds to the situation when variations in the volume of 

a swollen gel can be neglected as, for example, in the case of sufficiently large gel samples and 

fast deformations. Absence of variations in volume is effectively equivalent to the gel’s 

incompressibility when the bulk modulus is very high. In the latter case, the dynamic Young’s 

modulus of the gel is determined solely by the dynamic shear modulus (see eq. (16)) and  

.3E G 

D. Model parameters 
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The model parameters are chosen as in our previous study11 and are discussed briefly here. 

The subchains between the cross-links contain  Kuhn segments with  and , and the n l 4n  8l 

dangling chains contain  Kuhn segments (see Fig. 2). The volume fraction of polymer in the 2m 

as-fabricated sample is taken to be , and the corresponding cross-link density is 0 0.129 

determined according to the equation  with the size of a 1 1 3
0 0 0 0 ( ) 1.84 10c v a b n l m       

monomeric unit  and the Kuhn length . 5–7,16
0 2Åa  0Å1b 

We assume that the probability for the rupture rate in both the loops and the reactive ends 

of the dangling chains are similar; hence, the rate constant for bond rupture is assumed to be equal 

to the rate constant for unbinding, . Further, the rate constant of folding relative to (0)(0) / 1r uBk k 

that of bond rupture at zero force , and the ratio of the rate constant of complex formation and that 

of the unbinding at zero force was set to  and  respectively. (0) (0)/ 200rfk k  (0) 4
0 / 2 10uBK k  

Furthermore, the rate constant of folding relative to that of bond rupture at zero force , and the 

ratio of the rate constant of complex formation and that of the unbinding at zero force was set to 

 and , respectively. For more details on how the choice of rate (0) (0)/ 200rfk k  (0) 4
0 / 2 10uBK k  

constants affects the behavior of the gel systems, we refer the reader to Sec. S6 in the SI.  

The force sensitivity parameters for the rate constants of bond rupture and unbinding were 

set to  and , respectively. To capture the temperature dependent (LCST) 1.5R  0.75uB 

behavior of the gel, we  use the known experimental values that characterize poly(N-

isopropylacrylamide) (pNIPAAm) gel.8 Correspondingly, the polymer-solvent interaction is taken 

to be , where  with , , 0 1( , ) ( )T T      1
0 0( ) ( )T h T T s    902.44h   3.4163s 

, and .80 273.15T  1 0.518 
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For the affine deformations, the degree of swelling (  in Fig. 3a) is equal to the chain 

extension, so the same notation is used for both values. The degree of gel swelling  is defined 

as the lateral extension of the gel sample i.e.,  where  is the length of the gel sample 0/L L  L

along the specified direction and  is the length of the reference gel. 0L

We first consider the calculations of the equilibrium moduli for the four different gel 

systems shown in Fig. 2. We also perform single-element (  units) gel lattice spring model 1 1 1 

(gLSM) simulations to further verify our analytical calculations. The details of the gLSM 

formulation are given in Section S3 of the SI. 

III. Results and Discussion

A. Determining the equilibrium moduli: effect of varying temperature

We first determine the equilibrium behavior of the four different gel systems depicted in 

Fig. 2. Figure 3a shows the equilibrium degree of swelling, , as a function of temperature for the 

LCST gel, which shrinks with increasing temperature. (Note the unfolding and (no)binding case 

marked in (blue) red is also presented in Biswas et al.11.) Using the gLSM, we determine  for 

the equilibrated gels in the temperature range  to . The gels are   units 15 CT   45 CT   1 1 1 

in size, corresponding to samples that are 40  on each side. μm

In System I (black), the loops are permanently in the unfolded state (  and ). 1Up  0Bp 

The exposure of “hidden” chain length with the unfolding of loops enables this system to show the 

greatest degree of swelling. Since the ends of the dangling chains are inert in this system, the gel 

does not exhibit self-reinforcement. Among the four systems, this is the most open or 

unconstrained system since the polymer chains are bound only at the permanently crosslinked 

sites. System II (blue) is similar to System I (black), except that the loops can undergo a folding 

and unfolding transition, but the ends of the dangling chains remain inert. Because only half of the 
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subchains contain loops, and these loops can fold with a certain probability, , the blue curve Up

shows a slightly lower degree of swelling than that for System I (black). Here,  is obtained from Up

solving for the steady state solution of eq. (1) and .0Bp 

In System III, the dangling ends are again inert ( ), but the loops are permanently 0Bp 

folded, i.e., the transition from folding to unfolding is forbidden. Thus, the . The number 0Up 

of Kuhn segments participating in the elasticity of the network is reduced to n segments since the 

l segments in the folded loops are “wasted”.  Below , the swelling of the LCST gel leads to a cT

buildup in the internal force acting on the loops (even in the absence of applied force). As the 

temperature is lowered well below  (Fig. 3a), the permanently folded loops do not unfold and cT

thus, these loops resist the swelling, as can be seen from the lower values of the swelling curve for 

System III (in green) as compared to System I (black) and System II (blue).

In System IV, the loops can undergo reversible folding and unfolding, and the dangling 

linkers with reactive ends can bind to the exposed “cryptic” sites. Here,  and  are obtained Up Bp

from solving the kinetic equations, eqs. (1) and (2), for the steady state solution. These gels are the 

most tunable and show the greatest self- reinforcing behavior among the four systems. 

There are two noticeable differences between the cases involving binding (red) and no 

binding (black, blue, green) units. With binding present, there is a shift in the volume phase 

transition temperature, , to lower values, and a decrease in the lateral extension of the gel (Fig, cT

3a). Both the latter effects are due to the presence of the temporary cross-links between the exposed 

cryptic sites (on the opened loops) and the reactive dangling ends. These cross-links act as “struts” 

that inhibit the swelling of the gel. In effect, the struts increase the stiffness of the network and 

thus, the gel undergoes a self-stiffening in response to the decrease in temperature. 
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The effect of these changes in the gel’s internal structure on the mechanical properties of 

the system can be quantified by calculating the equilibrium elastic moduli as functions of the 

temperature, . The numerical solution for the shear modulus, eq. 19, is shown in Fig. 3b. The T

Young’s modulus is calculated indirectly by first obtaining the solution for the bulk modulus. The 

equilibrium bulk modulus is obtained as detailed in Section S4 of the SI. Inserting the calculated 

values of the shear and bulk moduli into eq. 16 yields the Young’s modulus (Fig. 3c). As a means 

of verifying these results, we also plot the moduli obtained from the single element gLSM 

simulations (marked with points). Note that the results from the gLSM simulation show 

quantitative agreement with the numerical values calculated from the linearized theory. 

Comparison of Figs. 3b and 3c show that the plots for the shear and Young’s moduli versus 

temperature exhibit similar trends for all .cT T

From the plots in Fig. 3, it is also evident that among the four systems considered here, 

System I provides the least resistance to deformation. Hence, we use the shear modulus of System 

I at  as the reference value, denoted ,  for all the elastic moduli calculated here. We 15 CT   refG

estimate  at the model parameters used in this study. In Figs. 3b and 3c, the ~ 33KParefG

equilibrium values of the shear and Young’s moduli for all the systems are rescaled by  . refG

Hence, the black line starts at the value of 1 at . The lines thus show the value of the 15 CT  

relative moduli as compared to . refG

Recall that System I is free from folding and binding constraints. The loops in System I are 

always in the unfolded state and the inert ends of the dangling chains are not reactive and hence, 

the system does not form the temporary crosslinks that would stiffen the gel. Consequently, among 

the four systems, System I swells the most and offers the least resistance to deformation; this 
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behavior is reflected in the lowest value of the equilibrium moduli (black) for both shear and tensile 

deformation. Unlike System I, the loops in System II can undergo reversible folding and unfolding, 

but the reactive ends of the dangling chains remain inert. At temperatures below , the swelling cT

of the LCST gel generates internal strain, which causes most of the loops to be in the unfolded 

state. In this unfolded state, System II behaves similarly to System I. As some fraction of loops in 

the gel remain in the folded configuration, System II exhibits a greater resistance to deformation 

than System I, as seen in Figs. 3b and 3c for the equilibrium moduli. Consequently, the shear and 

bulk moduli of System II (shown in blue) are greater than those in moduli System I (black).

The loops in System III (green) remained permanently folded and thus resist the 

deformation of the gel; consequently, this sample gives rise to the highest moduli at relatively low 

temperatures (in green in Figs 3b and 3c). In this range, System IV (red) is softer than System III 

(green), but stiffer than Systems I (black) and II (blue). There is, however, a temperature, , where sT

the green and red curves cross and switch behavior. This switching can be explained as follows. 

At temperatures , several loops in System IV are unraveled by the swollen gel. The s cT T T 

exposed hidden length enables further swelling of the gel, despite the formation of temporary 

crosslinks between the exposed loops sites and reactive ends. 

At temperatures above , however, the less swollen LCST gel is less effective at sT

disrupting the loops and some of the exposed sites remain bound to dangling ends. Both these 

factors hinder deformation and hence, at these higher temperatures, System IV exhibits a higher 

modulus than System III (green). The difference in the moduli between the red and green curves 

is the highest around  and decreases as the temperature is shifted away from . Moreover, the cT cT

largest differences between the equilibrium moduli are evident between the red and black curves 
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(with no unfolding and no binding). In particular, at , the shear modulus of System 32 CcT :

IV(red) is 21% higher than the modulus of System I (black), and the Young’s modulus of System 

IV(red) is ~58% higher than the modulus for System I (black).

B. Determining the dynamic moduli: effect of varying frequency at given temperatures

To further characterize the system, we calculate the frequency-dependent response of the 

gels to vibratory deformation and determine the storage modulus of the four systems for both shear 

and tensile deformation. As noted above, the storage modulus characterizes the energy stored in 

the material. The expressions used to numerically calculate the frequency-dependent moduli are 

given in Section S4 of the SI. The numerical solutions characterizing the equilibrium behavior of 

the systems are used to obtain the values of the storage moduli for both shear and tensile 

deformation. 

1. Storage shear moduli. The numerical solution for the storage shear modulus (eq. (17)) 

is shown in Figs. 4a and 5a. The Young’s storage modulus is calculated indirectly by first 

determining the solutions for the bulk modulus according to eq. (S4.18) in the SI. Inputting these 

values of the shear and bulk modulus into eq. (16) yields the Young’s modulus. Note that the 

values of the storage shear modulus ( ) and storage Young’s modulus ( ) plotted in Figs. 4 G E

and 5 are normalized to  (see above). As an additional validation, the single element gLSM refG

simulation of the simple shear deformation was performed. The results of the gLSM simulation 

obtained in the case of small deformations are in a good agreement with the linearized theory (see 

Fig. S2 in the SI). 

As seen from the analytical calculations, eq. (17), the storage shear modulus depends only 

on the unbinding rate constant . Figures 4a and 5a present the storage shear modulus  of the uBk G
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four different gel systems as functions of the frequency  at  and ,  22 CT   29 CT  

respectively. We find that the value of the storage modulus is independent of frequency for 

Systems I, II, and III. The storage modulus is constant and equal to the value of the equilibrium 

shear modulus of the respective systems. This behavior is due to the fact that in Systems I, II, and 

III, the reactive ends of the dangling chains are inert and do not undergo binding. Moreover, the 

storage shear modulus for System I is constant because there is no structural relaxation in this 

system.

On the other hand, the dynamic storage moduli for System IV (where the reactive ends of 

the dangling chains are allowed to undergo binding and unbinding transitions) do show a 

frequency-dependent behavior. At sufficiently low frequencies, , the storage shear 1
uBk 

modulus is constant (Figs. 4a and 5a), and equal to the equilibrium modulus at a given temperature. 

As frequency is increased, the storage shear modulus monotonically increases until it levels off at 

a sufficiently high frequency . The increase in the modulus with an increase in frequency 1
uBk 

is attributed to the formation of temporary crosslinks in System IV. At , the storage shear 22 CT  

modulus of System IV (red) crosses over and above the modulus of System III (green), 

demonstrating that the bound dangling chains provide additional self-stiffening to the system. At 

higher frequencies, the storage shear modulus of System IV increases by 66% and 119% as 

compared to the equilibrium modulus value at  and , respectively.22 CT   29 CT  

2. Storage Young’s modulus. In contrast to the dynamic shear modulus, the dynamic 

Young’s modulus depends on the rate constants for both unfolding and unbinding as shown in the 

SI (see eqs. (S4.8) and (S4.18)). Figures 4b and 5b present the storage Young’s moduli  as E

functions of  at  and , respectively. System I (black) is always unfolded and  22 CT   29 CT  

System III (green) is permanently folded, and neither system contains reactive dangling ends. 
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Hence these systems do not undergo any transition and do not exhibit any frequency dependence. 

The values of the storage Young’s moduli  for these cases are equal to their respective E

equilibrium values. 

Although the dynamic shear moduli in System II (blue) remains constant under variations 

in frequency, the storage Young’s modulus does show, albeit small, but a finite variation with 

frequency. At lower values of frequency, the value of the dynamic modulus remains a constant 

and is equal to the equilibrium modulus. As frequency is increased further, the value of the 

modulus increases only incrementally and then saturates to a slightly higher value with increasing 

frequency. This behavior can be attributed to the formation of folded conformations in System II 

(blue) as the increase in modulus approaches the value of the modulus of System III, which has 

permanently folded loops. 

For System IV (red), the change in the value of the storage modulus as a function of 

frequency is seen to be quite large, and is attributed to the formation of temporary crosslinks, as 

described for the higher value of the storage shear modulus. At , the storage modulus of 22 CT  

System IV crosses over that of System III. The latter behavior shows that the temporary crosslinks, 

which are formed by the bound dangling chains, resist the deformation at higher frequencies. For

, the increase in the values of moduli is even larger than at . 29 CT   22 CT  

At , Figs. 5a and 5b also reveal that the values for the storage moduli for System 29 CT  

IV lie above those of System III throughout the frequency sweep, indicating that System IV is 

stiffer for all values of frequency. While at , for low values of frequency, System III 22 CT  

exhibits greater stiffness than System IV. There is a dynamic change in mechanical stiffness 

between System III and IV based on temperature and frequency. At values of high frequency, the 

Page 25 of 38 Soft Matter



26

storage Young’s modulus of System IV increases by 60% and 109% compared to their respective 

equilibrium values at  and . 22 CT   29 CT  

The storage Young’s moduli presented in Figs. 4b and 5b were calculated assuming 

instantaneous volumetric relaxation. To reveal how relaxation of volume affects the dynamic 

tensile properties of the swollen gels, we focus on System IV, where both unfolding of the loops 

and binding of the dangling chains takes place. In Fig. 6, we plot the storage Young’s moduli for 

System IV calculated at  and  in the limiting cases of instantaneous volumetric 22 CT   29 C

relaxation and absence of the latter relaxation. The area between the curves representing the two 

limiting cases at a given temperature is shaded in Fig. 6. The latter figure shows that the storage 

moduli  calculated under the assumption of no volumetric relaxation are, first, systematically 'E

greater than those obtained in the limiting case of instantaneous relaxation of volume of a swollen 

gel, and, second, exhibit qualitatively similar behavior as functions of the frequency . Recall 

that the very fast and very slow relaxations of volume of a swollen gel are characteristic for gel 

samples of sufficiently small and large sizes, respectively (see Section IIC). Thus, at a given 

temperature, the storage Young’s modulus obtained for a realistically sized sample of a swollen 

gel would lie somewhere in between the two limiting cases, i.e., within a corresponding shaded 

area shown in Fig. 6.

IV. Conclusions

Through the studies presented here, we could “zoom in” and correlate specific architectural 

changes in polymer networks to variations in mechanical behavior, and thus obtain useful 

structure-property relationships for these multi-component gels. The gels contained salient 

features that are common to a majority of networks: unfolding loops that expose “hidden length” 
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and release new binding sites; dangling chains with reactive or inert end groups; and “wasted” 

closed loops. All these features affect the material’s mechanical response to deformation. To 

quantify this response, we derived expressions for the equilibrium and dynamic values of the 

elastic moduli that explicitly take into account the different architectural features. These models 

allowed us to pinpoint how different binding and folding events contribute to the material’s 

response to shear and tensile deformation. 

Using the analytical calculations and numerical simulations, we determined the elastic 

moduli for the four systems in Fig. 2. In Systems I-III, the binding transition does not take place, 

whereas in System IV, both the binding and folding transitions occur. For the chosen model 

parameters, we observed that System I with its permanently unraveled loops was the softest among 

all the systems (followed by System II). In particular, System I had the lowest equilibrium moduli 

for both shear and tensile deformations, and did not show any frequency dependence on the 

moduli. 

For both the equilibrium shear and Young’s moduli, there exists a crossover temperature 

 beyond which the modulus values are exchanged.  Note that is different for the shear modulus sT sT

and the Young’s modulus. For , the gel system with permanently folded loops (System III) sT T

exhibited a higher modulus than System IV. In this temperature range, the closed loops were 

responsible for resisting the swelling of the gel. Above , however, the transient crosslinks sT

became more effective than the closed loops in resisting the deformation of the gel. This transient 

crosslinks acted as struts that reinforced the mechanical stiffness of the gels. 

We also investigated the frequency-dependent response of the systems in the limit of small 

deformation. The isothermal frequency scans for the shear storage moduli showed no dependence 

om frequency for Systems I-III. For the storage Young’s modulus, the sample undergoing folding 
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and binding (System IV) showed a significant dependence on frequency as the moduli depends on 

the kinetic rate constants of folding and binding. 

In contrast to the other systems, System IV encompasses the greatest degree of tunability 

as demonstrated by the wide range of moduli the system exhibited when compared with Systems 

I to III. Hence, System IV provides a useful structural framework for altering the macroscopic 

mechanical properties of a network through localized, molecular scale manipulations. Given that 

loops and dangling ends are ubiquitous in polymer networks, the studies reveal how these defects 

can be used to greatest advantage. The findings also reveal the key role that dynamic bonds play 

in dictating the global mechanical behavior.
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Figure captions

Figure 1 Schematic of a polymer network (in green) containing loops and dangling chains. The 

cross-links are shown in grey solid circles. The loops in permanently folded state or permanently 

unfolded state (chemically inert) are shown in black solid circles.  The loops with reactive labile 

bonds are shown in blue when bonded. The reactive ends of the dangling chains (yellow) can 
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undergo binding with the exposed ends of the loop (red) while the ends of the dangling chain that 

are treated as chemically inert are shown with black solid circles. 

Figure 2 Schematic of the four different gel systems. In System I, the structural elements i.e. the 

loops are permanently in the unfolded state and the dangling chains are chemically non-reactive, 

so they cannot participate in binding.  System II depicts the gel network where the ends of the 

dangling chains are chemically inert but the cryptic sites in the loops are reactive, so the loops can 

undergo the reversible folding-unfolding transformations. In System III, the loops are permanently 

in a folded state and cannot undergo folding-unfolding transition. The dangling chain thus cannot 

find exposed cryptic sites and the system also does not undergo binding-unbinding transition. In 

System IV, both the structural elements (loops and dangling chains) have chemical reactive ends. 

The cryptic sites can undergo folding-unfolding transition and the ends of the dangling chains and 

can bind reversibly to the exposed cryptic sites.

Figure 3 (a) The lateral extension (b) shear modulus ( ) and (c)  Young’s modulus (  ) of the 0G 0E

gel at equilibrium as a function of temperature for the gel systems I - IV. Note that the difference 

in the degree of swelling between the bound (system IV) and the other systems I-III is greater 

near the transition temperature. The model parameter values are given in the text. The lines show 

the numerical solution of eq. (7) equated to zero i.e. at the steady state obtained using 

Mathematica
TM

. The symbols show the numerical solution obtained using the gLSM code 

applied for a single gel element in the long time limit. The moduli in (b) and (c) are scaled with 

respect to the shear modulus value of the gel system I, , at  . Hence, the shear moduli refG 15 C

plot of gel system I starts from the value of 1 at .15 C
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Figure 4 (a) The storage shear modulus ( ) and (b) storage Young’s modulus ( ) of the four G E

different gel systems as functions of the frequency ( ) at  . The moduli values are scaled  22 CT  

with . The values of the  parameters are given in the text. The lines show the numerical solution refG

obtained using MathematicaTM for the given set of frequencies in the range of [10
-2

,10
3
]. The 

storage modulus is independent of frequency and equal to the value of the equilibrium shear 

modulus for Systems I, II, and III.  For system IV, the storage shear moduli depends on the binding 

rate constant and varies with frequency. As frequency is increased, the storage shear modulus 

monotonically increases until it becomes a constant at a sufficiently high frequency. Similarly, in 

(b) the storage Young’s moduli ( ) of the gel for system I and III remains constant. The storage E

Young’s modulus depends on both unfolding as well as unbinding rate constant. The moduli of 

System II shows a very small variation with frequency. The Young’s modulus for system IV 

remains constant for low frequency and equal to the equilibrium value of the moduli but 

monotonically increases until it saturates at a sufficiently high frequency.   

Figure 5 (a) The storage shear modulus ( ) and (b) storage Young’s modulus ( ) of the four G E

different gel systems as functions of the frequency ( ) at  . The moduli values are scaled  29 CT  

with . The model parameter values are given in the text. The lines show the numerical solution refG

obtained using MathematicaTM for the given set of frequencies in the range of [10
-2

,10
3
]. The 

storage modulus is independent of frequency and equal to the value of the equilibrium shear 

modulus for Systems I, II, and III.  For system IV, the storage shear moduli depends on the binding 

rate constant and varies with frequency. As frequency is increased, the storage shear modulus 

monotonically increases until it becomes a constant at a sufficiently high frequency. Similarly, in 
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(b) the storage Young’s moduli ( ) of the gel for system I and III remains constant. The storage E

Young’s modulus depends on both unfolding as well as unbinding rate constant. The moduli of 

System II shows a very small variation with frequency. The Young’s modulus for system IV 

remains constant for low frequency and equal to the equilibrium value of the moduli but similar to 

the storage shear modulus monotonically increases until it saturates at a sufficiently high 

frequency.  At , the moduli values of system IV are higher than the moduli values of 29 CT  

system III for all frequencies.

Figure 6 The storage Young’s moduli ( ) versus frequency ( ) for System IV at  (red) E  22 CT  

and  (orange) in the limiting cases of instantaneous volumetric relaxation denoted by solid 29 C

line and absence of volumetric relaxation (dashed line). The shaded area between the curves 

represent that a realistically sized sample of a swollen gel would lie between these two limiting 

cases at a given temperature. 
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