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Rods in a Lyotropic Chromonic Liquid Crystal: Emer-
gence of Chirality, Symmetry-Breaking Alignment, and
Caged Angular Diffusion†

Sophie Ettinger,a Clarissa F. Dietrich,b Chandan K. Mishra,c Cornelia Miksch,d Daniel A.
Beller,e Peter J. Collings,a,f and A. G. Yodha

In lyotropic chromonic liquid crystals (LCLCs), twist distortion of the nematic director costs much less
energy than splay or bend distortion. This feature leads to novel mirror-symmetry breaking director
configurations when the LCLCs are confined by interfaces or contain suspended particles. Spherical
colloids in an aligned LCLC nematic phase, for example, induce chiral director perturbations (“twisted
tails”). The asymmetry of rod-like particles in an aligned LCLC offer a richer set of possibilities due
to their aspect ratio (α) and mean orientation angle (〈θ〉) between their long axis and the uniform
far-field director. Here we report on the director configuration, equilibrium orientation, and angular
diffusion of rod-like particles with planar anchoring suspended in an aligned LCLC. Video microscopy
reveals, counterintuitively, that two-thirds of the rods have an angled equilibrium orientation (〈θ〉 6= 0)
that decreases with increasing α, while only one-third of the rods are aligned (〈θ〉 = 0). Polarized
optical video-microscopy and Landau-de Gennes numerical modeling demonstrate that the angled
and aligned rods are accompanied by distinct chiral director configurations. Angled rods have a
longitudinal mirror plane (LMP) parallel to their long axis and approximately parallel to the substrate
walls. Aligned rods have a transverse and longitudinal mirror plane (TLMP), where the transverse
mirror plane is perpendicular to the rod’s long axis. Effectively, the small twist elastic constant of
LCLCs promotes chiral director configurations that modify the natural tendency of rods to orient
along the far-field director. Additional diffusion experiments confirm that rods are angularly confined
with strength that depends on α.

1 Introduction
Nematic phases form in thermotropic and lyotropic chromonic liq-
uid crystals (LCLCs) and exhibit many similar properties. The
elastic behavior of both types of liquid crystals (LCs) is gov-
erned by splay, twist, and bend director distortions, each with
material-specific elastic constants. The twist elastic constant in
LCLCs, however, is approximately one order of magnitude smaller
than their splay and bend elastic constants.1 In thermotropic LCs,
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the three constants are comparable.2–5 The large difference in
twist elasticity has a surprising consequence; it produces mirror-
symmetry breaking director configurations in LCLCs, but rarely in
thermotropic nematic LCs.6–9 These chiral director perturbations
arise when LCLCs are confined within spheres,10 cylinders,11–15

and tactoids,16,17 and similar chiral distortions occur around par-
ticles suspended in LCLCs.18,19 The latter director configurations
and their consequences have been studied in only one context:
spherical colloidal particles with planar anchoring in an aligned
nematic LCLC. Interestingly, mirror symmetry-breaking chiral di-
rector perturbations form around the spheres (“twisted tails”), al-
though neither the liquid crystal nor the particles are inherently
chiral.18,19

Here we study suspended rod-like particles in an aligned LCLC
nematic phase. Previously, theoretical and experimental studies
of the orientation and diffusion of rods in aligned nematic LCs
have largely focused on rods with perpendicular surface anchor-
ing,20–23 since rods with planar anchoring are expected to align
parallel to the uniform far-field director with little disturbance
to the local director.21,24,25 To the best of our knowledge, the
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literature contains no reports examining director configurations
surrounding rod-like particles suspended in LCLCs. Rod asymme-
try adds two new degrees of freedom: the aspect ratio (length
divided by diameter) of the rod, α, and the mean angle between
the long axis of the rod and the uniform far-field director, 〈θ〉.
These added degrees of freedom create novel possibilities for di-
rector configurations with potential consequences for rod orien-
tation and diffusion. Here we employ polarized optical video-
microscopy and Landau-de Gennes numerical modeling to elu-
cidate the director configurations around micron sized rods sus-
pended in the aligned nematic phase of a LCLC; we also study the
associated angular orientation and diffusion of the rods. Surpris-
ingly, the small twist elastic constant of LCLCs promotes chiral
director configurations that modify the natural tendency of rods
to orient along the far-field LC alignment axis. Two-thirds of the
rods orient at an angle with respect to the uniform far-field direc-
tor; only one-third have an aligned equilibrium orientation.

These two classes of alignment correspond to two distinct
director configurations, both with helical distortions (“twisted
tails”), that extend away from the ends of the rods to the far-
field director. These director configurations, to the best of our
knowledge, have never been reported. Angled rods have identi-
cal twisted tails on either end of the rod. However, the hand-
edness of the distortion reverses across a mirror plane located
halfway through the diameter of the rod (along the rod’s long
axis and approximately parallel to the confining substrate walls).
We call this configuration a “longitudinal mirror plane,” or “LMP.”
Aligned rods have twisted tails with opposite handedness on ei-
ther end. Like angled rods, the handedness of the distortion re-
verses across a longitudinal mirror plane, but unlike angled rods,
the handedness of the distortion also reverses across a transverse
mirror plane. The transverse mirror plane is perpendicular to
the rod’s long axis, halfway through the length of the rod. An
analogous mirror plane is observed in the Class 2 configuration
around spherical particles suspended in aligned LCLCs.19 We call
this configuration surrounding aligned rods a “transverse and lon-
gitudinal mirror plane,” or “TLMP.”

Note, both LMP and TLMP configurations are globally achiral.
Micrographs and schematics of these configurations are shown
in Figs. 1, 2,3, and 4. Video microscopy reveals that 〈θ〉 is in-
versely correlated with α, and Landau-de Gennes numerical mod-
eling provides strong evidence that the LMP and TLMP configu-
rations are either ground states or deeply metastable states of a
LC for which the twist elastic constant (K2) is significantly less
than the splay (K1) and bend (K3) elastic constants. Finally, dy-
namic particle-tracking microscopy confirms that the rods diffuse
but are angularly confined, with a confinement strength depend-
ing on α. Thus, the rod asymmetry, combined with the excep-
tionally small twist elastic constant of the LCLC, produce novel
spontaneous chiral director configurations that modify the natu-
ral tendency of rods to reorient along the LC alignment direction,
and induce other interesting behavior. In addition to fundamen-
tal insights about the phenomenology, this understanding could
be of practical use for mechanical control of rod-like micro- and
nanoparticles in LCs.

In the remainder of the paper, we describe the experimental

video microscopy methods, Landau-de Gennes numerical model-
ing, and particle-diffusion analyses, and we present our results.
The subsequent discussion offers a free energy-based argument
for how aligned rods minimize local director perturbations when
both longitudinal and transverse mirror planes are present, and
how angled rods minimize local director perturbations when a
longitudinal mirror plane is present.

2 Methods

2.1 Experimental Preparation and Imaging Methods

Glass rods (PF-15S, Nippon Electric Glass) are suspended in a ly-
otropic chromonic liquid crystal made from a 16 wt% solution of
disodium cromoglycate (DSCG) in water. The aqueous solution
contains 0.015 wt% Triton X100 surfactant to prevent clustering
of rods. The chemical structures of DSCG and Triton X100 are
shown in Fig. S1. To minimize long-range elastic interactions be-
tween rods, the colloid particle number density is chosen such
that the inter-rod separation is greater than ten times the aver-
age rod length. The concentration of rods in DSCG is 0.05 wt%.
When added to water, the plank-like DSCG molecules stack into
linear assemblies, and at a high enough concentration, these as-
semblies order into a nematic phase, in which K2 is approximately
one order of magnitude less than K1 and K3.1 The glass rods have
a diameter of (1.49 ± 0.07) µm, and their length distribution is
centered at ∼9 µm with a standard deviation of ∼3 µm.20 Since
the rods are made by breaking a glass fiber, fabrication may leave
uneven surfaces on both ends of the rod; thus, these ends are
often not flat, not perpendicular to the rod long axis, and not par-
allel to one another. The shape of the rod ends is determined via
bright field optical microscopy.

We analyze the orientation of the nematic LC around the rods
in planar cells either 12.5 µm or 25 µm thick. The cells are fab-
ricated using two rubbed glass substrates to ensure planar align-
ment of the LCLC. After filling via capillary action, and before
imaging, the samples are left to equilibrate for 24 hours ensuring
uniform LC alignment. The distance from rod-center to bottom
substrate surface was measured by optical microscopy to be ap-
proximately 1.5 µm. The equilibrium height of the rod above
the substrate is due to a balance between gravitational forces re-
sulting from the density mismatch of glass particles and DSCG
solution, and repulsive elastic forces between the substrate and
rod caused by director distortions. Imaging is performed using a
Leica DM IRB inverted microscope with 100X oil objective (NA =
1.4), an additional 1.6X lens, and a UNIQ UC-1800DS-CL color
camera. We image using bright field and polarized optical mi-
croscopy (POM), as well as de-crossed analyzer microscopy for
which the analyzer is rotated ± 10 degrees from its crossed po-
sition. Videos are taken at a frame rate of 4–8 fps for a duration
of up to 1.5 hours. Only the rods undergoing diffusion (i.e., rods
not stuck to the substrate) are chosen for both single frame and
video analysis.

2.2 Simulation Methods

We use the standard Q-tensor based Landau-de Gennes (LdG)
numerical model26,27 to simulate relaxation of a nematic liquid
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crystal around a rod. This numerical model was also used to sim-
ulate the LC configuration around spheres with planar anchor-
ing.18 The free energy is minimized in a finite difference scheme
on a regular cubic mesh using a conjugate gradient algorithm
from the ALGLIB package. The open-source version of this code
is available online and described in detail in Ref. 28. In the uni-
axial limit, the LdG free energy is written in terms of the tensor
Qi j =

3
2 S(nin j − 1

3 δi j), where ni is the ith component of the ne-
matic director, δi j is the Kronecker delta, and S is the nematic
order parameter. The nematic director can be recovered from Q
as the eigenvector corresponding to the largest eigenvalue, S.

The LdG free energy density is the sum of the background phase
free energy density and the distortion free energy density:

fLdG = fphase + fd. (1)

The phase free energy density is:

fphase =
A
2

Tr(Q2)+
B
3

Tr(Q3)+
C
4
(Tr(Q2))2, (2)

where Tr is the trace. We use typical values for LdG parameters
of a common nematic liquid crystal, 5CB, A = (−0.172×106) J

m3 ,
B = (−2.12× 106) J

m3 , and C = (1.73× 106) J
m3 .26 The distortion

free energy density, using the three-constant approximation, is:

fd =
L1

2
∂Qi j

∂xk

∂Qi j

∂xk
+

L2

2
∂Qi j

∂x j

∂Qik

∂xk
+

L3

2
Qi j

∂Qkl

∂xi

∂Qkl

∂x j
. (3)

This is the LdG counterpart to the Frank-Oseen free energy:

fFrank =
K1

2
(∇ ·n)2 +

K2

2
(n · (∇×n))2 +

K3

2
|n× (∇×n)|2, (4)

where Ki are the Frank elastic constants as combinations of Li.26

We use reported splay (K1 =12 pN), twist (K2 =0.8 pN), and bend
(K3 =27 pN) elastic constants for 16 wt% DSCG.1 Note that the
LdG parameters A, B, and C, are distinct from the elastic constants
K1, K2, and K3, with only the latter group adjusted specifically for
DSCG in this work.

The boundary free energy is modeled using a Rapini-Papoular
surface potential,29 which is generalized in LdG theory as the
Fournier and Galatola form for degenerate planar anchoring.30

We use degenerate planar anchoring on the rod and substrate
surface in order to simulate a small region of aligned nematic sur-
rounding the rod. Because our simulated system is significantly
smaller than our experimental system, we use a relatively large
anchoring strength of W= 3×10−3 J

m2 , a value used in similar cal-
culations.18 Two substrate planes are defined perpendicular to
the viewing (z) axis. The other boundary conditions are free, i.e.,
treated as boundary nodes with zero anchoring potential. The
rods are centered in x, y, and z, with their long axis parallel to the
substrates. In order to calculate 〈θ〉 as a function of α, we fix the
orientation of the rod and measure the resulting far-field director
orientation. The director field is initialized as a uniform nematic
parallel to the substrate walls and long axis of the rod, with a
small angular perturbation to prevent the system from becoming
fixed in a metastable state. To connect numerical results with
experiment, we generate simulated POM images by performing

Jones matrix calculations with the computed three-dimensional
nematic. The indices of refraction of the 16 wt% DSCG at 650nm
are ne = 1.35 and no = 1.37.31,32

Cylindrical rods are simulated in a box 900x150x150 units in
size, with a mesh size of ∆x =10nm. The rods are modeled us-
ing a “superegg” with a diameter of 50 units, a length of 200-500
units, and a sharpness parameter of 10.27,28 The “superegg” is a
cylindrical rod with rounded edges; this geometry ensures the oc-
currence of splay distortion around the edge of the rod. This con-
figuration, with splay distortion, is the most probable, since the
experimental rods are very likely rounded on sub-micron scales.
In this way, a potential ambiguity in the director field caused by
sharp edges is avoided in simulation.22

We are not able to observe aligned rods with these simulation
parameters, presumably because the simulation finds the low-
est energy configuration, and aligned rods are metastable using
these simulation parameters. However, by placing small spherical
nodes at either end of the rod (with diameters of 12 units), we
can pin the defects at the nodes, and obtain a lowest energy con-
figuration that is aligned with the background director. Therefore,
while the majority of our numerical results use cylindrical rods,
we use the rods with small nodes to visualize the director field
around an aligned rod (see Fig. S2).

Note, since the system we seek to understand contains defects,
the simulation is not entirely scale-free. The defect core size does
not scale with system size, which can create discrepancies be-
tween numerical results and experimental observations. Further-
more, due to the large aspect ratio of the rods and the maximum
simulation size, the diameter of the rods and box are limited to
relatively few grid points; as a result, the simulations may be less
accurate due to spatial discretization. This limitation increases
sensitivity to small perturbations in rod shape. Finally, we use
LdG parameters A, B, and C for a thermotropic nematic such as
5CB, rather than DSCG. While this method is common due to the
lack of known LdG parameters for LCLCs, it may also introduce
discrepancies into our simulation.

2.3 Experimental Diffusion and Analysis Methods

For the diffusion measurements, the center of mass position and
instantaneous orientation angle, θ , of rods in each frame of the
video are determined using ImageJ with a position resolution of
15 nm and an angular resolution of 0.1◦. Systematic drifts in rod
motion are estimated using a standard MATLAB algorithm,33 and
are subtracted prior to analysis. For the translational dynamics,
both in the laboratory and body frames, the trajectory data are
analyzed following the algorithm described in Ref. 34. Of partic-
ular importance for the present paper are the angular dynamics.
Specifically, we measure the probability distribution of the angle
θ relative to the mean orientation angle 〈θ〉, and we measure the
mean-square angular displacement of this angle, 〈∆θ 2(t)〉. Note,
our approach for measuring translational and rotational diffusion
constants of rods is different from the dynamic light scattering
method used in Refs. 35,36.
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3 Results
3.1 Experimental Results
Initially, the rods are oriented randomly in the isotropic phase of
the LCLC. When the sample is cooled into the nematic phase, the
rods relax to their equilibrium orientation angle, 〈θ〉. Rods angled
up are rotated counterclockwise from the far-field director (posi-
tive angle), and rods angled down are rotated clockwise from the
far-field director (negative angle). Images of rods in the isotropic
and nematic phase are shown in Fig. S3. Measurements of α and
〈θ〉 for over 300 rods yield the plot shown in Fig. 1.

Angled Up

Aligned

Angled Down

+⟨θ⟩

−⟨θ⟩

n0

Rod Length (μm)

Rod Aspect Ratio (α)

O
rie

nt
at
io
n 
An

gl
e,

⟨θ
⟩(

de
g)

P
A

Fig. 1 Dependence of rod orientation angle, 〈θ〉, on rod length or aspect
ratio, α, in both experiment and simulation. The diameter of all rods is
1.5µm. The blue, red, and green points correspond to experimental data.
The open black circles correspond to simulated rods using LdG modeling.
These points are fit to a linear function, shown by the solid black line.
A corresponding solid black line for negative 〈θ〉 is also provided. The
lighter colored points represent rods that appear to have uneven ends
(see Section 2.1) as determined by bright field microscopy. The insets
show de-crossed analyzer images of the three classes of rods; in these
images the blue/red colors indicate the optical rotation induced by the
twist deformation. Black arrows show the polarizer (analyzer) at 0◦ (80◦);
the far-field director (n0) is horizontal.

Analysis reveals three distinct and stable rod orientations: ap-
proximately one third of the rods are angled up, approximately
one third are angled down, and approximately one third are par-
allel to the far-field director. We never observe conversions be-
tween angled and aligned rods, nor between positive and nega-
tive angled rods. While there is some scatter in the data of Fig. 1,
several observations are clearly demonstrated. (1) 〈θ〉 decreases
as rod length (or α) increases. (2) This relationship between
〈θ〉 and α persists, regardless of whether the rod is angled up or
down. (3) Rods angled up occur with the same probability as rods
angled down. (4) Rod orientation is independent of the shape of
the ends of the rod. Specifically, the lighter colored points in Fig. 1
correspond to rods with uneven ends that are either not flat or not
perpendicular to the long axis of the rod, or both, as determined
via bright field optical microscopy (see Section 2.1).

We can further analyze the director field distortion around the
aligned and angled rods using polarized optical microscopy, as
shown in the inset in Fig. 1, and in more detail in Fig. 2. The

Aligned Rod Angled Rod (     )15∘

Simulation

Experiment

Experiment

Experiment

P
A

n0

100∘

80∘

90∘

90∘

P
A

P
A

P
A

Fig. 2 Simulated and experimental polarized optical micrographs of an
aligned rod (left column) and angled rod (right column) in the nematic
phase. The top row shows simulated polarized microscopy images. The
bottom three rows correspond to experimental images between polarizers
with the analyzer at 90◦ (crossed), 80◦, and 100◦ with respect to input
polarizer direction. The uniform far-field director is horizontal. Scale bar
(white line) represents 10µm. With a de-crossed analyzer, the red/blue
color indicates the optical rotation induced by the twist deformation.
Notice the color of each twisted tail is opposite for aligned rods, and the
same for angled rods.

bright ends of the rods in the crossed polarized images indicate a
local director deformation that differs from the far-field director
alignment. Slightly de-crossing the analyzer to either 80◦ or 100◦

shows red or blue regions at the rod ends, indicating the sign of
the optical rotation due to the twist deformation. Therefore, like
colloidal spheres in DSCG,19 these rods have “twisted tails” at
their ends. With a de-crossed analyzer, aligned rods have opposite
colors at either end, indicating their twisted tails induce optical
rotation of the opposite sense. Angled rods have the same color at
both ends, indicating their twisted tails induce optical rotation of
the same sense. Although all angled rods have identical twisted
tails, the induced optical rotation of the twisted tails is reversed
for rods angled down compared to rods angled up. Similarly,
there is an equal number of aligned rods with red/blue color on
the right/left side as there are for the reverse case. A few rods
do not relax parallel or at a specific angle to the far-field director,
but instead remain roughly perpendicular to the far-field director
(see Fig. S4). These rods display much larger twisted tails. In
addition, some rods chain with other rods either side-by-side or
end-to-end (see Fig. S5).

3.2 Simulation Results

To further understand the configurations of the twisted tails, we
perform numerical minimizations of the Landau-de Gennes (LdG)
free energy for a nematic director field surrounding a rod. As a
validation check, we simulate spheres with parallel anchoring and
confirm formation of the same two classes of director configura-
tion reported in Ref. 19 (see Fig. S6).

We simulate a region of nematic surrounding a cylindrical rod
with planar anchoring. The rod is fixed in its orientation, and
we obtain 〈θ〉 by measuring the resulting angle between the far-
field director and the long axis of the rod. Our simulated results
for 〈θ〉 as a function of α are displayed in Fig. 1 as open black
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circles. 〈θ〉 decreases as α increases, a trend which matches well
with experimental data. The simulation also finds the defects of
the director field, which are on opposite ends of the rod, diagonal
from each other. This defect structure was also observed around
cylinders in Ref. 22. The defect locations and the local director
field surrounding the rod are shown in the upper half of Fig. 3.

Angled Rod: LMP

Aligned Rod: TLMP

n0

n0

ny

x
y

x
y

Fig. 3 Simulation results of the director field in a small region around
LMP and TLMP rods (grey cylinders), in a slice halfway between and
parallel to the confining substrates. Color corresponds to the y com-
ponent of the director. Red points schematically show the location of
defects. Black arrows show orientation of the far-field director n0.

Further investigation of the director field reveals configurations
different from that of spheres, and to our knowledge, have never
been reported. Like the Class 1 configuration for spheres, the
twisted tails of angled rods are identical on either end of the rod.
However, there is a mirror plane of symmetry halfway through
the diameter of the rod across which the handedness of the dis-
tortion reverses. This plane contains the long axis of the rod and
is approximately parallel to the substrate walls. A schematic of
this longitudinal mirror plane (LMP) director configuration is dis-
played in Fig. 4(a). Flipping the orientation angle, i.e., angled up
versus angled down, flips the handedness of each tail.

Our simulations show that an angled rod with an LMP direc-
tor configuration minimizes the free energy of a cylindrical rod
suspended in an aligned nematic. However, we still want to un-
derstand the director configuration surrounding aligned rods. To
this end, we affix small spherical nodes to either end of the rod,
thus pinning the defects at each node. This creates a pair of de-
fects on opposite ends of the rod, but along the same edge. The
defect locations and surrounding director field are shown in the
lower half of Fig. 3. These simulations give 〈θ〉= 0 as the lowest
energy configuration. The resultant director field has twisted tails
with opposite handedness at either end of the rod, reminiscent of
the Class 2 configuration of spheres. Since the chirality reverses
from one end to the other, there is a mirror plane of symmetry
halfway through the length of the rod, perpendicular to the long
axis of the rod. In addition, there is also a longitudinal mirror
plane along the rod’s long axis. A schematic of this transverse
and longitudinal mirror plane (TLMP) director configuration is
shown in Fig. 4(b). The same configuration with the right- and
left-handed regions switched is equally probable.

LMP

TLMP

+Twist
−Twist

Mirror plane (a)

(b)

0

× 106 m−1

z= + 0.9 μm

z=0

z= − 0.9 μm

+7

−7

0

+6

−6

× 106 m−1

+z

−z
x
y

+z

−z
x
y

z= + 0.9 μm

z=0

z= − 0.9 μm

Fig. 4 Schematic of the director field chirality in a longitudinal mirror
plane (LMP) director configuration around an angled rod (a), and in a
transverse and longitudinal mirror plane (TLMP) director configuration
around an aligned rod (b). The gray planes represent mirror planes,
across which the handedness of the distortion reverses (as shown by blue
and red arrows). The decreasing size and color of the arrows denotes
a decreasing magnitude of the twist deformation. The insets show the
corresponding twist deformation n · (∇×n) from numerical director field
results for parallel planes above, below, and in the central z=0 plane.
The red/blue color denotes the sign of n ·(∇×n). The upper-right corner
of the insets shows the location of these planes schematically, and the
orientation of the far-field director n0 is indicated by a black arrow.

The twist deformation from numerical director field simula-
tions is shown in the insets of Fig. 4, for both LMP and TLMP
configurations. Twist is calculated as n · (∇×n), where n is the
director field. The twist deformation is shown in the z=0 cen-
ter plane, parallel to the substrates, as well as in a plane above
and below the center plane. Further discussion and visualization
of the twisted tail director fields are provided in the Electronic
Supplementary Information or ESI (Fig. S7).

3.3 Diffusion Results
Microscopic diffusion measurements of individual tracer particles
in a fluid provide information about the transport properties of
the fluid and the microenvironment around the particle. In con-
trast to diffusion of a sphere, diffusion of anisotropic particles can
reveal properties of the microenvironment that affect rod trans-
lation and rod orientation. Here we present results on rotational
diffusion; we discuss the translational diffusion results in the ESI.

Fig. 5(a) shows exemplary probability distributions of angular
fluctuations, P(θ − 〈θ〉), for two rods (α = 5.9, α = 6.8) about
their mean orientation angle 〈θ〉. In Table 1, we present best-fit
Gaussian functions for the measured probability distributions of
five rods with varying α and 〈θ〉. The standard deviations of these
distributions are less than 0.3◦, suggesting strong angular con-
finement of the rods about their mean orientations. As evident
from Table 1, the angular standard deviation σθ , which reflects
the strength of the angular confining potential, depends inversely
on α, but does not depend on 〈θ〉. Interestingly, the angular con-
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Table 1 Angular diffusion behavior. α is the aspect ratio of the rod,
〈θ〉 is the mean angle between the long axis of the rod and the uniform
far-field director, σθ is the standard deviation of the angular probability
distribution, 〈∆θ 2(t)〉sat is the saturation value of the angular MSD, and
κθ is the deduced angular elastic constant.

α 〈θ〉 σθ 〈∆θ 2(t)〉sat κθ ×104KBT
(degrees) (degrees) (degrees2)

4.6 13.7 0.25±0.005 0.09±0.01 2.63±0.11
5.9 0.7 0.28±0.005 0.18±0.02 2.09±0.07
5.9 -15.0 0.24±0.005 0.12±0.01 2.85±0.12
6.8 -17.8 0.17±0.005 0.05±0.01 5.68±0.32
6.9 -12.5 0.15±0.005 0.04±0.01 7.29±0.46

(a) (b)
0.5
2

0.3
6

0.2
5

Fig. 5 (a) Probability distribution of angular fluctuations of the rod,
P(θ −〈θ〉), for two rods of different aspect ratio, α. The distributions
for both rods peak at (θ −〈θ〉)∼ 0. The probability axis has been scaled
such that P(θ −〈θ〉) = 1 at (θ −〈θ〉) = 0. Solid lines are Gaussian fits to
the data. (b) Angular mean-squared displacement 〈∆θ 2(t)〉 for the two
rods whose distributions are shown in (a). The solid, dashed, and dotted
blue line segments have slopes of 0.52, 0.36 and 0.25, respectively. The
horizontal dashed lines indicate the saturation value of 〈∆θ 2(t)〉.

fining potential is about the same for aligned versus angled rods
(within systematic and random errors).

Fig. 5(b) displays the angular mean-squared displacement
〈∆θ 2(t)〉 for two rods with distinct α. For free angular diffu-
sion of a rod, we would expect 〈∆θ 2(t)〉 ∼ t. However, for these
rods, 〈∆θ 2(t)〉 ∼ tv with v < 1. This observation (and others) indi-
cates sub-diffusive behavior of an orientationally trapped particle
in an angular potential well. Irrespective of α, the sub-diffusive
exponent v is observed to be largest at short lag time (t <2s),
decreasing during intermediate times (2s< t <10s), and finally
saturating to v ≈ 0 at long times (t >100s). Such dynamic be-
havior is reminiscent of the orientational trapping of anisotropic
particles by their neighbors in dense packings of ellipsoids called
orientational glasses.37,38 As was the case for our observations
of the standard deviation of the angular probability distribution
(σθ ), which trended inversely with increasing α, we find that the
〈∆θ 2(t)〉 of rods with higher α tend to saturate at lower values
compared to rods with smaller α.

We can estimate an angular elastic coefficient, κθ , for each rod
by fitting a Gaussian function to the angular distribution of θ (Ta-
ble 1). For small angular fluctuations about 〈θ〉, the distribution
can be expressed as:

P(φ)∼ e−κθ φ 2/kBT, (5)

where φ = θ−〈θ〉, and kBT is the thermal energy.39–41 In order to
compare the experimentally estimated angular elastic coefficients

to theoretical models, we use the expression for κθ derived for a
cylindrical particle in a nematic liquid crystal:42

κtheory = 2πCK. (6)

Here, K is the average LC Frank elastic constant, and C is a geo-
metric factor of the cylindrical particle given by:

C =
2Lβ

ln
( 1+β

1−β

) , where β =

√
1−
(

1− 1
α2

)
, (7)

and L is the rod length. When α=6 and K ∼13.2 pN for 16 wt%
DSCG,1 then κtheory ∼ 7.22× 104kBT; this theoretical estimate is
the same order of magnitude as the experimentally determined
κθ reported in Table 1.

4 Discussion

4.1 Simple Free Energy Model

If one assumes the director configuration around a rod in a LCLC
is qualitatively similar to that of a sphere, then some simple ar-
guments explain the observed behavior. Spheres and rods with
tangential anchoring cause the director to distort near the object
in regions where the background director is not parallel to the
object surface. Due to the small twist elastic constant of LCLCs
(i.e., relative to the other elastic constants), this director distor-
tion results in “twisted tails” around the ends of spheres and rods.
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Fig. 6 Schematics of four possible director configurations around rods
with tangential anchoring: (a) helical (Helix), (b) transverse and longitu-
dinal mirror plane (TLMP), (c) longitudinal mirror plane (LMP) around
an aligned rod, and (d) LMP around an angled rod. Mathematical ex-
pressions for the director field equations are given in the ESI. Solid and
dashed lines indicate the director just above and just below the rod, re-
spectively. Since they are “reflections” of each other when an LMP is
present, the view has been slightly offset to show both. Note that the
director has an out-of-plane component not pictured in these schematics
(illustrated in more detail in Fig. S8). The far-field director n0 is hori-
zontal. 〈θ〉 is the mean angle between the long axis of the rod and the
uniform far-field director, and β is the angle between the local director
and the far-field director at each point along the director field line. The
corresponding plots in (e) and (f) show |β | along the long axis of the
rod (along x for aligned rods, along x′ for angled rods). The TLMP con-
figuration has two pairs of symmetric director lines. Their |β | vs x plots
overlap and only three TLMP lines are visible in (e).

Fig. 6 shows schematics of director lines surrounding a rod for
four different configurations. The director lines are based on the
equation for a helix, and they are manipulated such that the di-
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rector field surrounding the rod has the symmetry required by the
TLMP and LMP configurations. These equations are given in the
ESI. The mean angle between the rod’s long axis and the uniform
far-field director is 〈θ〉, and the angle between the local director
and the far-field director at each point along the director field line
is β . For clarity, only two director lines are shown on the helical
(Helix) and LMP rods; thus, one must imagine a family of simi-
lar director lines wrapping about the curved surface of the rod.
Since the shapes of the director lines of a TLMP configuration
vary for different points on the rod’s surface, multiple director
lines are shown. The simplest nontrivial configuration is a helical
director field; in this case, the twisted tails have the same hand-
edness on either side and there is an overall chirality (i.e., like the
Class 1 configuration for spheres). If a longitudinal mirror plane
is present, the director lines on either side look identical when
viewed along a direction perpendicular to the mirror plane. This
LMP configuration is illustrated for both an aligned and angled
rod in Fig. 6. If the two twisted tails have opposite handedness
on the same side of the LMP, a transverse mirror plane must be
present in the middle of the rod. Such a TLMP configuration with
both transverse and longitudinal mirror planes is shown. For 3D
schematics of these director fields, see Fig. S8. Fig. 6 also shows
|β | along the long axis of the rod. Notice that a TLMP configu-
ration minimizes the average value of |β | compared to a helix,
and an angled rod minimizes the average value of |β | for an LMP
configuration.

Utilizing the fact that any deviation of the director field from
the uniform far-field director will cost energy, we construct a sim-
ple calculation to predict 〈θ〉, which assigns an angle-dependent
energy cost between local and far-field director fields. The details
of this calculation are discussed in the ESI, wherein equations for
the three possible director configurations of Fig. 6 are generated
mathematically. We calculate β at all points along the director
line for each configuration and at varying 〈θ〉. We approximate
the free energy to be proportional to 〈sin2

β 〉, a simple relation-
ship reminiscent of anchoring potentials.29 When the director on
the rod surface aligns more with the far-field director, 〈sin2

β 〉 be-
comes smaller.
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Fig. 7 (a) Dependence of 〈sin2
β 〉 on the angle 〈θ〉 between the long

axis of the rod and the far field director for the three model director
configurations with radius r = 0.75 µm and length L = 10 µm. (b)
Dependence of 〈sin2

β 〉 on 〈θ〉 for the LMP director configuration for three
different rod lengths (r = 0.75 µm) and aspect ratios. The minimum of
each curve is indicated with vertical dashed lines.

Results are shown in Fig. 7(a). For the helical and TLMP con-
figurations, 〈sin2

β 〉 is minimized when 〈θ〉 = 0. Furthermore, at
〈θ〉= 0, 〈sin2

β 〉 is lowest for the TLMP configuration. This offers

an explanation as to why we only observe TLMP configurations
around aligned rods: it minimizes the free energy. For the LMP
configuration, the minimum value of 〈sin2

β 〉 occurs for a non-
zero 〈θ〉. We calculate the free energy 〈sin2

β 〉 for various aspect
ratios with this configuration and find that 〈θ〉 increases as α de-
creases. These results are shown in Fig. 7(b). They are consistent
with the trend observed experimentally and numerically in Fig. 1.

4.2 Discussion of Experimental and Simulation Results

Our experimental and simulated data together exhibit a strong
correlation between 〈θ〉 and α, as shown in Fig. 1. Diffusion re-
sults also suggest that angular confinement increases in strength
with larger α.

The de-crossed analyzer experimental data and simulation re-
sults support each other. Simulations reveal that the LMP configu-
ration has identical twisted tails on either end, consistent with the
observation in Fig. 2 that angled rods viewed with a de-crossed
analyzer have tails of the same color. Similarly, the TLMP con-
figuration has twisted tails of opposite handedness on either end
of the rod, consistent with the observation in Fig. 2 that aligned
rods viewed with a de-crossed analyzer have opposite tail colors.

Numerical simulations show that an angled configuration mini-
mizes the free energy over an aligned configuration for a cylindri-
cal rod with planar anchoring. However, it is important to note
that the simulation differs from experiment in significant ways,
including overall scale, defect core size, and LdG parameters (A,
B, and C), all of which could affect the final director field config-
uration.

Finally, microscopy reveals that the glass rods used in exper-
iment often have rough or uneven faces due to the method of
fabrication (see Section 2.1). These edges could act as pinning
sites for defects in the director field, leading to the two different
defect patterns shown in Fig. 3, and consequently, the two differ-
ent director configurations. Further experimental investigation is
necessary to disentangle and understand this effect.

4.3 Discussion of Diffusion Results

The diffusion analysis reveals that the rods are orientationally
trapped in a strong angular potential well, i.e., a well with a
free energy barrier preventing significant changes in 〈θ〉. Con-
sequently, the rods show only small angular fluctuations about
their mean orientation, irrespective of the angle of alignment rel-
ative to the far-field director. Interestingly, while previous studies
report a relatively easier orientational motion of the aligned rods
(compared to rods at 〈θ〉 = 90◦),41 the trends we find suggest
that the strength of angular confinement depends primarily on
α. To our knowledge, the alignment and resultant diffusion of
rods at small finite angle (〈θ〉 6= 0◦) with respect to the far-field
director axis have not been reported. In these situations, orienta-
tional motion can strongly couple with translational motion and
can influence the translation diffusion. Here, in a limited data set,
translational diffusion is found to be anisotropic along different
axes, and its anisotropy is more pronounced for the aligned rod
compared to the angled one. The translational diffusion data are
tabulated and discussed in the ESI.
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5 Conclusions
Rod-like particles suspended in LCLCs generate a landscape of
rich behaviors with a multitude of mirror symmetry breaking phe-
nomena. Contrary to expectations, we discover that rods in a
LCLC often prefer an angled orientation with respect to the far-
field director. This behavior originates from the inherent asymme-
try of rods and the relatively small twist elastic constant of LCLCs.
Since twist distortions are energetically cheap, twisted tails form
on either side of the rod, leading to two distinct director configu-
rations associated with the two different equilibrium orientation
states. Angled rods show an LMP configuration, while aligned
rods show a TLMP configuration, both never before observed. We
have elucidated the details of these configurations schematically,
experimentally, and through numerical modeling. Furthermore,
we observe that the preferential orientation angle of LMP rods is
inversely related to their aspect ratio. Angular diffusion analysis
supports these findings; the rods are orientationally trapped in
an angular potential well, and the strength of the confinement
increases with aspect ratio. Our study highlights the importance
of twist effects in determining director orientations in a LCLC. A
deeper understanding of the coupling between twist distortions
in LCLCs and the orientation of suspended colloids could also be
of practical use, because it offers new concepts for controlling
anisotropic micro- and nano-particles in LCs and for assembling
complex particle structures in LCs. Design and control of the chi-
ral tails creates potential for spinning and/or propelling particles
in a LCLC, which could be useful for colloid-based active matter.
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