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Importance of Raw Material Features for Prediction of Flux Growth 
of Al2O3 Crystals Using Machine Learning
Tetsuya Yamada,a,b Takanori Watanabe,c Kazuaki Hatsusaka,c Jianjun Yuan,c Michihisa Koyama,a 
Katsuya Teshimaa,b

The flux method is an efficient liquid-phase crystal growth technique. It is expected to be one of the key technologies for 
the development of innovative inorganic materials in the future because it enables the production of high-quality crystals. 
However, owing to the complexity of the mechanism of crystal growth in fluxes, it is difficult to establish a guideline for the 
experimental recipe for growing crystals. Thus, flux crystal growth still needs a long process of trials and errors. Our goal is 
to develop “process informatics” (PI)-assisted flux method, supported by machine learning. To predict flux crystal growth by 
linking it to the process, essentially, the experimental parameters must be converted into explanatory variables. However, 
there is a limit to the explanatory power of describing crystal growth using only process conditions, such as raw materials 
and flux species, their preparation amounts, and heating conditions. In this study, we focused on using information on raw 
materials (raw material information) as explanatory variables and investigated their influence on the prediction of flux 
crystal growth. Aluminum oxide (Al2O3), in which raw materials have abundant lot numbers, was selected as target material. 
After performing 185 growth experiments, we made regression models composed of process conditions and various raw 
material information as explanatory variables and Al2O3 particle size distribution as the objective variable. The obtained 
models clarify the effect of the raw material information on the accuracy of prediction of crystal growth. Our findings provide 
new insights into the PI-assisted flux method in terms of the importance of raw material information and effective 
descriptions. This would contribute to the development of highly accurate prediction models for data-driven experimental 
suggestion and clarification of important factors in flux crystal growth.

Introduction
In recent years, the development and rapid adoption of 

innovative materials have been required for the transition to a 
sustainable society. In this context, process informatics (PI) has 
attracted attention as an approach for material development by 
acquiring and analyzing the knowledge implicit in the process. It 
is expected that PI will realize, through effective learning from 
human experience and knowledge, an efficient synthesis of 
innovative crystalline materials that cannot be developed by 
conventional routines. As the flux method allows for liquid-

phase crystal growth at high temperatures, high-quality 
inorganic crystal materials can be achieved with high 
crystallinity and surface development. Therefore, this method is 
expected to be a key technology in the future development of 
innovative inorganic materials. The flux method comprises 
major elementary processes, such as flux melting, transport of 
molten flux to solute, solute dissolution and re-deposition, 
nucleation, and crystal growth. More than 20 variables, including 
phase transitions, chemical reactions, heat transfer, diffusion, 
solvation, and supersaturation, as well as other related factors 
may contribute to each process. As such multidimensional 
factors must be considered, it is difficult to understand the 
mechanism of flux crystal growth and formulate a theory-based 
growth guideline. Consequently, actual development of crystal 
growth must rely on trial and error based on the experience and 
intuition of the experimenter, resulting in spending many years. 
Therefore, it is difficult to respond to demands for rapid 
developments in crystal optimization of various materials on an 
industrial scale. If PI were introduced into the flux method (PI-
assisted flux method), it could lead to many innovative materials 
being developed in a short time.

There have been several reports of machine learning being 
used in crystal growth research.1 Tsunooka et al. succeeded in 
rapidly predicting the convection in a melt using machine 
learning.2 Boucetta et al. showed that the measurement of the 
location around the reaction vessel in the furnace, that is, the 
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region with a high-temperature thermal gradient, is important for 
predicting the thermal distribution in the furnace.3 Dang et al. 
used a genetic algorithm to optimize the crystal solidification 
step by correlating two different heater cooling rates and a heat 
gate rate with crystal quality and growth time.4 Yao et al. were 
able to discriminate the single crystalline nature of the target 
material by learning a case study of crystal growth using the flux 
method.5 However, there are no examples of the PI-assisted flux 
method being applied to control crystallographic features 
quantitatively.

To implement the PI-assisted flux method, a dataset that 
properly represents crystal growth must be prepared. For this 
purpose, the key to PI crystal growth prediction is specifying 
what kind of features to obtain and how to describe them in the 
dataset. The former involves time and equipment to collect, 
while the latter requires accuracy of machine-learning analyses. 
To properly prepare the dataset, we have to understand the 
importance of each factor or feature, and accurately represent 
them as explanatory variables. When considering experimental 
conditions as explanatory variables, parameters such as raw 
material information (material type and preparation volume), 
flux information (flux type, preparation volume), heating 
conditions (heating rate, temperature, time, cooling rate), 
reaction vessel information (material, volume), and atmosphere 
(gas type, pressure) are easy candidates. However, it is 
questionable whether crystal growth can be accurately predicted 
using such simple information alone. One of concerns is 
insufficient features of raw material information. It is well 
known that the states of raw materials significantly contribute to 
the crystallographic characteristics and performance of the final 
crystal materials.6 Yang et al. reported that the crystal size and 
dispersibility of the reactant, Na2Ti3O7, is affected by the particle 
size of its raw material, TiO2.7 Yanagisawa et al. reported that 
the amorphous nature of the precursor is involved in the 
photocatalytic performance of TiO2.8 Huang et al. reported that 
the addition of organic materials affected the grain size and 
stable phase in the preparation of ZrO2 nanoparticles.9 Zaitseva 
et al. reported that impurities affect the crystal outline and size 
in the crystal growth of potassium orthophosphate crystals in 
solution.10 Rajesh et al. showed that the growth rate of single 
crystals of potassium dihydrogen phosphate is related to the 
purity of their raw material.11 These findings suggest that 
description of raw material information in greater detail is 
essential to accurately predict crystal growth.
Although we recognize the importance of raw material 
information, there is no guideline yet on what information to use 
and how to represent them. Raw material information includes 
grain size, shape, uniformity, crystallinity, and purity. Of these, 
grain size and uniformity can be obtained numerically by particle 
size distribution measurements. Shape and crystallinity can be 
obtained by electron microscopy, but this method is not so 
reliable in terms of consistency and reproducibility of description 
of the population because it may be measured with subjectivity 
to some degree. Therefore, we focused on X-ray diffraction 
(XRD) spectra as an alternative method of microscopy. The 
ability of XRD to describe crystallographic information has 
already been reported. Inoue et al. experimentally demonstrated 

that the XRD intensity of CaSO4 ·2H2O is related to its crystal 
morphology.12 Suzuki et al. have been working on discriminating 
crystalline systems by machine learning of feature information 
obtained by XRD.13 Several research groups have succeeded in 
accelerating Rietveld analysis14,15 and identifying crystal 
phases16,17 after transforming XRD into a representation using a 
convolutional neural network (CNN). These studies suggest that 
XRD simultaneously obtains information on crystal size, shape, 
and impurities. 

In this study, we aimed to understand the importance of raw 
material information in improving the prediction accuracy of 
flux crystal growth using machine learning and to propose an 
effective description method. α-Al2O3 is aluminum oxide in its 
most commonly occurring crystalline form, called corundum. 
We chose this material as the model material in this study. Al2O3 
is known to grow into a variety of polyhedral shapes when grown 
with molybdenum trioxide (MoO3)-containing fluxes18-24 and 
into plate-like shapes when grown with sulfuric acid-based 
fluxes.25,26 Oxide additives are also known to change the crystal 
outline of Al2O3.27,28 In addition, Al2O3 is a well-known 
industrial material and there are many raw materials with similar 
compositions but of different purity and crystallinity. Thus, we 
regarded Al2O3 as an appropriate candidate to study the effects 
of raw materials on flux crystal growth. 

Experiments
2.1 Crystal Growth and Identification of Al2O3

Al(OH)3 or AlO(OH) were the raw materials used to grow 
Al2O3 plate crystals following the flux method.24, 28 Here, 40 
different lot numbers of Al(OH)3 and 17 different lot numbers of 
AlO(OH) were used as raw materials. MoO3 (Nippon Inorganic 
Colour & Chemical Co., Ltd., purity > 99%) was used as flux. 
Various oxides were used as additives. After mixing the raw 
materials, flux, and additives at predetermined ratios for 
approximately 5 min., the mixture was poured into in an alumina 
crucible and placed in an electric furnace (fast heating electric 
furnace SC-2045D-SP, Motoyama Corporation). Crystal 
samples were obtained by heating and sintering under the 
specified temperature conditions (heating rate, holding 
temperature and time, and cooling rate) in an air atmosphere. 
After calcination, the samples were washed by ammonia water 
to remove the residue flux, and finally dried up at 130°C. The 
chemical phase was identified using an X-ray diffractometer 
(XRD, Ultima IV, Rigaku Corporation). The Copper kα (Cu kα) 
radiation (λ = 0.154 nm) was used as the characteristic X-ray 
with a sweep speed of 0.05° min-1 and a step size of 0.02° in the 
region of 2θ = 10°-80°. The crystal morphology of the samples 
was observed using a scanning electron microscope (SEM; JEOL 
JCM7000), JEOL Corporation) under an accelerating voltage of 
15 kV. The particle size distribution was measured using a laser 
diffraction-type measurement system (HELOS (H3355) & 
RODOS, Japan Laser Corporation). The elemental composition 
was measured using inductively coupled plasma emission 
spectrometry (Optima 8300, PerkinElmer).

2.2 Data Set Preparation
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Table 1 lists the experimental variables used in the study. The 
total number of factors for the explanatory and objective 
variables were 47 and 3, respectively. The explanatory variables 
consisted of basic variables (experimentally controllable 
parameters) and advanced variables (observables). In Descriptor 
Category 1, the basic variables are of four types: raw material, 
flux, additives, and heating conditions, and the numbers of 
variables belonging to these categories are presented as 
Descriptor Category 2. For possible description of the ratio of 
reagents, the quantities of reagents other than the raw material 
are expressed as wt% (percentage by weight). The heating and 
cooling rates were identical in all experiments and were excluded 
from the explanatory variables. Dx (x = 10, 50, 90) refers to the 
particle size when the volume ratio of particles smaller than this 
is x%. The objective variables were the Al2O3 particle size 
distributions D10, D50, and D90.
In addition, we used the XRD descriptors as the raw material 
states as shown in Table 2. This category includes the following 
five items (see Descriptor Category 3). The extraction target 
from XRD was defined to represent the crystal face 
development, regularity, and impurity of the crystal. The terms 
for each feature and its expected role are as follows:
・ Euclid_average: Represents crystal orientation and shape of 

raw material
・ Euclid_variance: Represents the magnitude of the bias in the 

crystal orientation and shape of the raw material.
・ FWHM_average: Represents the crystallinity of the raw 

material. Here, FWHM is full width at half maximum.
・ FWHM_variance: Is the axis dependence of crystallinity of 

raw material
・ Euclid_impurity: Indicates impurity state and crystallinity of 

raw material

The method of extracting XRD features is described below; each 
peak in the literature value of the XRD pattern was normally 
distributed and then normalized for the maximum value of the 
strongest peak to be 1. This artificial XRD profile was used as 
the XRD pattern for reference. ICDD 00-007-0324 for Al(OH)3, 
ICDD 01-074-1895 for AlO(OH), and ICDD 00-042-1468 for 
Al2O3 were used as the XRD references. The peaks of the objects 
were determined if the ratio of the maximum and minimum 
values in the 2θ region of ±1° from the center of each peak of the 
comparison XRD was more than 10. The experimental values for 
the maximum value at the strongest peak of the XRD patterns 
obtained from the experiment were normalized to be 1, which 
was used as the XRD pattern for the experiment. The Euclidean 
distance of the intensity difference between each peak of the 
obtained XRD was used for reference, and the XRD for the 
experiment was calculated. The Euclidean distance d(ref,exp) 
between the literature values and experimental values is 
expressed in Formula 1.

 Formula 𝑑(𝑟𝑒𝑓, exp) = ∑ (2θ𝑟𝑒𝑓 ― 2θexp)2 + (I𝑟𝑒𝑓 ― Iexp)2

1

Here, 2θref and 2θexp are the reference and experimental values of 
the 2θ region (target peak area) at ±1° of each peak in the 
comparison XRD. Iref and Iexp are the reference and experimental 
values of the peak intensity in the same region. In this study, the 
same material was used for both the experimental and reference 
samples. In reality, there is an error within 0.02°, which is the 
measurement resolution, but we decided to ignore it on this 
occasion. If we consider 2θref and 2θexp to be the same, d(ref,exp) 
becomes Formula 2.

Formula 2𝑑(𝑟𝑒𝑓, exp) = ∑ (I𝑟𝑒𝑓 ― Iexp)2

Table 1 Descriptor’s information about input & output data.
Descriptor 
category 1

Descriptor 
category 2

Descriptions
Number of factors
in each category

Units

Input

Basic variables Raw material
raw material 
amount

Al(OH)3, AlO(OH) 2 gram

Flux flux amount MoO3 1 wt%
Additives additive amount add1-add19 19 mol%

Heating conditions
Heating 
temperature

1st Heating temp.,
2nd Heating temp.

2 ºC

Heating time
1st Heating time.,
2nd Heating time

2 ºC･ h-1

Advanced 
variables

Raw material 
conditions

Particle 
distribution of
raw materials (PD)

D10, D50, D90 3 μm

Impurity 
elements(IE)

Imp1-imp18 18 ppm

output
Particle 
distribution
of Al2O3

Al2O3_D10, 
Al2O3_D50, 
Al2O3_D90

3 μm
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The mean and variance were calculated for the Euclidean 
distance obtained from each peak and used as features (Euclid 
peak_average, Euclid_variance). The full width at half 
maximum (FWHM) of each peak in the experimental XRD was 
obtained, and its mean and variance were used as features 
(FWHM_average, FWHM_variance). The Euclidean distance 
(Euclid_impurity) between the non-target peak area of the 
reference XRD and experimental XRD was also calculated. The 
non-target peak area here is defined as the 2θ region (no XRD 
peak region) that does not correspond to the area of ±1° of the 
peak centered on each peak position shown in the XRD for 
reference. In Euclid_impurity, Iref in Formula 2 is almost zero 
because it is the intensity of the base region of the normal 
distribution created by the peak. Figure S1 shows the definitions 
of the target and non-target peak areas of Al(OH)3 and AlO(OH) 
in the XRD pattern. The total number of explanatory variables 
after addition of XRD features was 52.

2.3 Statistical Analysis
Through executing the extraction algorithm of XRD features, 

we also automatically identified the chemical phase for the 
obtained 185 samples. As a result, single-phase Al2O3 was 
achieved at 170 samples, and these were used for further 
analyses. The machine-learning analysis was performed using 
the Python programming language (version 3.8), programmed 
using Spyder 4.2 in the Anaconda software package. To prevent 
multicollinearity, one of the explanatory variables with a 
correlation coefficient of 0.95 or higher was eliminated. Next, 
regression analysis was conducted using the cleaned data. Six 
algorithms were used: ordinary least squares (OLS), least 
absolute shrinkage and selection operator (LASSO), decision 
tree (DT), random forest (RF), support vector regression (SVR), 
and neural network (NN). For regression analyses, we focused 
on the clarification of the relation between prediction accuracy 
and raw-material information along with the identification of the 
important descriptors. We chose these prevalently employed 
algorithms because of the following considerations: OLS and 
LASSO are linear regression algorithms, and we used them to 
first verify the linearity with sparse modelling. DT and RF were 
adopted to classify the importance of the descriptors in linear or 
non-linear manners. SVR and NN algorithms were adopted to 
verify the accuracy depending on descriptors, in contrast to the 
visualization of important descriptors. The selection for 

descriptors in OLS and the hyperparameters for the other 
regression methods were tuned in the following ways:

・ OLS: Stepwise method was used for feature selection. 
Variables with a significance level greater than 5% 
obtained by model fitting were removed. This process was 
repeated five times, and the remaining features were used 
to create the final model.

・ LASSO: penalty term λ (2-n (n = 0 ~ 15))
・ DT: The max depth = (2, 4, 6, 8, 10), and the maximum leaf 

nodes = (2, 4, 6, 8, 10)
・ RF: The number of trees = (5, 10, 30, 50), the maximum 

depth = (2, 5, 15), the max feature number is the number of 
explanatory variables, and the minimum number of 
samples available to split = (2, 4, 8) 

・ SVR: The kernel = (linear, poly, rbf), the cost parameter = 
(1,10,15), and epsilon = 0.1

・ NN: The number of hidden layers = (1, 2, 3), and the number 
of neural net nodes was set to 100 at each layer. Further, 
batch size = (20, 40, 60), and the max number of iterations 
was 10000.

 
All the regression models were created and validated as follows: 
The training data and test data were randomly selected at a ratio 
of 80:20. The training data were further divided into training and 
validation data for regression model building, 5-fold cross-
validation, and hyperparameter tuning. Using the 
hyperparameters tuned here, the model was re-built with all the 
training data, and the prediction accuracy was determined using 
the coefficient of determination (COD), root mean square error 
(RMSE), and mean absolute error (MAE) for the test data. 
Because the data points handled in this study were fewer than 
200, bias in the training data and the resulting decrease in 
prediction accuracy were concerns. To solve this problem, we 
randomly divided the training and test data into 20 combinations, 
created models and hyperparameter tunings for each of them. 
Then, we adopted a combination of training and test data that had 
the highest COD. To enable valid comparisons, it was necessary 
to use common combinations of training and test data in creating 
each regression model and selecting features for analysis. In 
addition, all the hyperparameters’ random variables had to be 
identical. These problems were solved by executing a “random 

Table 2 Extracted XRD descriptors from XRD profiles for raw materials.
Descriptor category 2 in raw 
material conditions Descriptor category 3 Descriptions Units

XRD descriptors Average Euclidean distance of XRD peaks
between experimental and reference data Euclid_average -

Euclidean distance variance of XRD peaks
between experimental and reference data Euclid_variance -

FWHM average of XRD peaks FWHM_average º
FWHM variance of XRD peaks FWHM_variance (º)2

Euclidean distance of XRD signal between 
experimental and reference data at no XRD peak 
region

Euclid_impurity -
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seed ()” command in the Python programming. Consequently, 
the 20 generated training and test data sets were always the same.

Results and Discussion
3.1 Feature Engineering
3.1.1 Descriptive Statistics

In our study about crystal growth, we used the conventional 
hypothesis-testing approach. The number of explanatory 
variables was 47, while the number of experimental groups 
employed in this study was 170. Initially, all the explanatory 
variables were checked for bias using histograms and box plots. 
The experimental parameters were the raw material species and 
their amounts, amounts of additives, and heating conditions. 
Note that particle distribution (PD), impurity species, and their 
amounts were uniquely determined by choosing different lot 
numbers of raw materials. As shown in Figure S2, the histograms 
of the explanatory variables show that all variables have 
continuous values, but these are highly biased. For example, the 
heating conditions are identical in many cases, and thus the bias 
is severe. The number of impurities in raw material is usually 
zero; therefore, the frequency of zero is high. The additive 
variables were often two discrete values, one for no use and one 
for use at a fixed amount. The box plots in Figure S3 show that 
in many cases, the data points of the explanatory variables were 
outside the range of the first quartile Q1 to the third quartile Q3. 
In conventional experiments, many variables are fixed, and the 
experimental conditions are tuned, resulting in this type of data.

Figure 1 shows the crystallographic evaluations of the 
resultant Al2O3 crystals. Figure 1(a) shows the SEM images of 
the samples obtained in different experiments. They show 
various distributions of crystal shapes and sizes, including 
crystals with a diameter of approximately 10 µm (upper left and 
lower left) developed in a plate-like form, and a mixture of small 
particles of less than 1 µm (upper right and lower right) and 
plate-like particles. Figure 1(b) shows the scatter plot of PD of 
Al2O3 for D10, D50, and D90. All the images are autoscaled to see 
the distributions more easily. The diagonal plot shows the 
histogram of each PD. For all PDs, the data frequencies were 
sparse, but there were no major outliers. The off-diagonal plots 
show scatter plots of the two variables. Figure 1(c) is the PD 
correlation heat map that shows a correlation coefficient of more 
than 0.7 in the non-diagonal term, indicating that there is a strong 
correlation among the three variables of PD. This suggests that 
there is a commonality in the functional model explaining the 
PDs, and we decided to focus on only D10 in the subsequent 
crystal data analysis.

3.1.2 Extraction of Descriptors from XRD Features

Figure 1 (a) Scanning electron microscope (SEM) images of 
representative flux growth of Al2O3 crystals, (b) scatter plots and 
(c) heat maps for the output data.

The XRD patterns of each raw material were analyzed to 
extract the feature values as shown in Figure S4. 40 types of 
Al(OH)3 and 17 types of AlO(OH) were examined in these 
analyses. The peaks identified with red circles in each figure 
were the peaks assigned as the raw materials.  As a result, we 
confirmed that all samples were single-phase compositions as the 
raw materials. Figure S5 shows the scatter plots and correlation 
heat maps of XRD feature values; ((a) and (c) correspond to 
Al(OH)3, and (b) and (d) correspond to AlO(OH)). The diagonal 
of the scatter plot shows that the XRD feature values of each raw 
material are well distributed. This can also be confirmed from 
the box plots and histograms of the Al(OH)3 and AlO(OH), as 
shown in Figure S6. The non-diagonal plots show that some of 
the variables were correlated. The heat map showed that the 
correlation between certain variables e.g., Euclid_average, 
Euclid_variance, and Euclid_impurity was greater than 0.9. 
Euclid_average is related to crystal orientation and crystallinity, 
while Euclid_variance can be interpreted as the magnitude of the 
bias in crystal orientation and crystallinity. In addition, 
Euclid_impurity increases as the peak signal-to-noise ratio of the 
target decreases, which is also related to the crystallinity. 
Therefore, the strong correlation between these three variables is 
easily expected. On the other hand, there was no significant 
correlation between the FWHM_average and FWHM_variance. 
This is explained by the FWHM of any peaks in a single 
composition being considered always similar.

Figure 2 shows the results of principal component analysis 
(PCA) of the XRD feature values of the raw materials. Figure 
2(a) shows the contribution ratio and cumulative contribution 
ratio plots. The 1st and 2nd principal components accounted for 
more than 60% and less than 20%, indicating more than 80% of 
the total description information. Figure 2(b) shows a scatter plot 
of the first and second principal components, where the blue and 
red circles represent Al(OH)3 and AlO(OH), respectively. There 
is a notable difference in the plot positions of the two raw 
materials and indicates that we were able to 
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Figure 2 PCA results of XRD feature values for Al(OH)3 and 
AlO(OH). (a) Explained variance ratio, and (b) scatter plot for 
1st and 2nd principal component axes.

express the differences of raw materials using the XRD feature 
values. In addition, we also represented the differences among 
same raw materials with different lot numbers. This result 
suggests that feature values extracted from XRD profile has 
explanatory power to represent the differences in raw material 
samples. 

3.2 Machine-Learning Analysis
The efficacy of raw material information for the prediction 

of flux crystal growth was investigated. The original explanatory 
variables (47 types) and XRD feature variables (5 types) were 
used to create a regression model to explain Al2O3_D10. Figure 3 
shows the machine learning flow. The dataset contains all 
explanatory variables (dataset with all data), explanatory 
variables other than XRD feature values (dataset without XRD), 
explanatory variables other than XRD and PD feature values 
(dataset without XRD, PD), and explanatory variables other than 
XRD, PD, and impurity elements (IE) feature values (dataset 
without XRD, PD, IE). These variables were standardized and 
cleansed using correlation analysis. Then, regression models of 
OLS, LASSO, DT, RF, SVR, and NN for the training data for 
each dataset were created through a 5-fold cross validation to 
tune the hyperparameters. After the modeling, the obtained 
functions were validated using the test data. The obtained results 
were output as 1) accuracy and 2) factor importance.

3.2.1 Data Cleansing
During data cleansing, two of the IEs (imp8 and imp18) were 

deleted because their variables were all zero in the dataset. 
Actually, imp8 and imp18 had non-zero variables, but these 
variables were deleted at Al2O3 identification & deletion process 
for 185 data. Figure S7(a) shows a heat map of the correlation 
coefficients of the dataset with all the data. 

Figure 3 Machine-learning workflow in this study.

Variables with strong correlations were found in the non-
diagonal lines. To eliminate multicollinearity, one of the pairs of 
explanatory variables with an off-diagonal component greater 
than 0.95 was deleted. The results are presented in Fig. S7(b). 
Here, Euclid_variance, Euclid_impurity, D50, D90, and 2nd 
heating time, were reduced, and the total number of explanatory 
variables was reduced to 45. The same cleansing operation was 
performed for the other datasets, and the number of explanatory 
variables was reduced to 42 (dataset without XRD), 41 (dataset 
without XRD, PD), and 25 (dataset without XRD, PD, IE).

3.2.2 Regression Model Creation and Validation
Using the cleansed data, we applied six different regression 

models to four different datasets. The model accuracy of each 
regression result for the test data is summarized in Table 3. 
Figure 4 shows the results with the largest COD in the 20 
different CODs obtained for the randomly partitioned datasets 
using the regression algorithms. Figure 4(a) shows the parity plot 
of the predicted COD for each regression model using the dataset 
without XRD, PD, and IE, which is the dataset with the least 
number of explanatory variables. The blue triangles and the red 
circles represent the fitting results using training and test data, 
respectively. The linear regression fittings such as OLS, LASSO, 
and DT show relatively discrete estimations for both the training 
and test data and the COD was less than 0.5. The SVR was 
treated as a nonlinear regression model because a radial basis 
function (RBF) was adopted for the kernel as a result of 
hyperparameter tuning. For the RF and SVR nonlinear fittings, 
the estimated values became continuous, but the COD was still 
less than 0.55. Figure 4(b) shows the parity plots for each 
regression model created using the dataset with all data, which 
has the largest number of explanatory variables. The CODs of 
models except of OLS improved to approximately 0.650. Fitting 
using RF exhibits a COD of 0.741, the largest among all models 
and datasets except of NN. In the case of using the NN, the COD 
improved up to 0.767 for the dataset without XRD, while a 
slightly lower COD was attained for the entire dataset. This may 
be due to overfitting arising from a large number of explanatory 

Page 6 of 10CrystEngComm



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7

Please do not adjust margins

Please do not adjust margins

descriptors, and optimizing the descriptors would give higher 
accuracy. The improvement in accuracy was also confirmed by 
looking at the common decrease in the RMSE and MAE. It is 
notable that the estimated values of the OLS model became 
continuous. This is explained by the fact that the increase in the 
number of explanatory variables affords the function expression 
more flexibility. The discrete nature of the estimation in the DT 
model is not completely eliminated, even using the dataset with 
all data. Here, the maximum values of the hyperparameters, max 
depth and maximum leaf nodes were 10 and 10, respectively, and 
the parameter settings were sufficient to output 1010 discrete 
values. As a result of tuning in DT fitting, a small max depth and 
leaf node maximum was selected, which may indicate that the 
degree of discreteness was increased to suppress overtraining. 
Thus, we concluded precise prediction using DT is difficult with 
the current dataset.
Figures S8(a) and S8(b) show the results of modeling with the 
dataset without XRD and the dataset without XRD and PD as 
explanatory variables, respectively. Although there was no 
significant improvement in the prediction accuracy or the trend 
of prediction value discreteness in either case compared to Fig. 
4, it was found that a reasonable level of accuracy was obtained, 
overall. The same regression analysis was performed using only 
raw material information (raw materials, PD, IE, and XRD 
descriptors), and COD values of approximately 0.650 were 

obtained by RF and SVR (Fig. S9). This result suggests that the 
raw material information solely had explanatory power in 
predicting crystal growth. However, the prediction results are 
discrete, indicating that a highly accurate prediction is not 
possible using the raw material information alone. There was a 
commonality in the data partitioning methods used in many cases 
(Nos. 3, 9, 12, and 14 were often used). This indicates that the 
data partitioning methods has a significant impact on 
prediction accuracy. In fact, among the 20 data splits, some 
fitting results were significantly less accurate, indicating that it 
is essential to consider the data splitting method when applying 
machine learning analysis to small data.

The test data prediction accuracy of each regression model 
on the four datasets is summarized in Figure 5. COD is least 
accurate in OLS, with no superiority or inferiority on any of the 
datasets. In the same linear plot, the accuracy of LASSO and DT 
improved by increasing the number of explanatory variables; 
therefore, it cannot be said that the linear representation is not 
suitable. OLS uses a stepwise variable reduction operation 
judging from the significance level, while LASSO and DT tune 
hyperparameters with test data for modeling. Thus, they would 
show large difference in variable 

Table 3 Calculated accuracies for all regression models
COD

without 
XRD,PD,IE

without XRD,PD without XRD all data

OLS 0.462 0.489 0.477 0.487
LASSO 0.500 0.569 0.567 0.666

DT 0.416 0.457 0.486 0.636
RF 0.535 0.715 0.721 0.741

SVR 0.515 0.648 0.645 0.664
NN 0.519 0.751 0.767 0.731

RMSE
without 

XRD,PD,IE
without XRD,PD without XRD all data

OLS 0.803 0.733 0.650 0.734
LASSO 0.775 0.590 0.591 0.58

DT 0.837 0.753 0.736 0.606
RF 0.747 0.546 0.474 0.457

SVR 0.699 0.533 0.535 0.516
NN 0.76 0.445 0.529 0.568

MAE
without 

XRD,PD,IE
without XRD,PD without XRD all data

OLS 0.671 0.587 0.511 0.572
LASSO 0.648 0.445 0.458 0.433

DT 0.651 0.570 0.507 0.471
RF 0.583 0.400 0.345 0.323

SVR 0.525 0.395 0.399 0.371
NN 0.546 0.316 0.41 0.443
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Figure 4 Parity plots of OLS, LASSO, DT, RF, SVR, and NN for 
(a) dataset without XRD, PD, IE parameters, and (b) dataset with 
all parameters.

selection. The significance level is derived from the t-test 
assuming that the target variable is normally distributed, but as 
shown in Fig. 1(b), Al2O3_D10 has slightly different 
characteristics from the normal distribution. As variable 
reduction in stepwise method in OLS rely on p-value, this 
modeling was possibly not effective in this study. In models 
except of OLS, there was a clear improvement in COD when IE 
and XRD parameters were added as explanatory variables. In 
general, when explanatory variables that are not important 
factors are added, overfitting occurs, and the COD for test data 
decreases. In this study, the COD of the test data was improved 
by adding raw material information, which means improvement 
of generalization performance. Therefore, the importance of raw 
material information, IE, and XRD, in explaining Al2O3_D10 is 
significant. In Figure 5(b) and 5(c), the RMSE and MAE were 
almost uniformly decreased by enriching the explanatory 
variables except for OLS. This negative correlation with COD 
also suggests adding raw material information during modeling 
is an efficient approach. 

Figure 6 shows the factor importance when using the 
regression model excluding the uninterpretable SVR and NN for 
the dataset with all data. In linear regression models (OLS, 
LASSO, DT), XRD feature values, D10, imp12, add 3, 4, 10, and 
1st heating time have a high contribution in common. More 
variables were chosen in the nonlinear regression model RF. 
Notably, XRD feature values D10, imp16, add 3, 4, 10, and 1st 
heating times were commonly chosen in both the linear and non-
linear regression models. Figure S10 shows the importance of 
each regression model using each partitioned dataset employed 
in Figures 4 and S8. Table S1 also summarizes their numerical 
information. It can be seen that in all regression models, when 
IE, PD, and XRD feature values were added to the 

Figure 5 Accuracies at (a) COD, (b) RMSE, (c) MAE for 
regression models of OLS, LASSO, DT, RF, SVR, and NN for 
test data.

Figure 6 Summary of regression coefficients or importance 
(Feature importance) of OLS, LASSO, DT, RF for the dataset 
with all parameters.

explanatory variables, they gained a certain level of importance, 
and the balance of the overall importance changed significantly. 
Looking at the importance factor in the linear regression, it can 
be seen that the larger the D10, the more negative the effect on 
Al2O3_D10. The importance factor also points out that larger 
XRD feature values, including FWHM, lead to increase of 
Al2O3_D10. They are consistent with a general knowledge that 
crystallographic characteristics of raw materials, including size, 
crystallinity, and shape are related to the reaction and dissolution 
rate of solutes, as well as the crystal size of the target material. 
The contribution of the “imp” and “add” variables was also 
observed, which is consistent with the finding that crystal growth 
is affected by impurities and additives.29,30 From the RF analysis 
results in Figure 6, imp7 has a relatively high importance among 
the raw material features. Thus, the impurity 
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Figure 7 Suggested effects of features of raw material on crystal 
growth of Al2O3 in flux.

species and concentration in the raw material have a dominant 
effect on the crystal growth of Al2O3. Linking the present AI 
results to existing crystallization knowledge, we suggest that the 
impurity, particle size, and crystallinity of the raw material 
should be regarded as important parameters for controlling the 
crystal growth of Al2O3 and probably also of other inorganics.
Finally, a quantitative perspective was also considered for these 

values. In Figures S10(d)-1 and S10(d)-2, regression coefficients 
of FWHM are positive, while D10 and "imp" are negative. This 
means that low crystallinity, small particle size, and low impurity 
facilitate the growth of Al2O3. This trend is schematically 
explained in Figure 7. The raw material with a large particle size 
requires substantial time to dissolve in the flux, resulting in 
inhibition of crystal growth of Al2O3 due to the lower supply of 
solute from the solution. Decreasing the particle size may 
facilitate the dissolution of raw material to grow large target 
crystals. High crystallinity may result in rigid atomic bonding, 
whereas low crystallinity weakens the bonding, allowing for 
easy dissolution of raw material and thus enhancing the crystal 
growth of the target. Impurities may inhibit the adsorption of the 
solute from solution. Of course, it is necessary to verify these 
assumptions experimentally, and these effects are not common, 
depending on the raw material species and flux species. More 
studies using various materials are desirable to classify the role 
of these raw material parameters in the future. 

Conclusions
In this study, to develop a methodology for PI-assisted flux 

method, we attempted to clarify the effect of raw material 
information on the prediction accuracy of crystal growth. Al2O3 
crystals were grown using MoO3 flux under 185 experimental 
conditions with different raw material species, raw material lot 
numbers, additives, and heating conditions. The crystal phases 
were identified by XRD, and the formation of the target material 
was confirmed at 170 experiments. Next, a regression model was 
created using raw material information and experimental 
conditions as explanatory variables, and the grain size 
distribution of the Al2O3 crystals as the objective variable. Six 
kinds of regression algorithms (OLS, LASSO, DT, RF, SVR, and 
NN) were executed to evaluate the prediction accuracy of the 
regression model depending on the raw material information. 
The results showed that the prediction accuracy was improved 
by incorporating XRD features values, raw material particle size 

distribution, and raw material impurity elements into the 
explanatory variables.
Although the raw material information was already considered 
important in experiments, an achievement of this study was to 
numerically estimate the importance by proposing a method of 
expressing of them. This would contribute towards making more 
accurate prediction models for data-driven experimental 
suggestion and clarification of important factors in flux crystal 
growth. Conversely, because the prediction accuracy is at most 
less than 0.8, the poor expressiveness of explanatory variables 
remains an issue currently. A reason may be that insufficient 
information is extracted by XRD. The correspondence between 
the XRD spectra and crystallographic features remains uncertain, 
and further clarification of this relationship is essential. In future, 
we plan to improve the accuracy of predicting flux crystal growth 
by enhancing the extraction of information from XRD spectra. 
We also plan to add new variables, such as crystal structure 
information, mixture state of raw materials, and their interaction 
terms. 
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