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Improving the Accuracy of the Variational Quantum Eigen-
solver for Molecular Systems by the Explicitly-Correlated
Perturbative [2]R12 -Correction

Philipp Schleich,𝑎,𝑏,𝑐 Jakob S. Kottmann,𝑎,𝑑 and Alán Aspuru-Guzik𝑎,𝑐,𝑑,𝑒

We provide an integration of the universal, perturbative explicitly correlated [2]R12 -correction in the con-
text of the Variational Quantum Eigensolver (VQE). This approach is able to increase the accuracy of the
underlying reference method significantly while requiring no additional quantum resources. The proposed
approach only requires knowledge of the one- and two-particle reduced density matrices (RDMs) of the refer-
ence wavefunction; these can be measured after having reached convergence in the VQE. This computation
comes at a cost that scales as the sixth power of the number of electrons. We explore the performance of
the VQE+[2]R12 approach using both conventional Gaussian basis sets and our recently proposed directly
determined pair-natural orbitals obtained by multiresolution analysis (MRA-PNOs). Both Gaussian orbital
and PNOs are investigated as a potential set of complementary basis functions in the computation of [2]R12 .
In particular the combination of MRA-PNOs with [2]R12 has turned out to be very promising – persistently
throughout our data, this allowed very accurate simulations at a quantum cost of a minimal basis set. Addi-
tionally, we found that the deployment of PNOs as complementary basis can greatly reduce the number of
complementary basis functions that enter the computation of the correction at a complexity.

1 Introduction
Quantum computing is an emergent computational paradigm
with the potential to disrupt some areas of scientific and finan-
cial computing. While recent advances in the development of the
hardware bring the time of error-corrected quantum computers
closer1–3, current quantum computers, often called NISQ (noisy
intermediate scale quantum computers), still do not offer prac-
tically useful computational advantage given their lack of noise
resilience, short coherence times and a rather low, yet steadily
increasing, available number of qubits4.
Popular approaches to NISQ computing are constituted by hybrid
quantum-classical procedures, which rely on the interplay of a
classical and a quantum computer. One important class of such
hybrid quantum-classical algorithms is given by variational quan-
tum algorithms (VQAs) that rely on the definition of a paramet-
ric cost function, which is evaluated on a quantum computer, and
then optimized numerically on a classical computer.5,6 In the con-
text of quantum chemistry, particularly ground-state calculations,
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this cost function is set to be the energy expectation value of a
molecular system.

To make algorithms more suitable for NISQ hardware, its weak-
nesses on the hardware end are usually addressed by error mitiga-
tion techniques, more efficient mappings of the underlying prob-
lem to the quantum computer’s language or compilation strate-
gies; see Refs. 6, 7 for an extensive overview. As an alternative,
or in particular as an addition to these efforts, one can – just
as in classical computing – exploit some physical knowledge to
make the simulation more efficient. In this context, one aims to
reduce quantum resources (in terms of qubits needed and gate
count / circuit depth), usually coming at the cost of some addi-
tional computational efforts on a classical machine.8–12 Efforts to
do so include a priori and a posteriori computations, which either
pre-modify the input for an existing quantum procedure or make
use of the output to obtain an external correction, both with the
ultimate goal to increase accuracy while maintaining the amount
of quantum resources necessary. Conversely, this can be trans-
lated into a reduction of quantum resources for a certain level of
accuracy.

In this work, we demonstrate a procedure that allows to reduce
the number of qubits required for a certain quantum chemical
quantum calculation involving electronic systems, that allow for
an efficient output of the one- and two-particle reduced density
matrices (1- and 2-RDM). This perturbative correction is based
on methods usually summarized as “R12”, “F12” or explicitly cor-
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related methods, cf. section 2.1. Recently, a priori modifications
inspired by Boys’ and Handy’s transcorrelated Hamiltonian13,14

– where a similarity-transformation of 𝐻 renders 𝐻 ′ = e−𝐺𝐻e𝐺

cusp-free given an appropriate 𝐺 – have been adapted for the
use in near-term quantum simulations. McArdle et. al.15 apply
Boys’ and Handy’s original formulation with a non-Hermitian 𝐻 ′

within the imaginary time evolution ansatz16, whereas Motta et.
al.10 implement a regularized Hamiltonian straightforwardly in a
VQE simulation. The latter makes use of the canonical transcor-
relation introduced in Ref. 17, which modifies the Hamiltonian as
𝐻 ′ = e𝐴†

𝐻e𝐴 with some anti-Hermitian 𝐴 such that 𝐻 ′ is still Her-
mitian; the Baker-Campbell-Hausdorff-expansion of 𝐻 ′ is trun-
cated so that only one- and two-body terms are kept.
On the contrary, we opt to use an a posteriori correction based
on a perturbative explicitly correlated method, namely the spin-
free variant of [2]R12

18–20. This approach is to be contrasted
with other post-corrections in form of the family of quantum
subspace expansion (QSE) techniques8,9,21; an application of
VQE together with the transcorrelated approach, [2]R12 or a so
called “CABS singles” correction22 has already been suggested in
Ref. 23. Brief comments on the distinction of our approach with
this one will follow in Section 2.1.2.
Aside of providing a framework for the application of the explic-
itly correlated [2]R12 -method within the variational quantum
eigensolver, the goal of this work is to raise additional awareness
of explicitly correlated methods within the quantum computing
community. This work builds on a recent Master’s thesis24 and
contains updated data.

A comment on notation Within this work, we will make use of
the Einstein summation convention, where the indices are clar-
ified in Tab. 1. Frequently we label orbitals only with their in-
dices {𝑝} ≡ {𝜙𝑝}. For second-quantized creation and annihilation
operators as well as matrix elements, we follow the notation of
the works by Kutzelnigg and Mukherjee, which is prevalent in
the literature of explicitly correlated methods (defined e.g. in
Refs. 25, 26). Excitation operators and matrix elements up to or-
der two can be found in Tab. 1 as well. Higher-order excitations
and matrix elements can be defined in a similar manner but are
not needed in this context. If not stated otherwise, we make use
of atomic units ℏ = 𝑒 = 𝑚e = 1 except for Ångstrom for the unit of
length.

2 Background
For the sake of self-containment, we will first give a high-level
description of explicitly correlated techniques and a historical
overview before presenting and motivating the [2]R12 -correction
in more detail. After that, we will propose a workflow to em-
bed [2]R12 into the hybrid quantum-classical variational quantum
eigensolver routine.

2.1 Explicit Correlation
2.1.1 Basics

It is well-known that the wavefunction of an electronic system
exhibits a correlation cusp at the points of inter-electronic coa-
lescence27–30. A generic numerical representation of such kinks

in the functions with smooth functions imposes problems and
leads to a rather high number of basis functions to represent
the true wavefunction up to a certain accuracy. Yet it is rather
obvious that an explicit incorporation of the inter-electronic dis-
tance 𝑟12 = |𝑟1 − 𝑟2 | helps to overcome this slow convergence, as
demonstrated for the simple case of the ground-state of Helium
by Hylleraas31, later again proposed27,32 and supported by rig-
orous work30,33,34. The essential take-away message can be for-
mulated as follows: Upon occurrence of electron-electron correla-
tion, the deployment of explicitly correlated basis function leads
to more accurate energies, given that both the partial-wave ex-
pansion30,33 as well as a natural-orbital expansion35 decay faster
in such a basis (thus fewer basis functions needed for the same
level of accuracy). For a comprehensive overview of explicitly
correlated methods, we refer to the reviews 36–39.
However, making use of an explicitly correlated basis in the ex-
isting methods (such as CI, leading to so called Hylleraas CI40)
does not allow an efficient implementation due to the appearance
of very high-dimensional integrals36,41. One of the two most
prominent ways to exploit explicit correlation is given by per-
turbative descendants of Kutzelniggs R12-theory30,42–45, where
MP2-R12 can be seen as the basis for all upcoming, more so-
phisticated, perturbation methods such as [2]R12 or the approach
in Ref. 46. The other one consists of regularizing the system
throughout a similarity-transformed Hamiltonian via Boys and
Handy’s transcorrelated approach13,47, made more applicable
throughout approximations such that the effective Hamiltonian
is still Hermitian in Refs. 17, 48. In a recent benchmark49, both
the perturbative [2]R12 -correction, that we will explain in detail
in section 2.1.2 and the canonical transcorrelated approach from
Ref. 17 performed comparably well. Here, we focus on the uni-
versal perturbative [2]R12 method and will provide a discussion
to distinguish the approach from the transcorrelated Hamiltonian
when applied to quantum algorithms.
Initially, the explicitly correlated basis has been built by correlat-
ing one-electron basis functions, achieved through multiplication
with the inter-electronic distance 𝑟12. Motivated by that fact, that
a simple factor of 𝑟12 does not inherit the correct asymptotics,
Gaussian correlation factors exp

{
−𝑟2

12
}

(Gaussian geminals50,51)
and Slater-type correlation factors exp{−𝑟12} 42,52 have been in-
troduced. Within a study that investigated the performance of
different correlation factors, it was found that Slater-type factors
often have the most favorable behaviour53. Hence following the
[2]R12 -literature, we use correlation factors and its matrix ele-
ments given as follows:

𝑓12 = − 1
𝛾

e−𝛾𝑟12 , 𝑟 𝜅𝜆𝜇𝜈 = ⟨𝜇𝜈 | 𝑓12 |𝜅𝜆⟩ . (1)

Note that when using Psi454 in our simulations, the correlation
factor 𝑓12 is represented as a linear combination of Gaussians.

2.1.2 [2]R12 -Correction

Further on, we provide a brief outline to [2]R12 as in Refs. 18–20,
recalling that this is a perturbative explicitly correlated method.
Let H be the Hilbert space of the true wavefunction of a cer-
tain electronic system with 𝑁el electrons in Born-Oppenheimer
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approximation, described by its Hamiltonian operator

𝐻 = ℎ
𝑞
𝑝𝑎

𝑝
𝑞 + 1

2
𝑔𝑟𝑠𝑝𝑞𝑎

𝑝𝑞
𝑟𝑠 , (2)

where ℎ
𝑝
𝑞 denotes one-electron integrals and 𝑔

𝑝𝑞
𝑟𝑠 two-electron

integrals over the Coulomb interaction:

𝑔
𝑝𝑞
𝑟𝑠 = ⟨𝑟𝑠 | (𝑟12)−1 |𝑝𝑞⟩ . (3)

Further we have a reference solution |Φref⟩ using an arbitrary
method to find an approximate solution to the ground-state prob-
lem for 𝐻 using a certain basis consisting of a finite number of
one-electron orbitals {𝑝}𝑁OBS

𝑝=1 that span P ⊂ H . The perturba-
tive correction we use here aims to correct for the incompleteness
of this one-electron basis by excitations into the complementary
space Q = H \P. Note that formally, up to this point, the pro-
cedure is equivalent to the Quantum Subspace Expansion8,9,21.
Yet here, the basis for the complementary space is enforced to be
explicitly dependent on the inter-electronic coordinate and thus
is deemed to exhibit faster convergence; it is tailored to account
specifically for completeness due to the correlation cusp. Con-
versely, we expect that for systems where the dominant error orig-
inates from insufficient representation of the correlation cusp, the
present method needs less basis functions for a qualitative rep-
resentation of the complementary space than QSE-based proce-
dures with a primitive basis and is thus likely to be more efficient.
On the other hand, the application of QSE is not limited to quan-
tum chemistry21. It is worth mentioning that all perturbative
methods relying on the RDMs require the evaluation of complex
equations (e.g. via the generalized Wick’s theorem25), as well as
a set of non-trivial cumulant approximations to avoid measure-
ment of higher-order RDMs8,18,55,56. While the QSE depends on
the solution of a generalized eigenvalue problem, [2]R12 amounts
in the SP-ansatz57, which fixes amplitudes so that they fulfill the
cusp condition as shown in Eq. (8), to a set of tensor contractions.

The [2]R12 correction then can formally be derived* using Löwdin
partitioning18,62–64. Then, one can approximate the full comple-
mentary space Q = span{𝛼} using a complementary auxiliary basis
set (CABS) {𝛼′}𝑁CABS

𝛼′=1 with finite 𝑁CABS – this CABS basis can be
an arbitrary basis of functions and does not need to come from a
Gaussian basis set, even if the OBS is built from Gaussians. Note
that here, this approximation is formally equivalent to the resolu-
tion of the identity approximation in the evaluation of molecular
integrals of usual R12/F12 methods (usually abbreviated by RI,
insertion of 𝐼 = |𝜅⟩ ⟨𝜅 | ≈ |𝜅′⟩ ⟨𝜅′ | to avoid higher-order integrals).
We construct the RI basis as {𝜅′} = {𝑝}∪ {𝛼′}, i.e., as the union of
the orbitals {𝑝} resulting from the regular orbital basis and {𝛼′}
coming from the complementary auxiliary basis. The partitioning
into a reference |Φref⟩ ∈ P and a perturbation (to account for in-
completeness due to Q) then leads to a correction given by the

* This is one way to derive it. One could also blindly start with some perturbation
and the second-order Hylleraas functional, interpreting the RI-approximation in the
usual sense to break down higher-order integrals. But since this approach well show-
cases where the correction for basis-set incompleteness comes from, we choose to
sketch it here. A more thorough outline can be found in Ref. 24.

Table 1 Glossary (operator and index conventions, acronyms sorted by subject
matter)

Indices ({𝑝} ≡ {𝜙𝑝 }, |𝑝⟩ ≡ |𝜙𝑝 ⟩) Explanation

{𝑝, 𝑞, 𝑟 , 𝑠} Orbital basis set (OBS) for or-
bital space P / reference

{𝑖, 𝑗 } Occupied within OBS
{𝑎, 𝑏} Unoccupied within OBS
{𝜅, 𝜆}⇝ {𝜅′, 𝜆′ } Formally complete basis and fi-

nite RI basis to approximate full
Hilbert space H with RI space

{𝛼, 𝛽 }⇝ {𝛼′, 𝛽′ } Complementary basis and finite
complementary auxiliary basis
(CABS) to resolve Q = H\ P

Operators and integrals Following e.g. 26

𝑎𝑝 = 𝑎
†
𝑝 , 𝑎𝑝 Fermionic creation and annihila-

tion operators
𝑎
𝑝
𝑞 = 𝑎𝑝𝑎𝑞 , 𝑎

𝑝𝑞
𝑟𝑠 = 𝑎𝑝𝑎𝑞𝑎𝑠𝑎𝑟 , . . . Particle-number conserving exci-

tation operators
𝑋

𝑝
𝑞 = ⟨𝑞 (1) |𝑋 (1) |𝑝 (1) ⟩ One-electron integrals

𝑋
𝑝𝑞
𝑟𝑠 = ⟨𝑟 (1)𝑠 (2) |𝑋 (1, 2) |𝑝 (1)𝑞 (2) ⟩ Two-electron integrals

𝑔
𝑝𝑞
𝑟𝑠 Coulomb integrals, cf. Eq. (3)

𝑟
𝑝𝑞
𝑟𝑠 F12 integrals, cf. Eq. (1)
𝛾
𝑝
𝑞 , 𝛾

𝑝𝑞
𝑟𝑠 One- and two-particle reduced

density matrices (1- and 2-
RDM), cf. Eq. (9)

𝑓 𝜅
𝜆

Generalized Fock operator,
cf. Eq. (5)

Acronyms Explanation and Reference

NISQ Noisy intermediate-scale quan-
tum (computing) 4,6

VQA/VQE Variational Quantum Algorithm-
s/Eigensolver 5,58

PNO Pair-natural orbitals 11,59

MRA Multiresolution analysis 60

RDM Reduced density matrix
QSE Quantum subspace expan-

sion 8,9,21

OBS Orbital basis set 61

CBS Complete basis set 61

CABS Complementary auxiliary basis
set 61

RI Resolution of the identity 61

minimization of a second-order Hylleraas functional

𝐽
(2)
𝐻

= ⟨𝜓 (1) |𝐻 (0) |𝜓 (1) ⟩ +2 ⟨𝜓 (0) |𝐻 (1) |𝜓 (1) ⟩ , (4)

named after Hylleraas’ general approach to perturbation the-
ory31. The reference Hamiltonian corresponds to the model
Hamiltonian 𝐻 (0) = 𝐻, and as zeroth-order state, the solution ob-
tained by the reference method |𝜓 (0) ⟩ = |Φref⟩ is picked. Further,
the first-order Hamiltonian is chosen to be a normalized, general-
ized Fock operator

𝐻 (1) = 𝐹 = 𝑓 𝜅𝜆 𝑎
𝜆
𝜅 −𝐸0 = (ℎ𝜅𝜆 + �̄�

𝜆𝑟
𝜅𝑠𝛾

𝑠
𝑟 )𝑎𝜆𝜅 −𝐸0, (5)

while the appearing 1-RDM corresponds to the reference method
(not HF as in the standard Fock operator)26. The bar over the
Coulomb-tensor denotes antisymmetrization. This induces maxi-
mal resemblance to the MP2-R12 method18 . Explicit correlation
is brought into play with the first-order perturbation

|𝜓 (1) ⟩ =𝑄𝑅 |Φref⟩ , (6)
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where 𝑄 denotes a projector ensuring that contributions of OBS
are projected out as well as only semi-internal first-order exci-
tations are kept (which was found to be important in contrast to
Ref. 46).18,19,36 Further excitations from occupied to CABS or-
bitals are excluded, being the origin of one-particle incomplete-
ness, which are to be treated by a “CABS Singles” correction as in
Ref. 22. The correlation operator 𝑅 is defined here as

𝑅 =
1
2
𝑑𝑟𝑠𝑝𝑞𝑟

𝑝𝑞

𝜅𝜆
𝑎𝜅𝜆𝑟𝑠 (7)

and generates two-particle correlation, performing excitations
into the complementary space Q, which is represented by a set
of explicitly correlated functions. Using a set of approximations†,
one could then seek to minimize the Hylleraas functional; this
would typically result in an ill-conditioned linear system36, which
usually is avoided by making use of the SP-Ansatz by Ten-No57.
In this formulation, the amplitudes 𝑑𝑟𝑠𝑝𝑠 are fixed such that the
cusp conditions both for singlet (∼S) and triplet (∼P) states are
fulfilled. Using spin-free orbitals, the SP-ansatz reads

𝑑𝑟𝑠𝑝𝑞 =
3
8
𝛿𝑟𝑝𝛿

𝑠
𝑞 +

1
8
𝛿𝑟𝑞𝛿

𝑠
𝑝 . (8)

This way, [2]R12 amounts to a set of tensor contractions, whose
evaluation scales as O(𝑁6

el) assuming 𝑁OBS, 𝑁CABS ∈ O(𝑁el)
within the framework of the so called approximation C, intro-
duced in Ref. 65 and applied to [2]R12 in Ref. 20. Instead of
restating the rather complex equations, we refer to the original
works18–20. We further point out that a reduction of the cost can
be achieved by correlating only a subset of the reference orbitals
that may be chosen according to their occupation number19,20,
as well as by following ideas from Ref. 66 to lower the order
of dependency on the RI dimension. Diagonalization of the 1-
RDM to obtain these comes at almost no cost, since they need
to be available anyway. The framework of approximation C of
[2]R12 requires evaluation of additional molecular integrals, as
well as only the 1- and 2-RDM with respect to the given reference

𝛾
𝑝
𝑞 = ⟨Φref |𝑎

𝑝
𝑞 |Φref⟩ , 𝛾

𝑝𝑞
𝑟𝑠 = ⟨Φref |𝑎

𝑝𝑞
𝑟𝑠 |Φref⟩ . (9)

Insofar, this correction can be applied to universal references, as
long as the 1- and 2-RDM can be made available. Here, we ex-
clusively use the spin-free formulation, called SF-[2]R12 . Conse-
quently, excitations, RDMs etc. are to be understood as spin-free
obtained by summation over spin – for ease of notation, we treat
this implicitly. A more detailed interpretation of [2]R12 can be
found in Ref. 24.
We note that the application of the correction is not necessarily
restricted to ground state calculations but can be applied to ex-
cited states in a similar manner.

2.2 VQE and VQE + [2]R12

In this work, we rely on the Variational Quantum Eigensolver58,67

that can be assigned to the class of variational quantum algo-

† Cumulant approximations 55 as well as the standard, extended and generalized Bril-
louin conditions 45 and a set of so called screening approximations 18,19,63.

rithms, which is one of the most promising classes of algorithms
in the NISQ era of quantum computing5,6,23,68. Here, one defines
an objective function in form of the expected value of the Hamil-
tonian operator with respect to a parametrized quantum state.
The quantum state is composed by a sequence of parametrized
unitary operations in form of quantum gates (often called ansatz).
Minimization of the objective function yields an approximation to
the ground-state energy of the system; the accuracy of this ap-
proach greatly depends on the capability of the ansatz to express
the true ground state69–75.

This way, we obtain a reference for the perturbative approach in
form of |Φref⟩ =𝑈 (𝜃★) |0⟩ with

𝜃★ = argmin
𝜃

⟨0|𝑈† (𝜃)𝐻𝑈 (𝜃) |0⟩ (10)

and𝑈 (𝜃) a sequence of parametrized quantum gates. Throughout
this work, we will restrict ourselves on Unitary Coupled Cluster-
type ansätze (UCC)11,58,69,70,76,77. Given a basis set {𝑝}, a
generic UCC-type wavefunction can be obtained by

|𝜓UCC (𝜃)⟩ = e�̂�−�̂�
†
|ΦHF⟩ , (11)

where 𝑇 = 𝑡𝑖𝑎𝑎
𝑎
𝑖
+ 1

4 𝑡
𝑖 𝑗

𝑎𝑏
𝑎𝑎𝑏
𝑖 𝑗

is the usual cluster operator. The am-

plitudes 𝑡𝑖𝑎 , 𝑡
𝑖 𝑗

𝑎𝑏
serve as variational parameters in this approach.

In practice, a wide range of approximations is raised in order to
implement or approximate such a wavefunction70.

In Fig. 1, we summarized the proposed workflow of a
VQE+[2]R12 computation. Upon having chosen the molecule of
desire along with a choice of orbital basis and CABS basis, one
can build the fermionic Hamiltonian 𝐻ferm in the orbital basis as
well as molecular integrals needed for the F12-correction (see
Ref. 19, 20) in the RI-basis. Additionally, one needs to provide a
F12-exponent 𝛾, cf. Eq. (1). Within this work, we fixed 𝛾 = 1.4,
which overall led to good results. When aiming for the best en-
ergy possible, one might perform computations with a set of val-
ues and then pick the lowest one if the CBS-limit is not avail-
able. In general we found that [2]R12 is not very likely to yield
energies below the CBS-limit despite it being a non-variational
method. Next, one needs to map the fermionic Hamiltonian to a
set of qubit operators using an operator mapping. Here, we used
Jordan-Wigner, but other mappings can be employed in a similar
manner; see e.g. Refs. 6, 16, 23. The qubit Hamiltonian 𝐻qc then
serves as input for the VQE computation. After VQE has reached
convergence, the 1- and 2-RDM need to be measured, which then
are processed together with the molecular integrals in the RI basis
to a scalar correction in the energy.

To obtain the necessary 1- and 2-RDM, the VQE measurement
procedure needs to be adapted to resolving the full reduced den-
sity matrices, coming at a cost O

(
𝑁4

OBS

)
for the 2-RDM in the

worst case (symmetry conditions and spin-free formulation only
allow for a reduction by a constant factor). A wide set of mea-
surement reduction techniques has been developed for the eval-
uation of Hamiltonian expectation values. These dominated by
two classes of such techniques: One relies on the identification
of sets of commuting operators that can be measured simultane-
ously, e.g. Refs. 78–80, which allow for an approximately cubic
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Variational Quantum Eigensolver
𝐸
VQE
0 = min𝜃 ⟨0|𝑈† (𝜃 )𝐻qc𝑈 (𝜃 ) |0⟩

𝛾
𝑝
𝑞 , 𝛾

𝑝𝑞
𝑟𝑠

Computation of integrals

F12 - Correction
Δ𝐸[2]R12

Molecular integrals in RI basis𝐻ferm

Operator mapping

input: Molecule, OBS {𝑝}, CABS {𝛼′ }, F12-exponent 𝛾

𝐻qc
TEQUILA + QULACS or QPU TEQUILA

OPENFERMION

PSI4 / MADNESS

output: 𝐸0 +Δ𝐸[2]R12

Fig. 1 Workflow of VQE+[2]R12 . Modules marked by green colored can be performed on a quantum processing unit or a classical simulator, while orange modules
denote classical pre- and post-operations. Used software packages are marked in the above illustration, and reiterated in section 3.1.3.

cost. The other one determines basis rotations that result in a
formulation with less non-mutually commutative terms, leading
to less than quadratic number of terms that need to be measured
separately81,82. A comprehensive overview of advances in this
area can be found in Ref. 83. However, as pointed out in Ref.83,
most of these methods are not directly applicable for the measure-
ment of general fermionic 𝑘-RDMs. Using a basis of Majorana op-
erators, Ref. 83 shows that smart operator partitioning can yield
a reduction of measurement cost up to Ω(𝑁2

OBS). An advisable
strategy for a VQE+[2]R12 routine then would be to implement
one of the measurement reduction techniques that reliably can
suppress the cost to lower than quadratic order, and make use of
the strategy outlined in Ref. 83 for the final RDM-evaluation. An
additional set of interesting approaches improving the measure-
ment of RDMs based on the 𝑛-representability conditions is given
in Ref. 84. The efficacy of these approaches has been demon-
strated in Ref. 85. Such techniques are in particular important in
light of stochastic errors when sampling the RDMs. As it was in-
vestigated in Ref. 86 who applied [2]R12 in FCIQMC calculations,
sampling noise in the RDMs spreads as well to the correction;
such behaviour can be expected to appear as well when extract-
ing RDMs from VQE and thus high fidelity in doing so at moderate
cost is desirable.

3 Results

3.1 Computational Setup

3.1.1 Construction of Complementary Basis

Within this work, we follow the CABS+ procedure introduced in
Ref. 61 to generate a complementary basis. This means, given
an orbital (reference) basis and complementary basis, the com-
plementary space is specfied by orthogonalization of the joint RI
basis {𝜅′}, obtained by the union of orbital and complementary
basis, and projecting out the orbital space. Formally, one con-
structs a coefficient matrix 𝐶𝛼′𝜅′ , which maps from the RI to the
complementary set, such that

∑
𝜅′𝐶𝛼′𝜅′ ⟨𝜅′ |𝑝⟩ = 0 ∀𝑝.

In contrast to that, we comment on the possibility of a “quick &
dirty”-approach via the choice of an active space. Here, one starts
with a given basis set, that is employed in an active space fash-

ion. That is, there is a set of frozen virtual orbitals which do not
contribute to electron correlation effects. Consequently, we find
ourselves in the same setting as the work by Takeshita et. al.9

who make use of QSE to account for the “active space incom-
pleteness”. However, we do not present results for this situation
since we found, in accordance to Valeev’s arguments61, that cor-
rections obtained by CABS+ are more accurate and are not sen-
sitive to the choice of active space. Still this does depend on the
specific intention behind the computation – if a valid active space
is chosen, this procedure allows in the case of the virtual QSE to
retrieve the expressibility of the full orbital basis87, and a similar
behaviour can be expected for [2]R12 .

Accordingly it is advised to follow the CABS+ procedure, as done
in Ref. 10. But, if one were to perform an active space calcu-
lation (and an appropriate set of orbitals is chosen), the appli-
cation of [2]R12 is expected to be beneficial. While we have
no numerical evidence to support this, we expect [2]R12 to per-
form better than similar methods that excite into conventional ba-
sis functions, such as the subspace expansion-based approach in
Ref. 9, whenever electron-electron cusp effects are dominant, re-
emphasizing that the F12 method constructs an explicitly corre-
lated basis that is expected to “converge faster” and hence should
require fewer basis functions for a given energy correction.

As basis functions, we will mostly resort to the recently intro-
duced MRA-PNOs (globally orthonormalized, directly determined
pair natural orbitals obtained by multiresolution analysis)11,59.
This enables us to, on one hand, build up on the existing data
thereof, and on the other hand, investigate the potential of a
combination of PNOs together with a F12-method. Even the
most simple MRA-PNO generation at this time generates at least
4𝑁diag + 8𝑁offdiag orbitals given a number of diagonal and off-
diagonal pairs, which means that in most cases there are a few
unused PNOs. This raises the question whether PNOs are suited
for a deployment as CABS-basis. Building on the theory, it is
to be expected that explicitly correlated methods also deliver
faster convergence in terms of natural orbitals35, which means
we would expect that PNOs built from a MP2-R12 surrogate, as
already done in Ref. 59, inherit this behaviour. Such behaviour
was also found in Refs. 88, 89. Further, a basis of natural orbitals
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can be seen as a least-squares approximation36,90 and we again
expect the PNOs to be somewhat near-optimal despite the pair-
approximation. This means that PNOs in general and in particular
MP2-F12 PNOs might be interesting candidates. To that end, we
provide some data from Ref. 24 and additional discussion in ap-
pendix B. Based on these results and the discussion, hereinafter,
we will pair VQE-results based on MRA-PNOs for the reference
with a PNO-CABS (all with plain MP2 for the surrogate compu-
tation), given that they have turned out to outperform PNOs ob-
tained by MP2-F12 if obtained in a self-contained procedure and
are also far more compact as an RI-approximation than Gaussian
basis functions (The reason herefore is that the reference compu-
tation when using PNOs generated by R12 performs worse. While
this is expected, we found that in our case, this is so significant
that the correction does not fully account for that, although the
correction is higher; also see appendix B). We emphasize here
however that our RI by PNOs is not necessarily perfectly accurate
but rather more compact and accurate than a GBS of a compara-
ble size. Additionally the point we want to make is that any PNOs
generated that are not used in OBS can increase accuracy when
used for the complementary basis.
Of course any set of basis functions – be it the most prominent
choice of orbitals from Gaussian basis sets (GBS), PNOs from GBS
or plane-waves – can be used to apply [2]R12 . As already men-
tioned, we employ MRA-PNOs here to be able to compare with
previous results in Ref. 11. Further, as specified therein and in
Ref. 91, the MRA-PNOs yield surprisingly good results in bond-
breaking regimes despite the MP2 dependency. Additionally, in
contrast to Gaussian basis sets, they exhibit faster convergence
so that even for small basis set sizes, the dominant error can al-
ready be expected due to the cusp. In section 3.1.3 we will point
to open-source, freely available software that we employed and
wherein we implemented the computation of the correction; both
MRA-PNOs and GBS are ready to be employed.

3.1.2 Choice of Ansatz in VQE-Calculations

In the subsequent results, we use a classical FCI calculation for
systems with Gaussian basis sets (GBS); for the PNO-basis, we fo-
cus on UCC-type ansätze. However, the use of a specialized F12-
basis set in the case of GBS is recommended, as this enables the
reference computation to focus on the representation of the cusp-
free part of the wavefunction and the correction takes care of the
cusp. This work can be understood as an extension to Ref. 11 and
thus we aim to show the potential of MRA-PNOs together with
[2]R12 . Consequently the results we show mostly deploy MRA-
PNOs as a basis but we showcase a few exemplary simulations
using FCI/GBS as a verification that general bases can be made
use of.
For all MRA-PNO-based computations, we exploit the pair-
structure in form of the SPA-ansatz from Ref. 91, which is re-
peated here in brevity; also see Ref. 70 for a description thereof.
Given a set of HF reference orbitals {𝑖}, for each (𝑖 𝑗)-pair we gen-
erate orthonormalized PNOs S̃𝑖 𝑗 =

⋃𝑟𝑖 𝑗

�̃�𝑖 𝑗=1{|�̃�𝑖 𝑗 ⟩}. As an orthonor-

malization procedure, we use a Cholesky decomposition, which
has turned out deliver superior results as opposed to e.g. sym-
metric orthonormalization because it changes the “most impor-

tant” PNOs, ordered by occupation number, the least. Then, we
restrict to pair-excitations from the references to the associated
PNOs (𝑈D̃) and generalized excitations within each PNO (𝑈GD̃).
One might also think of single excitations, which we do not con-
sider in this work. We can express the SPA-UpCCGD wavefunc-
tion as

|SPA-UpCCGD⟩ =𝑈GD̃𝑈D̃𝑈HF |0⟩ (12)

where |Φ0⟩ = |ΦHF⟩ =𝑈HF |0⟩ and

𝑈D̃ =

𝑁el/2∏
𝑖=1

∏
𝑎∈S̃𝑖𝑖

exp
{
𝜃

2
�̃�𝑎𝑎
𝑖𝑖

}
(13)

𝑈GD̃ =

𝑁el/2∏
𝑖=1

∏
𝑎,𝑏∈S̃𝑖𝑖

exp
{
𝜃

2
�̃�𝑎𝑎
𝑏𝑏

}
. (14)

The pair-excitation generator �̃� is defined as

�̃�𝑎𝑎
𝑖𝑖 = 𝑎

𝑎↑𝑎↓
𝑖↑𝑖↓

−h.c. (15)

In what follows, whenever we use PNOs as a basis, we will
employ the SPA-UpCCD ansatz and use “SPA” to denote this.
Ref. 11 demonstrated that whenever the PNO approximation is
a good representation of the molecular system behind, this PNO-
restricted parametrization provides potential for a drastic reduc-
tion in number of parameters and CNOT-counts as opposed to a
UpCCGSD-wavefunction, which itself is compact in comparison
to a full UCCSD-parametrization71. More detailed demonstra-
tions of the performance of SPA can be found in Ref. 91, aiding to
classify it in comparison to popular classical methods.

Further we provide results for a cheap and good set of PNOs
obtained by MRA-PNO computations. The cheap set signifies a
minimal version of PNOs, with the least rich class of excitations
from Ref. 59 (“dipole+”) that uses only the spare orbitals from
the generation which one does not opt to use for the orbital
space. In this sense, this procedure would be equivalent to us-
ing an active space of some GBS and exploiting the spare orbitals
in a correction scheme. Apart from that, the good set of PNOs
allows ten macro-iterations in their generation – convergence
in the PNO-generation usually is achieved beforehand when a
certain maximum number of orbitals is specified – and uses a
richer excitation ansatz (“multipole”) with a prescribed goal of
the number of PNOs. We set this number accordingly such that
[2]R12 converges, which for our purposes can be seen as a mea-
sure that the identity is resolved well enough. This method then
would be somewhat analogous to adding a RI-optimized CABS to
some orbital basis set.

3.1.3 Software

We have outlined the software packages that have been used in
Fig. 1. The leading framework organizing the workflow for the
work presented here is TEQUILA 76, while we rely on the method-
ology in Ref. 77 to obtain analytical gradients at the cost of only
two energy expectation values, independent of excitation rank.

As a quantum chemistry backend for classical CI calculations and
the construction of a CABS made up by Gaussian orbitals, we

6 | 1–16Journal Name, [year], [vol.],

Page 6 of 16Physical Chemistry Chemical Physics



use PSI4 54. To compute MRA-PNOs, we employed the software
package MADNESS 60. For the CABS-functionality, our implemen-
tation uses modified forks of PSI4 and MADNESS ‡. F12-integrals
in Eq. (1) from MADNESS are computed directly as Slater-type
(e−𝛾𝑟12 ), when obtained from PSI4 via GBS they are approximated
by a linear combination of Gaussians.
Further dependencies include OPENFERMION 92 for the handling
of fermionic and qubit operations as well as QULACS 93 as quan-
tum computing backend. Further, automatic differentiation is
taken care of by JAX 94. SCIPY 95 is used for the classical opti-
mization procedures (BFGS).
In section A, there is a code sample for the computation of the
correction, both in the case of Gaussian orbitals and MRA-PNOs.
Further, we made available a tutorial notebook on the matter on
the github repository for TEQUILA 76.

3.2 Atomic systems

We start by looking at the atomic systems Helium (𝑁el = 2) and
Beryllium (𝑁el = 4) and consider a choice of different bases to ob-
tain an intuition as how well MRA-PNOs+[2]R12 perform against
a naive procedure with a GBS. This should give us an indication
regarding possible savings of quantum resources.
Except for the corrected VQE/MRA-energies, Fig. 2 is identical to
Fig. 2 in11. Compared to the uncorrected energy, [2]R12 provides
significantly lower energies, which slightly “overshoot” but still
within a chemical accuracy of 1.6 mEh, for the simulations with
ten and twelve qubits (we denote number of qubits as 𝑁𝑞). This
showcases the non-variational nature of the perturbation method.
In the case of Beryllium – this is a behaviour that carries through
the results in particular for 𝑁el > 2, although in general no as-
sumptions can be made that this needs to be true – the calcula-
tions with 10 qubits are equivalently accurate as the one with 24
qubits. Note that as anticipated in Ref. 11, the result for Beryl-
lium “saturates” at a certain level. This way, the combination of
MRA-PNOs as a system-adapted basis and the [2]R12 -correction
enables a significant reduction in the necessary number of qubits
for both Helium and Beryllium.

3.3 Molecules

Again the shown results here widely follow Ref. 11 to demon-
strate the potential of a combination of [2]R12 with MRA-PNOs.
In the following, we present potential energy surfaces for the dis-
sociation of H2, LiH, BH and BeH2 (symmetric) in Fig. 3. Re-
call from section 3.1.2 that we mostly present outcomes using a
MRA/PNO-basis with a distinction in cheap and good PNOs, i.e.,
using the left-over, unused orbitals vs. creating a CABS on pur-
pose. In addition, Fig. 4 shows potential energy surfaces for H2

‡ PSI4: Currently, CABS-functionality is not available in the main repository; a hacky
but ready-to-use implementation is accessible at https://github.com/philipp-q/
psi4/tree/ri_space. For MADNESS, we use the forked branch https://github.
com/kottmanj/madness/tree/pno_integrals_cabs, which is described in more
detail in Ref. 11. Installation instructions for MADNESS together with TEQUILA can
be found at https://github.com/kottmanj/madness/tree/tequila. Integration
into the main repository is planned here.

and LiH in Gaussian basis sets with a specific CABS basis. Moving
on, we will discuss the results shown in the figures.
H2 First, look at the hydrogen molecule with 𝑁el = 2 in
Figs. 3a,3b,3c. For the cheap PNOs, only 5 PNOs are available,
which leaves only one orbital for the CABS in the 4-qubit compu-
tation. Hence, the 8 qubit computation (with 4 spatial orbitals) is
left with only one PNO to represent the complementary space. As
expected, the correction is very small in this case, however it still
makes sense to apply it given it only improves the result. Given
that there is only one electron pair in this case, the PNO genera-
tion can be seen as quite efficient, and the correction for the cheap
set is rather low. On the other hand, the 8 qubit computation us-
ing good PNOs almost reaches the accuracy of the 120 qubit FCI-
calculation in the regime of small bond distances. We note that
for longer distances, the correction tends towards zero because
in case of two basically separated hydrogen atoms, there is no
more electron-electron correlation present. Further we point out
an additional anomaly in Fig. 3a: At a distance of 3 Ångstrom,
the 8 qubit result should lie lower (roughly -1 Eh) – this is due to
the MP2 surrogate model for the PNO generation, which has not
been able to produce orbitals of the correct symmetry in this case
(for more details, see Ref. 24).
LiH The previous findings mostly can be confirmed by looking
at LiH in Figs. 3d,3e,3f. Note that since there are two electron
pairs now, there would be 8 PNOs left to represent the CABS
in the larger OBS for the cheap PNOs. However, the associated
correction almost vanished since all these orbitals stem from an
off-diagonal pair – since the LiH wavefunction very well separates
in a product structure of pair one and two, these orbitals barely
contribute, also visible by their low occupation number. The good
PNOs allow for a considerable correction, with the corrected en-
ergy of both the 12 and 20 qubit computation at a similar level.
Within the dissociation curve for cheap PNOs, the energies for
both 12 and 20 qubits at −0.6 Å are far too high – this anomaly
has the same origin as the 3.0 Å-point for H2, and can again be
resolved by allowing for another macro-iteration in the orbital
determination.
In contrast to diatomic hydrogen, the corrections for systems con-
taining atoms with more than two electrons do not vanish for long
bond distances because there is still electron-electron correlation
embodied in the individual atoms.
Furthermore, we observe that for both sets of PNOs, the lower-
qubit computation reaches the same level as the computation
with more qubits. This behaviour shows again in the case of BH.
BH Considering Figs. 3g,3h,3i, we additionally observe that while
the uncorrected energies with both 12 and 22 qubits are very
close (they differ by roughly 0.01 𝐸ℎ, the corrected energies are
almost equal, and except for around the equilibrium differ only
in the order of milli-Hartrees, where the fewer qubits computa-
tion actually performs better because of the higher-dimensional
CABS. Additionally, the results for cheap and good PNOs are
much closer than before. This rationale behind this is that with
𝑁el = 6, with three diagonal and three off-diagonal pairs, there are
4𝑁diag + 8𝑁offdiag = 36 PNOs readily generated within one macro-
iteration, and given they do not differ too much in “quality”,
this already yields a decent RI-representation. For higher bond
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Fig. 2 Atomic systems. Comparison of classical FCI with corrected basis-set-free VQE+[2]R12 energies using good PNOs. We use a SPA-UpCCD ansatz for VQE 91.
Data for classical computations is from 11. Note that the corrected results of He are in parts lower than FCI and thus show the non-variational nature of the perturbative
correction.

distance, this almost levels out, while for lower distances with
stronger electron-electron correlation, the larger CABS still pays
off.

BeH2 Results for BeH2 are shown in Figs. 3j,3k,3l; these have
been obtained in a frozen-core approximation with four active
reference orbitals. We point out that for larger bond distances, the
PNO-approximation in the construction of the quantum circuit
does not hold anymore as good. This was already noticed in11

and overcome using an adaptively enriched parametrization in
the style of ADAPT-VQE73. Here, we abstain from doing so and
investigate the impact of the correction in such a regime. We see
that – as expected – the explicitly correlated correction is not able
to account for weak properties of the underlying ansatz.

The last set of potential energy surfaces we look at are comprised
by the PES for the hydrogen molecule and lithium hydride in
Gaussian basis sets in Fig. 4. They show potential energy surfaces
for H2 and LiH in STO-3G and 6-31G with a specific CABS basis
generated by CABS+61 to demonstrate that Gaussian basis sets
with designated CABS can be used in the same manner. Here, we
do not observe any anomalies with respect to the results before
but see only consistent behaviour, e.g. the vanishing correction
for large bond distances in the case of H2.

3.4 NPE + MAX

As a final result, we consider the non-parallelity error (NPE)
and maximum error (MAX) defined over the computed PES for
the cases of H2, LiH and BH, following11. We compare MRA-
PNOs with and without corrections with a corrected DZ-basis
(with cc-pVDZ-F12-OPTRI as CABS). We do not use a F12-
optimized cc-pVDZ-F12 for the orbital basis to keep the number
of qubits closer to the MRA-PNO computations. With Δ𝐸 (𝑅) =���𝐸 (𝑅) −𝐸FCI

ref (𝑅)
���, these error metrics are defined as

Δ𝐸NPE = max
𝑅∈PES

Δ𝐸 (𝑅) − min
𝑅∈PES

Δ𝐸 (𝑅) (16)

Δ𝐸MAX = max
𝑅∈PES

Δ𝐸 (𝑅). (17)

Looking at Fig. 5, we can say that in particular the MAX error
is consistently and significantly reduced. Since the explicitly cor-
related correction is not a constant shift but typically higher for
lower bond distances and thus higher electron-electron correla-
tion, the NPE error is not necessarily reduced but also does not
increase by much in our computations. This holds in particular for
the smaller systems because this effect carries more weight here.
Occasional increase in NPE can be traced to higher correction for
short bond distances, which holds in particular for smaller sys-
tems (compare to discussion of H2 in section 3.3). This effect is
is less severe for larger systems, as witnessed by BH in Fig. 5. For
C2, Ref. 99 observed a reduction in NPE as well.

4 Conclusion and Outlook
First and foremost, we have proposed a workflow for the combi-
nation of the explicitly correlated [2]R12 -correction together with
VQE, and provided the software infrastructure to carry out such
computations. Based on a few small test systems, we were able
to show a significant increase in accuracy when using this correc-
tion. Although [2]R12 is a non-variational perturbation method,
within out experiments, we only noticed few and low overshoots
beyond FCI as long as the reference method produced a some-
what sensible approximation. For non-sensical or very bad refer-
ence inputs, the behaviour of the correction also seemed unpre-
dictable. In particular in combination with orthogonalized MRA-
PNOs11,59 employed in the reference method as well as comple-
mentary basis shows considerable promise, and allows to per-
form the quantum routine at a cost of a minimal basis yielding
accuracies comparable to large correlation-consistent basis sets
currently unfeasible for quantum algorithms. Of course, PNOs
generated by a set of Gaussian orbitals can be considered equiv-
alently. To ease the combination of PNOs with a complementary
basis composed of Gaussian basis functions, an interface of the
MRA part of MADNESS 60 with e.g. MPQC 100 can be envisioned.
Additionally, exploiting the PNO-structure for the parametrized
quantum circuit turned out to be a powerful tool to reduce pa-
rameters within the classical optimization subroutine of VQE. For
larger systems such as BeH2 however, this parametrization turned
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out to loose validity – ways to overcome this are proposed in
Ref. 11. Here we used the separable pair ansatz91 as an af-
fordable way to construct quantum circuits, illustrating also that
[2]R12 can not overcome fundamental limitations in the ansatz.
We divided our MRA-PNO computations into a set of cheap and
good PNOs, based on the quality of the generated PNOs. We
note that for small systems, the cheap set often does not yield
a large enough number of extra PNOs to induce a significant im-
pact, larger systems with more than 1-2 pairs quickly generate
a quite rich set of PNOs (see correction for BH in Fig. 3i, where
the corrections for both sets of PNOs do not differ much). Fur-
ther, known physical behaviour has to be kept in mind and moni-
tored when growing PNOs, such as the pair structure of LiH (off-
diagonal PNOs barely contribute) or critical geometries along the
potential energy surface that tend to degeneracies (compare to
the cheap sets of H2 and LiH in Figs. 3a,3d.). Yet in any case,
whenever the reference PNOs are sufficiently good, adding re-
maining left-over orbitals throughout [2]R12 in the spirit of Ref. 9
is beneficial. Beyond that, it would be interesting to consider the
constructing geminal-spanning orbitals from Ref. 101 instead of
MP2-PNOs using MRA.
While our findings imply a reduction in the number of qubits
at the same level of accuracy, due to its perturbative nature we
cannot give projections regarding circuit depth, number of en-
tangling gates, or other cost measures. Yet in comparison to
the transcorrelated approach10, the Hamiltonians using a per-
turbation method remain unchanged and do not exhibit an in-
creased number of terms. On the other hand, the perturbation
method does not allow for the same level of flexibility as a reg-
ularized Hamiltonian. In the end, the choice between these two
approaches depends on a case-by-case basis and might even boil
down to a matter of taste. It remains to investigate which of the
methods yield more accurate results. Within a classical bench-
mark49, they performed equally well.
Additionally it would be interesting to examine the influence of
noise on [2]R12 , which has not been considered in this work.
To this end, we refer to Ref. 87 who applied the virtual quantum
subspace expansion on actual quantum hardware. Beyond that,
Refs. 86, 87 proposed a technique to account for measurement
noise – similar approaches can be thought of in this case.
Finally, one might think of combinations of the quantum subspace
expansion together with [2]R12 , given that the necessary reduced
density matrices are already available. However this does turn
out to be not trivial because when applying two different pertur-
bative schemes, one must be careful not to account for the same
behaviour twice and “overcompensate”. One way to approach
this might be to follow the idea of a “CABS singles” correction19

to additionally account for one-electron incompleteness.
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101 F. Pavošević, F. Neese and E. F. Valeev, The Journal of chemi-
cal physics, 2014, 141, 054106.

102 M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen,
F. Ertinaz, A. Fedoseev, L. Groer, F. Mao, B. C. Mundim et al.,
Proceedings of the Practice and Experience in Advanced Re-
search Computing on Rise of the Machines (learning), 2019,
pp. 1–8.

103 C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig,
T. Henriques, J. Dempsey, C.-H. Yu, J. Chen et al., Journal of
Physics-Conference Series, 2010, p. 012026.

104 A. J. May, E. Valeev, R. Polly and F. R. Manby, Physical Chem-
istry Chemical Physics, 2005, 7, 2710–2713.

A Code-Sample to calculate [2]R12 with Tequila

1 import tequila as tq

2

3 def compute_with_mra_pnos(act , ri , geometry):

4 madroot = ’’’link to madness executable ’’’

5 madnessinput = {"pnoint": {’cabs_option ’: ’pno’, ’

↩→ n_pno ’: act , ’gamma ’: 1.4, ’orthog ’: ’cholesky ’}}

6 # We use "act" orbitals for the reference and an RI

↩→ space of "ri" orbitals

7 # The n_pno in mol sets the overall number of PNOs to

↩→ be generated , while the n_pno in the madnessinput

↩→ sets the size of the reference space in the CABS+

↩→ procedure

8 mol = tq.Molecule(name=’molecule ’, geometry=geometry ,

↩→ basis_set=’madness ’, n_pno=ri, active_orbitals =[i

↩→ for i in range(act)], executable=executable , **

↩→ madnessinput)

9 H = mol.make_hamiltonian ().simplify ()

10 U = mol.make_upccgsd_ansatz(name=’SPA -UCCD’)

11 E = tq.ExpectationValue(H=H, U=U)

12 # HF as initial values

13 initial_values = {k: 0.0 for k in E.extract_variables

↩→ ()}

14 result = tq.minimize(objective=E, method="bfgs",

↩→ initial_values=initial_values)

15 energy = result.energy

16 angles = result.angles

17 # Prepare information to build rdms -- this can also

↩→ be handed over explicitly

18 rdminfo = {"U": U, "variables": angles}

19 # Compute f12 correction , use full CABS

20 dE = mol.perturbative_f12_correction (** rdminfo)

21

22 return energy , dE

23

24

25 # Quick test with GBS and MRA -PNOs

26 res_pno = compute_with_mra_pnos (2, 5, ’H 0.0 0.0 0.0\nH

↩→ 0.0 0.0 1.0’)

27 print(res_pno) # ( -1.12866 , -0.00638), dim(RI)=6

1 import tequila as tq

2 import psi4

3

4 def compute_with_gbs(obs , cabs , geometry):

5 # Currently: Need C1 symmetry for [2] R12

6 mol = tq.Molecule(geometry=geometry , basis_set = obs ,

↩→ point_group=’c1’)

7 # Let’s use psi4’s "detci" to determine the RDMs --

↩→ generally , only CI -methods work right now

8 psi4_method = ’detci ’

9 # Set the CABS -basis set for the correction

10 cabs_opt= {’cabs_name ’: cabs}

11 # Here , let’s compute the RDMs explicity (but one can

↩→ do the same as above and hand over this

↩→ information via keyword arguments)

12 mol.compute_rdms(psi4_method=psi4_method)

13 energy = mol.logs[psi4_method ]. variables["CI TOTAL

↩→ ENERGY"]

14 dE = mol.perturbative_f12_correction(rdm1=mol.rdm1 ,

↩→ rdm2=mol.rdm2 , cabs_type=’cabs+’, gamma =1.4,

↩→ cabs_options=cabs_opt)

15

16 return energy , dE

17

18

19 # Quick test

20 res_gbs = compute_with_gbs(’sto -3g’, ’6-31g’, ’H 0.0 0.0

↩→ 0.0\nH 0.0 0.0 1.0’)

21 print(res_gbs) # ( -1.10115 , -0.00174), dim(RI)=6

B PNOs as CABS
The following data comes from24.
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First, we take a look at the “convergence” of the [2]R12 -
correction with respect to the dimensionality of the RI space to
allow a judgement whether additional F12-regularization of the
MRA-PNOs is beneficial, and how MRA-PNOs perform as a CABS
in comparison to designated Gaussian basis sets. Note that we do
not consider the RI-error here as this is rather a proof-of-principle
for the convergence behaviour of MRA-PNOs vs. GBS for CABS
than actual production calculations. Results therefor are depicted
in Fig. 6.
In the case of the hydrogen molecule, the best energies are
achieved by the GBS-CABS, while the mixed-approach does not
improve the result further. This means that the GBS-CABS,
cc-pVDZ-F12-OPTRI, is likely to be very well suited as RI in this
case, which is expected because it is optimized for this use. The
regularized equivalent yields a barely improved result. Looking
at the PNO-CABS, we see that the unregularized surrogate per-
forms almost as well as the much larger GBS-CABS, while the
PNO-CABS grown by MP2-R12 give a worse result despite a cor-
rection of almost the same magnitude using even less orbitals as
CABS. The reason thereof is that the reference is different. In
the case of MP2 as surrogate, both the PNOs for OBS and CABS
are unregularized, and accordingly, for the MP2-F12 CABS, we
use OBS that have been generated within the same process com-
ing from MP2-F12. We chose this approach because this way, the
PNOs are generated within one consistent procedure and then
easily combined by CABS+61. Different combinations, mixing

MP2 and MP2-F12 for OBS and CABS, can be thought of as well
but lead to a less efficient procedure that creates a fair amount of
unnecessary orbitals that are to be projected out.
Taking a look at the converse result for lithium hydride, we see
that here, the MP2-F12 options do considerably worse than be-
fore. The higher magnitude of the correction is again related to
the worse reference energy using PNOs built by MP2-F12. Build-
ing a higher-quality CABS in this case might account for that
but comes at additional cost. Further the choice of GBS-CABS
(def2-SVP-RIFIT) leads to generally low-performing GBS-CABS
in this case, which is much less extensive than the we chose for
the hydrogen molecule. The noticable improvement by the mixed
approach in the case of MP2-F12 supports this. Yet still, the same
basis set for LiH would amount to 110 basis functions, which is
more than three times than for the PNO-CABS in this case.
To formulate an overall recommendation, we come back to the
[2]R12 -correction, which in the framework of Ref.20 scales cubi-
cally within the framework of approximation C65 or quadratically
within approximation D66,104 in the RI-dimensionality. Ref. 66
proposes a method using PNOs to reduce the cost of MP2-F12
to quasi-linear dependence in the RI-basis except for some inex-
pensive quadratic terms; a similar approach could be employed
to reduce this cost for [2]R12 , too. Given the seemingly almost
equivalent performance of unregularized PNOs for OBS and CABS
and the fact, that there are significantly less CABS functions in this
case, this approach seems most desirable within this context.
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(e) Good PNOs & CABS, dim(RI) = 41
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(g) Cheap PNOs & CABS, dim(RI) = 39
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(h) Good PNOs & CABS, dim(RI) = 51
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(j) Cheap PNOs & CABS, dim(RI) = 19
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(k) Good PNOs & CABS, dim(RI) = 48
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Fig. 3 Potential energy surfaces with [2]R12 -correction and PNOs as CABS for H2, LiH, BH, BeH2, following Ref. 11. SPA ansatz with doubles excitations only (SPA-
UpCCD 91). For validation of the SPA ansatz compared to classical techniques such as HF, CC, we refere to Ref. 91

.
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Fig. 4 Corrected potential energy surfaces using classical FCI and Gaussian basis sets.

12 20 20 12 22 38 12 22 38
Number of qubits 𝑁𝑞

0

20

40

60

80

Er
ro

r
[m

Eh
]

H2

LiH

BH

NPE – VQE/MRA
NPE - VQE/MRA+[2]R12
NPE - FCI/cc-pVDZ
NPE - FCI/cc-pVDZ+[2]R12

(a) Non-Parallelity Error

12 20 20 12 22 38 12 22 38
Number of qubits 𝑁𝑞

0

25

50

75

100

125

Er
ro

r
[m

Eh
]

H2

LiH

BH

MAX - VQE/MRA
MAX - VQE/MRA+[2]R12
MAX - FCI/cc-pVDZ
MAX - FCI/cc-pVDZ+[2]R12

(b) Maximum Error

Fig. 5 Performance of MRA-PNOs with and without [2]R12 in comparison to FCI in a DZ-basis. CABS for MRA are generated using the good setup (dim(CABS) as in
Fig. 3; for the GBS we used cc-pVDZ-F12-OPTRI, amounting to dim(CABS) of 48 for H2 and 110 for both LiH, BH).
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(b) H2 with MP2-F12 as surrogate model
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(c) LiH with MP2 as surrogate model
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Fig. 6 Explicitly correlated [2]R12 -correction over the dimensionality of RI basis for H2 and LiH given a fixed OBS of MRA-PNOs, determined according to the good
procedure. The final point is annotated with the corrected energy. H2: cc-pVDZ-F12-OPTRI for GBS-CABS and 3 PNOs added to the CABS in the mixed case. LiH:
def2-SVP-RIFIT as GBS-CABS, the mixed procedure adds another 6 PNOs to the CABS.
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