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Evaluating Fast Methods for Static Polarizabilities on

Extended Conjugated Oligomers†

Danielle C. Hiener,a Dakota L. Folmsbee,a Luke A. Langkamp,a and Geoffrey R. Hutchisona,b

Given the importance of accurate polarizability calculations to many chemical applications, coupled
with the need for efficiency when calculating the properties of sets of molecules or large oligomers,
we present a benchmark study examining possible calculation methods for polarizable materials. We
first investigate the accuracy of the additive model used in GFN2, a highly-efficient semi-empirical
tight-binding method, and the D4 dispersion model, comparing its predicted additive polarizabili-
ties to ωB97XD results for a subset of PubChemQC and a compiled benchmark set of molecules
spanning polarizabilities from approximately 3Å3 to 600 Å3, with some compounds in the range of
approximately 1200 Å3-1400 Å3. Although we find additive GFN2 polarizabilities, and thus D4,
to have large errors with polarizability calculations on large conjugated oligomers, it would appear
an empirical quadratic correction can largely remedy this. We also compare the accuracy of DFT
polarizability calculations run using basis sets of varying size and level of augmentation, determining
that a non-augmented basis set may be used for large, highly polarizable species in conjunction with
a linear correction factor to achieve accuracy extremely close to that of aug-cc-pVTZ.

1 Introduction

Polarizability plays a key role in many chemical processes and
phenomena, and its accurate calculation is therefore crucial to
a variety of applications. Because of its fundamental role in ex-
plaining dispersion forces1, it is a key component of widely-used
dispersion corrections for computational calculations.2 The im-
portance of accurate electrostatic interactions has led to the de-
velopment and widespread use of polarizable force field models
for studying systems such as biomolecules3,4 and ionic liquids.5

Computationally-derived Raman spectra also rely on the calcula-
tion of polarizability tensors.6 Polarizability values are also neces-
sary to calculate the values of more complex material properties
such as refractive index7 and dielectric constant8, often in the
context of molecular screening.

Because of its wide utility, polarizability has been the topic
of a number of recent computational benchmark studies. Hait
and Head-Gordon provided a thorough examination of the per-
formance of a large number of density functional theory (DFT)
functionals at the complete basis set (CBS) limit for 132 small
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molecules.9 Frediani et. al. used a subset of the Head-Gordon
study’s molecule set to test the veracity of that study’s CBS limit
claim using alternative multiwavelet bases in order to reduce po-
tential error.10 Sauer and co-workers used a benchmark set of
14 heteroaromatic molecules to assess the accuracy of various
second-order methods for both static and frequency dependent
polarizabilities.11 Afzal and Hachmann tested various DFT meth-
ods to determine the best way to balance accuracy and efficiency
for high-throughput non-conjugated polymer screening.12

While all of these studies provide valuable insight into the
relative accuracy of various polarizability methods for different
applications, none of them examine such methods for the high
polarizability limit. As shown in our previous work using a ge-
netic algorithm (GA) to search for high dielectric oligomers, there
is a need for a polarizability method capable of calculating large
polarizabilities (on the scale of 102 Å3) while making efficient
use of time and computational resources.8 As a point of refer-
ence, all of the molecular species examined by the previously
mentioned studies possess isotropic polarizabilities less than 40
Å3. The Hachmann study suggests the viability of extrapolat-
ing polymer polarizabilities from oligomers for non-conjugated
species, but notes that this proves untenable for species with con-
jugated backbones due to electron correlation effects in the π-
system.12 Wong and coworkers performed a polarizability bench-
mark on oligomers of polydiacetylene and polybutatriene which
included some hexamer polarizabilities greater than 200 Å3.13 It
is worth noting that despite augmented basis sets being recom-
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mended for accurate polarizability calculations14, the basis sets
used in this study were not augmented due resource constraints.
In another benchmark study from Wong, linear polarizabilities
(and hyperpolarizabilities) were found for a range of streptocya-
nine oligomers.15 By using CCSD(T)-F12 which enhances basis
set convergence, they were able to give a basis set extrapolation
of computed polarizabilities from a non-augmented triple zeta ba-
sis set. Both studies provide useful data, including the effects
of short-range exchange on polarizability and CCSD(T) calcula-
tions in the former and an assessment of MP2 quality and the im-
portance of potential lower-energy open-shell states in the latter,
however the scope of neither study was intended to examine re-
source efficient polarizability methods for large oligomers. With
the realm of computationally-generated novel materials contin-
uing to grow, data is needed on resource-efficient methods and
basis sets to find accurate polarizabilities of largely polarizable
molecules.

In this work, we analyze the viability of using the common
additive polarizability model in the popular semi-empirical tight-
binding method GFN2-xTB (GFN2) and the connected the D4
dispersion model, on both small organic molecules from Pub-
ChemQC16 for which we expect GFN2/D4 to perform well, and
highly polarizable conjugated species, for which we expect some
degree of inaccuracy. Testing on a set of small organic molecules
gives us a point of comparison which allows us to precisely iden-
tify GFN2/D4’s strengths and limitations when it comes to polar-
izability calculations for larger extended systems. While it is un-
derstood that GFN2/D4 is empirically tuned to most accurately
calculate the polarizabilities of relatively small molecules, testing
this method on larger conjugated systems is of special interest
since the same basic method used to compute GFN2 polarizabil-
ities is also central to the D4 dispersion correction used widely
with DFT methods on species of a wide variety of sizes and chem-
ical structures.2,17

We also examine four basis sets of varying size and level of
augmentation to determine whether smaller basis sets can be
used to calculate large polarizabilities since they minimize issues
regarding computation time and potential linear dependence. Dif-
fuse functions are generally accepted as necessary to describe
the long-range electron behavior and electron correlation impor-
tant for polarizability calculations, demonstrated in by Rowley
and co-workers’ assessment that augmenting basis sets with dif-
fuse functions leads to a substantial increase in accuracy, partic-
ularly for polarizability calculations.14 Earlier works by Dykstra
and Clementi found that while augmented basis functions were
critical to accurate polarizabilities in small molecules, this effect
generally diminishes as the molecule size increases, likely due to
the the relatively great importance of intraatomic polarization in
small systems.18–20 The solutions proposed by these works gener-
ally involve finding the optimal number and type of diffuse func-
tions necessary for accurate polarizability calculations on a given
type/size of molecular system. We wanted extend this a step fur-
ther, testing the correlation between a standard augmented ba-
sis set and several non-augmented and partially-augmented basis
sets to determine if smaller basis sets could be used universally
with some type of correction factor, saving compute time and the

effort of selecting a particular basis set for each chemical system.

2 Computational methods

Two primary data sets were analyzed in this benchmark. The first
set is a randomly chosen subset of approximately 8,400 species
from PubChemQC’s approximately 3.2 million known small (molec-
ular weights less than 500 a.u.) organic molecules.16 It was cho-
sen to provide a strong basis of comparison as a set of molecules
for which we expected additive GFN2/D4 to perform well. The
second “wide [polarizability] range” set is drawn from previous
studies and designed to cover a very wide range of polarizabili-
ties. Drawing from the pool of hexamer structures we had created
with our GA, we constructed a set of 54 hexamers with GFN2/D4
predicted polarizability values in the approximate range of 80-
280 Å3. In order to balance out our benchmark set, we also added
19 conjugated oligomers and small molecules with GFN2/D4 pre-
dicted polarizability values in the “medium polarizability” range
of 4-91 Å3. Hexamer equilibrium geometries were found us-
ing preliminary force-field optimization using OpenBabel21 with
MMFF9422–26 or UFF27,28 followed by geometry optimization us-
ing GFN2.17 Equilibrium geometries for the medium polarizabil-
ity molecules were optimized with ORCA 4.0.0.229 using DFT
with the B3LYP functional30–33 and 6-31G(d) basis set.34,35

All polarizabilities reported in this study are isotropic, mean-
ing they are the average of the diagonal elements of the polar-
izability tensor. We chose to focus on static, isotropic polariz-
abilities for this study due to their general applicability to a va-
riety of theoretical and computational fields, including method
development, dispersion correction, and polarizable electrostat-
ics. For GFN2 calculations, polarizabilities were calculated using
xTB which relies on the D4 method in which polarizabilities are
calculated using a weighted sum of precomputed atomic polariz-
abilities.2,17 DFT calculations were performed in Gaussian 0936

for the PubChemQC set and ORCA 4.0.0.229 for the wide range
set, both analytical derivatives and coupled-perturbed equations.

For GFN2/D4 comparison studies with both the PubChemQC
and wide range sets, non-augmented basis sets were chosen with
an emphasis on efficiency over absolute accuracy. This was done
to estimate how well GFN2 compared generally to DFT, without
facing potential resource and/or linear dependence issues likely
to arise when using augmented basis sets with large molecules.
For the comparison of basis set accuracy, aug-cc-pVTZ37,38 was
selected as the standard of comparison. As noted in the introduc-
tion, diffuse functions are generally considered necessary to de-
scribe the long-range electron behavior and electron correlation
important for polarizability calculations. This particular basis set
was chosen because Rowley and co-workers determined that aug-
cc-pVTZ performed better than both a similar non-augmented
triple-zeta basis set and an augmented double-zeta basis set.14

Additionally, Sauer and co-workers found using larger augmented
basis sets do not yield substantial accuracy increases for polariz-
ability calculations despite the increased time required.11

3 Results and discussion

Due to our interest in finding an efficient method for calculat-
ing molecular polarizabilities for novel molecular searches, we
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sought to test the accuracy of the additive GFN2/D4 model on
common small molecules. As an initial experiment, we calculated
the polarizabilities for approximately 8,400 species from the Pub-
ChemQC dataset, using both GFN2/D4 and DFT with the ωB97XD
functional39 and the cc-pVTZ basis set. Although this does not
allow polarizabilites to be as accurate as when calculated with
augmented basis sets, it allowed us to perform thousands of cal-
culations quickly and gave us an initial baseline against which we
could compare GFN2/D4. As discussed below, such results can be
scaled to augmented basis sets.

Due to the presence of a few outliers, robust linear regression
was performed using SciKit learn’s Huber regressor method40,41

with default epsilon value of 1.35 to limit outlier effects. The y-
intercept was also forced to zero, representing the physical reality
that a completely non-polarizable molecule should be computed
to have zero polarizability by any method. After performing Hu-
ber linear regression (Figure 1), two notable observations were
apparent. While the trendline’s slope was very close to one, the
values calculated with GFN2/D4 were often substantially lower
than those calculated with DFT, with differences as great as over
100 Å3 between the two methods. This error appears to be some-
what systematic, as species with lower polarizabilities generally
have smaller differences in calculated values (Figure 1A) whereas
those with high polarizabilities generally have larger differences
in calculated values (Figure 1C). A substantial number of species’
values appear as outliers from the regression line, suggesting a
level of random error in GFN2/D4 calculations.

3.1 Highly Polarizable Oligomers

In order to further explore the performance of GFN2/D4 for large
polarizability calculations, we pursued testing a smaller group of
molecules with a wider range of polarizabilites. While we are
aware that because of its minimal basis set approach GFN2 is best
geared toward polarizability calculations for small molecules, we
believe it is important to test its performance on a range of species,
including conjugated oligomers. We are interested in the via-
bility of GFN2/D4 additive polarizabilities for two primary rea-
sons: first, to test them as resource-inexpensive albeit relatively
low accuracy calculations that allow for bulk molecular screen-
ing. For example, because of its vast speed-up compared to ab

initio methods, we previously used GFN2/D4 to calculate the po-
larizabilities of novel hexamer structures generated by a genetic
algorithm (GA)-driven search for high-dielectric organic conju-
gated oligomers.8 For that work, we chose to use GFN2/D4 de-
spite suspecting a degree of inaccuracy at high polarizabilities.
The speed-up GFN2/D4 provides over DFT methods was neces-
sary to complete the thousands of hexamer polarizability calcula-
tions in a reasonable amount of computation time. We qualified
our work by noting that while GFN2/D4 appeared to vastly under-
estimate large polarizabilities, it appeared to do so in a systematic
way, such that the order of the polarizabilities’ magnitudes rela-
tive to one another was preserved (allowing us to accurately rank
molecules by polarizability, as was needed for the GA). The sec-
ond reason we believe it is both relevant and important to test
GFN2’s ability to calculate polarizabilities for a wide range of

chemical species is that shares the additive polarizability model
with the D4 disperson-correction method, which is widely used
for a variety of species including those not limited to the types of
small molecules for which GFN2 has been calibrated.

To test the integrity of the GFN2/D4 polarizability results for
the 73 member “wide range" benchmark set, we ran single point
DFT polarizability calculations using the ωB97X functional39 and
the cc-pVTZ basis set.37,38,42–44 Although the accuracy of certain
DFT methods, such as GGA functional LC-BLYP, has been noted
to be somewhat poorer for polarizability than coupled cluster or
MP2 method in the past45, we believed that due to the large size
of some of the molecules in our set DFT would scale better than ei-
ther a coupled cluster or MP2 method. Additionally, in the polar-
izability benchmark by Hait and Head-Gordon9, hybrid GGAs like
ωB97X-D are noted as performing well for polarizability calcula-
tions with low RMS relative errors (RMSREs). For reference, that
benchmark reported an RMSRE across its 132 member dataset of
5.18 for ωB97X-D, 11.12 for MP2, and 12.14 for BLYP. This par-
ticular hybrid GGA functional was chosen because it allowed us to
compare the DFT results for the “wide range" set to the previously
computed results for the PubChemQC subset, since the former
was performed in ORCA 4.0.0.2, which does not have an option
for the exact dispersion-corrected functional used in the latter’s
calculations in Gaussian 09. This basis set was chosen because it
was the largest basis set that we were able to reach convergence
with for all species in the “wide range" set in a reasonable amount
of computation time.

Performing Huber regression with a fixed intercept at the ori-
gin on the GFN2/D4 and ωB97X polarizabilities from our “wide
range" set (Figure 2), we observed trends similar to those seen
in the PubChemQC study. We again observed smaller differences
in polarizabilities less than 50 Å3, with a mean absolute error of
4.72 Å3 (Figure 2A), and increasingly larger differences as polar-
izabilities increased, with an MAE of 37.31 Å3 for polarizabilities
less than 100 Å3(Figure 2B), and an MAE of 145.02Å3 for the
entire set (Figure 2C). We similarly observed greater variation in
polarizability differences as their magnitudes grew, shown by the
drastically smaller R2 value for the full set as compared to the sub-
set with values less than 50 Å3. Three extreme outliers appeared
(Figure 2C), in which the percent error of the GFN2/D4 calcu-
lated value was in excess of 80%. These outliers were run with the
same DFT method and basis set using Gaussian (Table S1), which
confirmed the ORCA results and the presence of troubling ran-
dom errors in GFN2’s polarizability calculations. Examining their
chemical structures (Figure 3), they all contain sulfur ring sys-
tems, so it is possible that this particular motif can cause problems
for polarizability calculations with GFN2/D4. We compared the
chemical similarity of each of the outliers to the rest of the wide
range set using Tanimoto coefficients (Tables S2, S3, and S4).
Interestingly, outliers A and C were most similar to each other
with a Tanimoto coefficient of 0.535, and then to a lesser degree
to other hexamers containing the same terthiophene monomer
unit. Given that the other hexamers containing this terthiophene
monomer did not have similar polarizability calculation issues,
it is not immediately clear why these two structures were out-
liers. Outlier B was not especially similar to other members of the
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Fig. 1 Comparison of PubChemQC polarizabilities calculated with GFN2/D4 to those calcuated with DFT functional ωB97X.

wide range set, with the highest Tanimoto coefficient between it
and another molecule being 0.324. More detailed investigation
is needed to examine the exact cause of these structural outliers,
but that is beyond the scope of this work.

3.2 Investigation of Potential GFN2/D4 Improvement Strate-

gies

As shown in the above assessment, GFN2/D4 performs well when
calculating relatively small isotropic polarizabilities, in the range
<50Å3 common for most small molecules. For species with larger
polarizabilities, especially for long conjugated systems like the
hexamers in the “wide range" set, GFN2/D4 appears to system-
atically underestimate the polarizability. We believed this derives
from its use of an atom-additive polarizability model, neglecting
the nonlocal polarizability-enhancing effects of electron delocal-
ization. In order to verify that assumption, we calculated the
polarizabilities for polyacetylene and polythiophene oligomers of
increasing length using both GFN2 and DFT (Figures S7 and S8);
this indeed showed that the GFN2 calculations do not follow the
same quadratic trajectory with increasing number of monomer
units as the DFT calculations do, but a rather more linear trajec-
tory, indicating that GFN2 does not take into account the nonlocal
effects of electron delocalization. Our results suggest a correction
is needed to allow GFN2/D4 to more accurately predict larger
polarizabilities.

We began by constructing an additive polarizability model as
a baseline comparison for GFN2/D4 performance. For this model,
each atom in a molecule was assigned its GAFF atom type46,
which was used to further assign it to an Alexandria polarizability
type and then finally a corresponding atomic polarizability.4 The
molecular polarizability was calculated as the simple sum of these
atomic polarizabilities. We found that the additive model per-
formed extremely similarly to GFN2/D4 (Figure S1), providing
computed polarizabilities with high correlation with GFN2/D4
(Figure S2).

Given GFN2/D4’s systematically increasing inaccuracy for large
polarizability calculations, we considered additional chemical prop-
erties related to electron delocalization that could potentially cor-
rect the additive GFN2/D4 polarizability.

Since the polarizability is connected to chemical hardness η

in conceptual DFT,47,48 which is defined by the HOMO-LUMO
gaps, we first examined the GFN2-computed HOMO-LUMO gaps
for both the PubChemQC subset and the hexamers from the wide

range polarizability set. In principal, the highly polarizable π-
conjugated species should have smaller HOMO-LUMO gaps. Un-
fortunately, there was not a useful correlation between the calcu-
lated polarizability and molecular HOMO-LUMO gap (Figure 4A),
likely because GFN2 is not parameterized for HOMO or LUMO
eigenvalues to connect with ionization potential or electron affin-
ity.

We then used an empirical descriptor of the geometric size
of the largest conjugated π-system.49,50 While better correlated
to GFN2/D4 polarizability than HOMO-LUMO gap, this informa-
tion was not enough to meaningfully correct large polarizabilities
(Figure 4B). Also, a further examination of the data for molecules
with 25 π-systems or fewer showed almost no correlation (Fig-
ure S3).

Plotting DFT polarizabilities against GFN2/D4 polarizabilities
for the PubChemQC subset and the “wide range" set, we exam-
ine the effects of using a polynomial fit. As an aside, because the
PubChemQC subset and “wide range" sets were computed at dif-
ferent times using slightly different methods, with Gaussian with
a dispersion correction and with ORCA without a dispersion cor-
rection, respectively, the functional has been labeled ωB97X(D)
here to indicate that for part of the data set a dispersion correc-
tion was used. We do not believe that the dispersion correction or
program makes a meaningful difference in this case, as shown by
the low MAE demonstrated for a sample of PubChemQC species
in Table S5, and therefore the PubChemQC and “wide range" re-
sults may be grouped together and treated as one large dataset.
While in principle, dispersion could be scaled based on electron
density and therefore could affect the final polarizability value, it
is not part of the D4 implementation to do so and therefore does
not make a difference.2 We note that a quadratic fit provides a
better correlation description than a linear fit, where the former
has a MAE of 2.47 Å3 compared to ωB97X(D), while the latter
has an MAE of 7.94Å3 compared to ωB7X(D) (Figure 5). We
therefore conclude that although not as physically meaningful as
an adjustment based on a related molecular property, we find a
quadratic fit with zero intercept provides the best correction to
GFN2/D4 for large polarizability calculations, and note the linear
coefficient remains close to unity.

For comparison and the sake of completeness, we also tested
the correlation between DFT and sTDA-xTB, a simplified time-
dependent DFT procedure with a larger inherent basis set.51 Al-
though designed for orbital energies and electronic spectroscopy,
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Fig. 2 Using the Huber Regressor to perform linear regression robust to outliers (and forcing the y-intercept to 0), GFN2/D4 shows some linear
correlation with ωB97X cc-pVTZ for isotropic polarizability calculations.
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Fig. 3 Chemical structures of the hexamers seen as the three major
outliers in Figure 2C.

this method has been used successfully for regarding electron
density and polarizability calculations in specific cases.52–55 Our
attempt to use sTDA-xTB yielded worse results, with a linear fit
MAE of 15.85Å(Figure S4). After this initial attempt, we per-
formed additional sTDA-xTB calculations on the wide range data
set to determine whether varying the energy threshold that con-
trols the truncation of the CI space, which was set to 10 eV for
the initial calculations, made a substantial difference. Figure S5
shows results comparing calculations for the wide range set with
a 10 eV threshold to those with a 15 eV threshold. We also at-
tempted to run sTDA-xTB with an energy threshold of 25 eV for
the wide range set, but ran into time and memory limitation is-
sues with the largest hexamers. Figure S6 shows comparison plots
including only the 34 species from the wide range set which have
successfully completed sTDA runs for all three energy thresholds.
In both figures, performing linear regression with a forced zero
intercept shows slight improvement in R2 and RMSE, however it

does not substantially change the results and does push the slope
slightly farther away from one. Moreover, the results are still
worse than the additive GFN2 / D4 model.

We also compared the results of sTDA using the 10 eV en-
ergy threshold for polyacetylene and polythiophene oligomers of
increasing length to those of GFN2 and DFT with the ωB97X func-
tional and the cc-pVTZ basis set corrected to aug-cc-pVTZ accu-
racy using our linear correction discussed later in this work from
Figure S13. While the quadratic trajectories of the sTDA results
seem to better match that of the DFT results as compared to the
more linear trajectory of the GFN2 results (Figure /reffig:), upon
closer inspection we noted that the quadratic regression line for
DFT vs. GFN2 shows a better fit with much lower random error
than the quadratic regression line for DFT vs. sTDA (Figure /ref-
fig:). This is shown by the smaller residuals for the DFT vs. GFN2
regressions, indicating that GFN2 has much lower random error
than sTDA. This means that GFN2 is reliably correctable for large
conjugated systems, since the vast majority of its error is system-
atic. We believe this makes GFN2 a suitable and preferred method
over sTDA for fast polarizability calculations on larger conjugated
molecules, since the latter’s errors are far more random in nature
and therefore not systematically correctable.

Additionally, for the set of 34 species for which we have com-
parable data for the three energy thresholds tested, we note a
meaningful difference in timings between energy thresholds (Fig-
ures S11 and S12). Because the median calculation time increases
by orders of magnitude as the energy threshold increases, sTDA-
xTB is not only relatively inaccurate for the conjugated oligomer
systems we are interested in, but also impractical from a resource
standpoint.

3.3 Basis Set Comparison

Augmented basis sets are regarded as ideal for accurate polariz-
ability calculations14, however running calculations with a large
basis set for the larger species in the “wide range" set presented
convergence issues. Both the large amount of computation time
needed and the possibility of linear dependence concerns led us
to choose a non-augmented triple-zeta set for our comparative
DFT calculations above. Because we were interested in both the
magnitude of the increase in accuracy provided by diffuse basis
functions and the correlation between polarizabilities calculated
with different basis sets, we ran the “wide range" set subset of
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Fig. 4 Linear regression demonstrates the lack of useful correlation between GFN2/D4 calculated polarizabilities and both GFN2/D4 calculated
HOMO-LUMO gap (A) and a π-system size descriptor (B).

Fig. 5 Linear and quadratic regression are performed on the combined
PubChemQC subset and “wide range" set.

low to medium polarizability species with four different basis sets
for comparison. The sets we used were cc-pVDZ,37,38,42–44 cc-
pVTZ,37,38,42–44 jun-cc-pVTZ,56 and aug-cc-pVTZ,37,38 the latter
two providing increasing amounts of diffuse functions. Pairwise
comparison of increasingly accurate basis sets (Figure 6) reveals
incredibly linear correlations, with simple linear regression anal-
ysis showing slopes close to one and an R2 value of 1.00 for all
three comparisons. In this figure, we did not choose to fix the in-
tercept at zero in order to show the remarkably good correlation
between increasingly augmented basis sets using unconstrained
linear regression. Also, the y-intercepts found using this method
were much closer to zero, and therefore adequately close to phys-
ical reality, than those found using linear regression without a
fixed zero intercept in plots in the previous section. In summary,
while differences in computed polarizabilities exist using larger
and augmented basis sets, across a wide range of molecular po-
larizabilities, such effects appear small.

Comparing each smaller basis set to the largest set considered,
aug-cc-pVTZ, we see similar results to the increasing pairwise
comparison (Table 1). Again, simple linear regression analysis
reveals slopes close to one and R2 values of or nearly 1.00, even
when comparing the largest basis set to a non-augmented double
zeta basis set. The speed-ups are also worth noting, since even us-
ing a partially-augmented basis set (jun-cc-pVTZ) provides over a
2x speedup over the traditionally augmented set. Timings are
shown in more detail in the box plot in Figure 7, where the range
of calculation times for each basis set is shown to decrease sub-

stantially as the sets become smaller.

Basis Set Linear Regression Line R² RMSE Speed-up
cc-pVDZ y = 1.059 x + 3.108 0.999 2.163 63.211
cc-pVTZ y = 1.028 x + 1.312 1.000 0.755 5.941

jun-cc-pVTZ y = 1.007 x - 0.341 1.000 0.424 2.213

Table 1 Comparison of Smaller Basis Sets to aug-cc-pVTZ

The large speed-ups provided by non or partially augmented
basis sets, combined with lower risk of linear dependence issues,
make them better, albeit less accurate, choices for polarizability
calculations for large conjugated systems. The linearity between
systematically larger basis sets suggests that for species with large
polarizabilities, the increase in accuracy of the magnitude of the
polarizability is not substantial, and that a simple linear corre-
lation coefficient could be used to correct large polarizabilities
found with smaller basis sets (Figure S13). Given the increased
RMSE observed with cc-pVDZ, we suggest that for routine use
on large molecules, non-augmented triple zeta basis sets, as used
here, are an efficient balance of time and accuracy.

4 Conclusion

Based on our studies, the additive GFN2/D4 model appears best
parameterized for species with polarizabilities less than 50Å3. In
its current implementation, additive GFN2/D4 does not compare
favorably to DFT-computed polarizabilities in highly polarizable
oligomers. We note that in addition to limiting GFN2’s usefulness
in its present form as a polarizability method for larger and/or
conjugated systems, this raises important concerns about the D4
model’s accuracy for similar systems, since the methods share the
additive polarizability model.

The method’s underestimation of polarizability values, which
systematically grows as polarizability increases, indicates that the
application of a quadratic scaling correction factor could provide
a relatively simple solution to drastically improve the accuracy
of large polarizability calculations. The presence of three sig-
nificant outliers in the GFN2/D4 comparison data, all contain-
ing similar sulfur motifs, suggests the need to examine GFN2/D4
additive parameterization for such chemical structures. Beyond
increasing GFN2/D4 usefulness for efficient polarizability calcu-
lations for large polarizability molecular screening applications,
these improvements would notably also improve the accuracy of
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Fig. 6 Linear regression is performed on isotropic polarizabilities calculated with systematically increasing basis set size for species less than 250 Å3.

Fig. 7 Mean CPU time and the range of CPU time distribution are shown
for systematically larger basis set, displaying dramatic increases in both
as basis sets become larger.

the D4 dispersion method for large π-conjugated species. We also
note that the additive model for GFN2/D4 remains more accu-
rate than calculating polarizabilities using the related sTDA-xTB
model.

With regard to the accuracy and efficiency of basis sets, our
study suggests that using smaller, even non-augmented basis sets
to save time and resources is appropriate for large polarizabil-
ity calculations. The substantial linear correlations seen between
methods of varying size and levels of augmentation suggests that
using a basis set such as cc-pVTZ with a linear scaling factor is
appropriate for large polarizability molecules. By calculating po-
larizability in this manner for molecules with polarizabilities over
200Å3, we believe accuracies near the level of those achieved
with an aug-cc-pVTZ basis set are attainable at nearly a six-fold
speed-up and without the convergence issues we faced when at-
tempting to use this basis set to calculate polarizabilities in this
range. Using a basis set with a linear correction factor opens
up the possibility of calculating highly accurate polarizabilities
for increasingly large molecules using conventional DFT meth-
ods. Additional work will need to be done to test the limits of the
polarizability magnitudes that can be accurately calculated in this
manner.

We hope that the results of this study aid work where the
calculation of large polarizability values is crucial. We note that
for some applications, such as dielectric device development, the
frequency dependence of polarizability should be considered, but
is outside the scope of this work. While GFN2/D4 is not cur-
rently fit to provide accurate calculations for large polarizability

values, we hope that after some minor corrections it will be a vi-
able method for such applications and improve the accuracy of
future dispersion correction methods. Considering the incredible
efficiency, this would provide a valuable tool for future molecu-
lar screening studies of highly polarizable materials. Meanwhile,
using lower-cost non-augmented basis sets with a correction fac-
tor vastly increases the number of potential molecular species for
which highly accurate polarizabilities can be now obtained.
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