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Enhanced Descriptor Identification and Mechanism 
Understanding for Catalytic Activity using Data-Driven 
Framework: Revealing the Importance of Interactions between 
Elementary Steps
Wenjie Liaoa and Ping Liu *a,b

Accurate identification of descriptors for catalytic activities has long been essential to the in-depth understanding of catalysis 
and recently to set the basis for catalyst screening. However, commonly used methods suffer from low accuracy in 
predictability. This study reports an enhanced approach to accurately identify the descriptors from a kinetic dataset using 
the machine learning (ML) surrogate model. The CO hydrogenation to methanol over Cu-based catalysts was taken as a case 
study. Our model captures not only the contribution from individual elementary step, but also the interaction between 
relevant steps within a reaction network, which was found to be essential for high accuracy. As a result, six effective 
descriptors are identified, which are accurate enough to ensure the trained gradient boosted regression (GBR) model for 
well prediction of the methanol turn-over-frequency (TOF) over metal (M)-doped Cu(111) model surfaces (M = Au, Cu, Pd, 
Pt, Ni). More importantly, going beyond the purely mathematic ML model, the catalytic role of each identified descriptor 
can be revealed by using the model-agnostic interpretation tools, which enhances the insight into the promoting effect of 
alloying. The trained GBR model outperforms the conventional derivative-based methods in terms of both the predictability 
and mechanism understanding. It opens alternative possibilities toward accurate descriptor-based rational catalyst 
optimization.

1. Introduction
Accurate identification of descriptors that can scale well with 

the catalytic activity and selectivity is of vital importance in 
catalysis. It can help to develop a quantitative insight into the 
nature of active site and underlying reaction mechanism1, 2, to 
generate explanative and predictive design rules3, and thus to 
guide the screening and rational optimization of catalysts2, 4, 5. 
Although the catalytic activity and selectivity can be obtained 
by kinetic modelling with the chemical master equation, the 
model usually consists of tens of elementary steps and 
hundreds of kinetic parameters6. Such a high dimensionality is 
typically solved by the kinetic Monte-Carlo (kMC) methods7 or 
by mean-filed approximations8, making the interpretation very 
difficult and nonintuitive. Thus, it is necessary to reduce the 
dimensionality of descriptor space.

There are two commonly used strategies to reduce the 
descriptor space and extract the effective descriptors. One is to 
consider the reaction energies or binding energies associated 
with elementary steps based on their certain correlations with 
corresponding activation energies, e.g., scaling relations, group 
additivity-based methods, and Brønsted-Evans-Polanyi 
relations9-11. Only those involved in the highly activated steps 
are considered as possible effective descriptors. The other is to 
evaluate the sensitivity of overall rate to the first-order 

derivative of activation energy for each elementary step. In this 
way, the rate-limiting steps can be identified, and the activation 
energies which strongly control the overall rate, are considered 
as effective descriptors. To do that, the degree of rate control 
(DRC)12 or the sensitivity analysis (SA)1, 13 is typically used. 
Compared to the former strategy, the latter is more 
independent that can work without scaling correlations. 
Besides, it is more straightforward, quantitative, and 
informative by providing more insight to the reaction 
mechanisms14. These methods have already achieved some 
success to describe relatively simple reactions over simplified 
surfaces, where the identified descriptors enable the effective 
scaling of catalytic activity and selectivity15-19.

Despite the great advantages, the derivative-based 
approaches are only informative near the reference points 
where they are computed, and such localization greatly limits 
the predictability or accuracy20. Furthermore, such one-factor-
at-a-time method is not able to capture the complex interaction 
between two different kinetic parameters such as activation 
barrier. In the case that the rate of one elementary step strongly 
depends on the other one, the interaction between the two 
corresponding activation barriers may need to be accounted, 
which can affect the overall rate.  

To capture such kinetic complexity and enhance the accuracy 
in model prediction, variance-based global sensitivity analysis 
methods like Monte-Carlo estimation and Fourier amplitude 
sensitivity test (FAST) were developed21-23 and applied to 
identify the kinetically important elementary steps in 
theoretical research of catalysis24-27. These methods provide a 
theoretical framework that can promote the full understanding 
of the model’s sensitivity pattern; yet they also suffered from 
the high computational cost due to the curse of dimensionality 
and limited to describe relatively simple catalysis, especially 
when the analytical solution has not been available28. Instead, a 

a.Department of Chemistry, State University of New York at Stony Brook, Stony 
Brook, New York, 11794, United States.

b.Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973, 
United States.
Email: pingliu3@bnl.gov

† Electronic Supplementary Information (ESI) available: Supporting figures and 
tables containing kMC, ML and DRC results; Reference dataset containing DFT 
calculated activation energies over M-doped Cu(111) and associated methanol TOF. 
See DOI: 10.1039/x0xx00000x

Page 1 of 10 Catalysis Science & Technology



ARTICLE Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

relatively cheaper emulator approach was developed which 
employed a surrogate model, such as high-dimensional model 
representation (HDMR)29, to allow the exhaustive calculation of 
interactive term in global sensitivity analysis. Although the 
accuracy in prediction can be achieved using various 
mathematic models, it shows limited capability to provide 
understanding of kinetics particularly associated with the 
interactions between elementary steps. Besides, there has no 
generalized and standardized procedure for global sensitivity 
analysis30, and so far the local derivative-based methods have 
been typically employed to analyse the reaction kinetics13, 31.

Here, we developed an alternative approach that followed 
the well-established knowledge-extraction-from-data 
framework6 to enhance the accuracy and efficiency of 
descriptor identification. The commonly used DRC method was 
also employed for comparison. This new approach takes 
advantage of both surrogate model in global sensitivity analysis 
and machine learning (ML). Compared with traditional 
surrogate model like orthogonal polynomial functions, ML has 
access to series of flexible non-parametric regression models 
that provide efficient data-driven function approximation32, 33. 
The ML approach has been already widely applied to the 
computational catalysis34, including generating atomistic 
potentials35, 36, predicting catalytic properties15, 37-39, 
interpreting experimental data40, and discovering new 
catalysts41. Despite many applications of ML in computational 
catalysis, the development is still at the early stage, where 
efforts have been devoted toward establishing explainable and 
trustworthy ML to promote the current catalytic 
understanding34, 42-44. ML has also been adopted to identify the 
likely reaction paths within a complex reaction network. Yet the 
predictability of ML models is limited due to the low accuracy in 
estimation of activation energy and determination of the rate-
limiting steps45. More accurate modelling of surface is desirable 
to provide a strong basis for training. 

To enhance the accuracy in modelling the reaction kinetics, 
the overall rate was considered as a function of the input kinetic 
parameters in our study, specifically activation energies of all 
elementary steps involved in a reaction network. Such 
hypothetic function was then described using a data-driven ML 
surrogate model together along with the model-agnostic 
interpretation tools46, where both the first-order parameter or 
individual activation energy, and the normalized second-order 
or product of two activation energies, were considered as 
descriptors to represent the effect of individual elementary step 
and the interaction between relevant steps. To demonstrate 
our data-driven framework, methanol (CH3OH) production from 
carbon monoxide (CO) hydrogenation over the doped Cu(111)-
based surfaces was used as a case study, which is catalytically 
interesting due to the advantages of CH3OH as industrial 
feedstock for other important chemicals and a renewable 
energy source47-49. The results reveal that our approach is 
considerably more accurate than the existing based on scaling 
relations and derivatives, being able to greatly enhance the 
accuracy in descriptor identification and rate prediction. More 
importantly, it can also allow the kinetic analysis by evaluating 
the surrogate model with a negligible addition of computational 

cost, so that a better mechanism understanding and ultimately 
design guidelines can be extracted. 

2. Theoretical Methods
2.1 KMC Simulations

KMC simulations were conducted based on our previous 
theoretical study of CO hydrogenation over M-doped Cu(111) 
single-atom alloy surface1 or M-Cu(111) in our notation (see SI 
for detail). They were carried out temperature of 600K to 
determine the corresponding TOFs of CH3OH on exposure to 0.1 
atm CO and 0.9 atm of H2 along with a specific combination of 
activation energies in elementary steps. Each simulation was 
not considered converged until the statistical noise of is smaller 
than 0.05 molecule site-1 s-1.∙ ∙

For all elementary steps involved in the reaction network, 
their activation barriers (Table S1) and site information (Table 
S2) were adopted from previous study1. In this case, the CO 
hydrogenation was described by eight elementary reactions 
(Table S1), including Hydrogen activation ( ), CO 𝑅0

hydrogenation to formyl (*CHO) and its reverse step (  and 𝑅1 𝑅2

), *CHO hydrogenation to formaldehyde (*CH2O, ), *CH2O 𝑅3

hydrogenation to methoxy, (*CH3O, ), *CH3O hydrogenation 𝑅4

to *CH3OH ( ), *CO desorption ( ), and *CH3OH desorption (𝑅5 𝑅6

). The recorded data included the activation energies of each 𝑅7

elementary step ( ) except hydrogen activation (  𝐸𝑛, 𝑛 = 1~7 𝐸0)
as input and the corresponding kMC-simulated CH3OH TOFs as 
output. Note that, for simplicity the surface diffusion was not 
considered, and the reverse reactions were only considered for 
*CO hydrogenation, as the low stability and likely 
dehydrogenation of *CHO was reported previously on Cu 
catalysts1 and was also observed in the current study as 
demonstrated below.

To simplify the kMC model and focus on the effect of 
activation barriers, several assumptions were adopted from 
previous successful practices in CO and CO2 hydrogenation1, 2, 49-

51. Firstly, hydrogen was considered to occur on Cu(111) facilely 
and the dissociated *H were readily available for reaction. 
Secondly, the lateral interaction between *CO was ignored due 
to its low coverage under reaction conditions. Lastly, the 
desorption of *CH2O was ignored due to the high pressure of 
hydrogen (see SI for detail). This simplified kMC model offered 
an efficient way to establish the accurate and trusted ML 
framework. While such framework can be easily enriched with 
more complex kinetics including several competitive pathways 
running in parallel, distribution of multiple active sites and 
phases together with lateral interactions, which will be studied 
in the next step.

The overall reactions were modelled on a 128×128 surface 
matrix that resembled the Cu(111) and modified Cu(111) 
surface, where dopant metals account for 1/9 coverage (Figure 
S1). The rate constants for surface reactions were estimated by 
transition state theory52 (eq. 1), where the  denotes the 𝑘𝐵

Boltzmann constant, T is reaction temperature, h is the Planck 
constant,  is activation barrier for this elementary step,  𝐸𝑎 𝑞 ≠

𝑣𝑖𝑏

and  stands for the vibrational quasi-partition functions in 𝑞𝑣𝑖𝑏
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transition state and initial state. For the non-activated 
exothermic CO adsorption reaction that involves gas phase CO 
molecule, the rate constant was estimated according to 
Langmuir theory of adsorption52, 53 (eq. 2), where  is the 𝑝𝑥

partial pressure of species of interest in the gas phase and  is 𝑚𝑥

its molecular weight, and  is the area of one binding site.𝐴

 (1)𝑘𝑟𝑒𝑎𝑐 =
𝑘𝐵𝑇

ℎ ∙
𝑞 ≠

𝑣𝑖𝑏

𝑞𝑣𝑖𝑏
∙ 𝑒𝑥𝑝 ( ― 𝐸𝑎

𝑘𝐵𝑇 )
 (2)𝑘𝑎𝑑𝑠 =

𝑝𝑥 ∙ 𝐴 

2𝜋 ∙ 𝑚𝑥 ∙ 𝑘𝐵𝑇

2.2 Machine Learning

In the present study, all ML models were implemented with 
the scikit-learn code package54. These models were trained 
using data in Table S3. The accuracy was measured by root-
mean-squared-error (RMSE) between the predicted values and 
true values. 

ML models aim to learn the correlation between TOFs of 
CH3OH and twenty-eight engineered descriptors based on 
activation barriers of elementary steps . Wherein, seven 𝐸1 ― 7

are first-order descriptors that represent the contribution from 
each single elementary step to TOF, namely, ; while the rest 𝐸𝑛

are second-order descriptors were expressed by normalized 
product, i.e., the harmonic mean (eq. 3), of activation barriers 
associated with two different elementary steps. Specifically, the 
harmonic mean of  and  ( ) was employed to capture 𝐸𝑛 𝐸𝑚 𝑛 ≠ 𝑚
the non-local behavior55 originated from interactions between 
elementary steps. As reported in previous ML studies56-58, the 
harmonic mean type second-order descriptors are crucial to 
increase the predictability and interpretability. Catalytically, 

 can be considered as a weighted  by that of an 𝐸𝑛,𝑚 𝐸𝑛

interactive step m in the form of  to represent the 
2 ∙ 𝐸𝑚

𝐸𝑛 + 𝐸𝑚

dependence of two relevant elementary steps, which cannot be 
captured by each individual.

 (3)𝐸𝑛,𝑚 =
2 ∙ 𝐸𝑛𝐸𝑚

𝐸𝑛 +𝐸𝑚

Decision tree regression (DTR), Tree-based ensemble 
models, including random forest (RF) regression, gradient 
boosted regression (GBR), and the extra tree regression (ETR), 
and support vector regression (SVR) were employed to learn the 
correlation between descriptors and CH3OH TOFs, while the 
least absolute shrinkage and selection operator (LASSO) 
regression was also included as a comparison. These models 
were trained on a spilt training set that contains 80% of data 
from dataset and were then verified on testing set that contains 
the rest 20% of data. Another widely applied method, namely 
the Gaussian process regression (GPR), was not considered 
since it’s sensible to overfitting when dataset was small59. 
Hyperparameters to be defined in these models before training, 
such as learning rate, minimum loss reduction, maximum depth 
of a decision tree, and minimum sum of instance weight needed 
in a child, were optimized by an exhaustive grid search with 5-
fold cross-validation (CV) as implemented by scikit-learn’s 
GridSearchCV method54.

After the model was trained, the effective descriptors were 
extracted to reduce model’s dimensionality. Instead of using 
typical space projection methods such as principal component 

analysis (PCA), which suffered from low interpretability of 
principal components and loss of information60, permutation 
feature importance score61 was employed so that the original 
chemical meaning of descriptors can be preserved and thus 
leading to mechanic understanding62-64. Permutation feature 
importance score is defined as the decrease in model’s accuracy 
when a single feature’s value is randomly shuffled. This 
procedure breaks the original relationship between descriptors 
and the target, thus the drop in model’s accuracy is indicative 
of how much the model depends on the feature. Descriptors 
with a higher value, in this case greater than 0.05, indicates a 
higher dependency and is regarded as more important than the 
others. The value of threshold was set at 0.05 so that most 
relevant descriptors were preserved in the selected GBR model. 
As shown in Figure 2, any further exclusion of descriptors would 
lead to a significant loss of predicting performance on the 
testing set. Also, it is worth noting that the perturbation-based 
feature permutation importance ranking only indicates the 
relevance of feature regarding the model’s generalization 
error65, thus it’s model and feature dependent, and the specific 
threshold value is only valid in this case. 
2.3 Degree of Rate Control

The degree of rate control (DRC) is a widely applied tool to 
evaluate how overall reaction rate changed with a small 
perturbation of kinetic parameters and thus determine the 
effective descriptors. In the present study, the DRC for each 
elementary step was determined via the procedure reported by 
Campbell et al.14 (eq. 4). Here,  is TOF of CH3OH,  represents 𝑟 𝑘𝑛

the rate constant of elementary step , and  is the 𝑛 𝑘𝑛

corresponding equilibrium constant. Positive DRC indicates that 
facilitating step  leads to an increase in overall production rate, 𝑛
and the greater means the influence of step  is more 𝜒𝑛 𝑛
significant.

 (4)𝐷𝑅𝐶𝑛 = 𝜒𝑛 =
𝑘𝑛

𝑟 ∙ ( ∂𝑟
∂𝑘𝑛

)
𝑘𝑚 ≠ 𝑛,𝐾𝑛

= ( ―∂ln 𝑟

∂
𝐸𝑛
𝑅𝑇

)
𝑘𝑚 ≠ 𝑛,𝐾𝑛

Following the previous study5, the DRC was also used to 
predict the overall rate of product formation on unknow 
catalyst based on the DRCs for a reference system (eq. 5). Here, 

 denotes the production rate on reference catalyst ,  is the 𝑟0 0 𝜒𝑛

DRC for selected key steps on reference catalyst and  is the 𝐸0
𝑛

corresponding activation barrier, while  is the activation 𝐸𝑖
𝑛

barrier for the same elementary step on an unknown catalyst , 𝑖
and  is the estimated production rate.𝑟𝑖

 (5)ln 𝑟𝑖 = ln 𝑟0 + ∑
𝑛𝜒𝑛 ∙ (𝐸0

𝑛 ― 𝐸𝑖
𝑛

𝑅𝑇 )

3. Results
3.1 Data-Driven Surrogate Model

The construction of data-driven surrogate model started 
with data generation and collection, where the kinetic 
behaviour of CO hydrogenation was sampled across the 
parameter space of reference system, which was Cu(111) in this 
case. During sampling, the reference value for each  was cited 𝐸𝑛

from that of Cu(111), which were reported in our previous study 
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(Table S1)1 . Other  were generated here by shifting the 𝐸𝑛

corresponding reference value randomly and simultaneously in 
the range of -11.5 ~ 11.5 kCal·mol-1 to simulate the tuning of 
activation barriers induced by doping elements on Cu(111). The 
range of energy variation was determined in a way that most 
perturbations induced by metal-doping of Cu(111) considered 
here could be covered in our dataset. In this way the dataset 
generated can capture the large number of possibilities 
including the correlated cases for specific M-Cu(111) systems. If 
two parameters are identified as correlated thereafter, one of 
them could be selected as a representative while others could 

be presented as a function of it. Thus, the extracted relations 
between key descriptors and target TOF still stand, but only the 
model will become simpler with less descriptors. Based on each 
set of  ( ), the kMC simulation was performed to 𝐸𝑛 𝑛 = 1~7
estimate the corresponding TOF of CH3OH. At the end, it 
resulted in total 500 samples in the dataset (Table S3), which 
randomly filled in the parameter space and followed the 
uniform distribution (Figure S2). The samples with extremely 
low TOFs (< 0.5 molecule·site-1·s-1) were removed via the under-
sampling procedure to avoid the imbalanced dataset problem66. 

Figure 1. (a) kMC-simulated methanol TOF and on training set (black filled circle) and testing set (red hollow circle) and values 
predicted by preliminary ML model, (b) permutation feature importance score (black bar) and its standard deviation (solid black 
line) in the preliminary ML model, (c) kMC simulated methanol TOF on training set (black filled circle), testing set (red hollow 
circle), and metal-Cu(111) (M = Au, Cu, Pt, Pd, Ni, gold filled cross) and values predicted by refined ML model.

The data collection was followed by construction and 
training of ML surrogate model based on the twenty-eight 
descriptors and CH3OH TOFs via a two-step process. The first 
step meant to reduce the dimensionality by identifying effective 
descriptors that had high permutation feature importance 
scores. Series of existing models, including, LASSO (Figure S3a), 
SVR (Figure S3b), DTR (Figure S3c), RFR (Figure S3d), ETR (Figure 
S3e), and GBR (Figure S3f) were trained on the training set with 
5-fold cross-validation (CV), where the GBR model scored the 
best accuracy in terms of RMSE compared with the kMC 
simulated results (CV RMSE = 1.088±0.1584, test RMSE = 
0.7864, Figure 1a). Although the ETR model also had a very 
competitive performance (CV RMSE = 1.175±0.1544, test RMSE 
= 0.8865), it suffered from a systematic deviation that tended 
to overestimate at low TOF and to underestimate at high TOF. 
Taking both the performance and systematic deviation into 
account, the GBR model was selected as the most predictive 
model in our study. Based on the GBR model, the score of 
permutation feature importance for each descriptor was 
calculated following the previous study61 (Figure 1b). Six 
descriptors with high scores greater than 0.05 in this case, were 
considered as more significant term to control the TOFs of 
CH3OH in the surrogate model than the others and thus the 

effective descriptors, including three first-order descriptors, i.e. 
activation energies of *CO hydrogenation ( ) or , *CH3O 𝑅1 𝐸1

hydrogenation ( ) or , *CO desorption ( ) or , and three 𝑅5 𝐸5 𝑅6 𝐸6

normalized second-order descriptors, harmonic mean in this 
case, between  and activation energy of *CHO hydrogenation 𝐸1

( ) or , between  and  or , and between the 𝐸3 𝐸1,3 𝐸1 𝐸5 𝐸1,5

activation energy of *CHO dehydrogenation ( ) and  or , 𝐸2 𝐸5 𝐸2,5

were selected. Note that in the current model  and  were 𝐸1 𝐸2

treated as independent parameters in the generation of dataset 
to cover maximum possibilities. However, for a Cu-based 
system, they are related as the forward and backward activation 
barriers for *CO hydrogenation, where the difference is 
determined by the corresponding reaction energy. As will be 
seen in the following, such dependence between  and  can 𝐸1 𝐸2

be well described by the trained GBR model based on these 
effective descriptors.

In the second step, the GBR model was retrained using only 
the six effective descriptors (Figure 1c). Although the number of 
descriptors was greatly reduced from twenty-eight to six, the 
model’s accuracy measured by RMSE was even slightly 
enhanced than the preliminary model in both training set 
(0.8933±0.1474) and testing set (0.6209), indicating that the 
removed descriptors were mostly non-informative. To confirm 
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the effectiveness of the selected descriptors, we removed each 
of them one at a time from the retrained model separately. The 
results showed that the removal of each effective descriptor led 
to a substantial decrease in prediction accuracy in testing set 
(Figure 2). Interestingly, the accuracy losses after removing 
normalized second-order descriptors are even larger than 
removing the first-order descriptors, indicating that the 
inclusion of all six descriptors are necessary and the normalized 
second-order descriptors were more essential to achieve high 
predictability than the first-order descriptors.

 
Figure 2. Accuracy loses measured by RMSE in testing set after 
the indicated descriptor was removed.

3.2 Role of Effective Descriptor

To gain understanding of the contributions from the six 
effective descriptors, the dependence of TOF of CH3OH on each 
descriptor was plotted (Figure 3). The roles of three first-order 
descriptors are straightforward. The TOF increases with the 
decreasing activation energies for *CO hydrogenation ( , 𝐸1

Figure 3a) and *CH3O hydrogenation ( , Figure 3b) as well as 𝐸5

the increasing activation energy for *CO desorption barrier ( , 𝐸6

Figure 3c). It indicates that the CH3OH production can be 
facilitated by accelerating the hydrogenation of *CO to *CHO 
and *CH3O to *CH3OH or hindering the *CO desorption, so that 
*CO can stay on the surface readily for hydrogenation. Here, as 
the highest energy among  for Cu(111) (Table S1), the first-𝐸𝑛

order  is likely the most determinative descriptor for the TOF 𝐸5

and two normalized second-order descriptors out of three are 
also associated with  (Figure 1b). Interestingly, while the TOF 𝐸5

increases rapidly with the decreasing , it levels off below 27 𝐸5

kCal·mol-1 (Figure 3b). That is, although  is the most activated 𝑅5

step on the reference system, Cu(111), and thus has a 
significant control on the TOF, the corresponding effect as 
descriptors can vary with the value changed. When  is low 𝐸5

enough, it becomes less effective to the TOF; instead, the 
associated second-order descriptors, , and  dominate as 𝐸1,5 𝐸2,5

shown below.
Compared to the first-order descriptors, the situation for the 

normalized second-order descriptors is more complex.  𝐸1,5

starts to show the effectiveness as descriptor to TOF of CH3OH 
at  < 27 kCal·mol-1; while at  > 27 kCal·mol-1, the 𝐸5 𝐸5

corresponding effects are much less (Figure 3d). That is, when 
 is low enough, the corresponding rate for *CH3O 𝐸5

hydrogenation ( ) alone no longer affects the TOF significantly 𝑅5

(Figure 3b); instead, it likely depends on the interaction with 
prior elementary steps. The *CO hydrogenation to *CHO ( ), 𝑅1

the second highest activated step in the reference Cu(111) 
system, is one of them. In this case, the occurrence of  𝑅5

depends on that of  and thus the amount of *CHO on the 𝑅1

surface. Specifically, the high coverage of *CHO greatly 
facilitates the *CH3O hydrogenation. In our model, such 
interaction between  and  was captured by the harmonic 𝑅1 𝑅5

mean, . The high TOF of CH3OH can only be achieved by 𝐸1,5

reducing  (< 18 kCal·mol-1), while keeping  low (< 27 𝐸1 𝐸5

kCal·mol-1, Figure 3d). This transition from first-order 
descriptors  to second-order descriptor  were clearly 𝐸5 𝐸1,5

shown in the bivariant partial dependence plot between  and 𝐸5

 (Figure 3d). For  greater than 27 kCal·mol-1, the TOF of 𝐸1,5 𝐸5

CH3OH is almost independent from , whereas for  smaller 𝐸1,5 𝐸5

than 27 kCal·mol-1 TOF increased as the decrease of  and  𝐸1,5 𝐸5

is almost ineffective. Although  and  are not in direct 𝑅1 𝑅5

sequence, the interaction is built via several fast intermediate 
steps,  (Table S1). A variation in the reaction rate of  can 𝑅2 ― 4 𝑅1

affect the amount of produced intermediates, which will be 
eventually passed to   via the intermediate steps by varying 𝑅5

the amount of reactant intermediates and thus the 
corresponding rate.

As the reverse step of , the *CHO dehydrogenation to *CO 𝑅1

( ) also interacts with  at  < 27 kCal·mol-1 and shows the 𝑅2 𝑅5 𝐸5

significant effect on the TOF for CH3OH production (Figures 3e). 
A clear dependence between  and  was observed. 𝐸2,5 𝐸1,5

Decrease in  and thus  corresponds to the increase in  𝐸1 𝐸1,5 𝐸2

(preferably > 14 kCal·mol-1) and thus , which eventually 𝐸2,5

promotes the TOF of CH3OH production. 
Similar situation was also observed between the activation 

energy of *CO hydrogenation ( ) and *CHO hydrogenation (𝐸1 𝐸3

). When  is below the critical point (29 kCal·mol-1), the 𝐸1

corresponding step  starts to interact with the sequential 𝑅1

*CHO hydrogenation ( ) via  (Figure S4). In this case,  𝑅3 𝐸1,3 𝑅3

helps to remove the unstable *CHO produced facilely from  𝑅1

and prevent it from decomposition. The TOF for CH3OH 
production is promoted only when both  (< 29 kCal·mol-1) and 𝐸1

 (< 9 kCal·mol-1) were kept low (Figure S4).𝐸3

The analysis of the effective descriptors allows us to extract 
the general optimization guidelines that help us to build in-
depth understanding of CO hydrogenation over Cu-based 
catalysts. The catalytic activity of catalysts can be evaluated 
based on the effective descriptors in a sequence with 
decreasing control on the TOF of CH3OH (Figure 3). , which 𝐸5

corresponds to the highest importance score (Figure 1b), 
controls the TOF the most significantly among the six effective 
descriptors. This is the case for high  (> 27 kCal·mol-1 in this 𝐸5

case), which introduces the most rapid change in TOF (Figure 
3b). Wherein,  corresponds to the rate-limiting step for CO 𝐸5

hydrogenation over the Cu-based catalysts, e.g., *CH3O 
hydrogenation. The higher  can lead to the lower TOF of 𝐸5

CH3OH. When  decreases (< 27 kCal·mol-1), the variation in 𝐸5

TOF with  alone is rather small (Figure 3b). Instead, it is likely 𝐸5

replaced by the weighted  or the normalized second-order 𝐸5

descriptors of ,  or  (Figure 3d, e). In this case, 𝐸5 𝐸1,5 𝐸2,5

facilitating the *CO hydrogenation by decreasing  or 𝐸1,5

hindering the reverse, *CHO decomposition, via increasing  𝐸2,5
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can effectively promote CH3OH production. Here, the variation 
in  (Figure 3e) clearly introduces more significant changes in 𝐸2,5

TOF than  (Figure 3d). That is, well control of the *CHO 𝐸1,5

decomposition to *CO can be more effective than that of *CO 
hydrogenation to *CHO in tuning the TOF.

In comparison with , the control by the other first-order 𝐸5

descriptors (  or ) is less significant (Figure 3a, c), which is 𝐸1 𝐸6

also observed by the importance scores (Figure 1b).  and  𝐸1 𝐸6

correspond to the two steps, which compete for the *CO 
species on the surface (Table S1). To achieve high TOF,  is 𝐸1

desirable to be lower than the critical point, 29 kCal·mol-1 in this 
case, and  is preferred to be higher than  to enable the CO 𝐸6 𝐸1

hydrogenation. As seen for that for ,  alone works well as 𝐸5 𝐸1

descriptor only when the value is high (> 29 kCal·mol-1, Figure 
3a). Otherwise, the weighted , , is more effective, where 𝐸1 𝐸1,3

both  and  should be kept low to achieve high TOF for 𝐸1 𝐸3

CH3OH (Figure S4). Note that the analysis of both permutation 
feature importance scores and partial dependence can provide 
evaluation on the capability of each descriptor to control the 
TOF in this specific machine-learned surrogate model. Wherein, 
the partial dependence plot also indicates the effective range 
and marginal effect of each descriptor. It allows us to roughly 
estimate the TOF trend of M-Cu(111) based on the value of a 
descriptor (Figure 3). In this case, the two methods agree on the 
decrease in control capability for the first-order descriptors 
going from  to  and , while the partial dependence 𝐸5 𝐸1 𝐸6

enables the identification of variation in control capability of the 
first-order descriptors. Specifically, when a first-order 
descriptor cannot control well the TOF by itself the 
corresponding normalized second-order descriptors or the 
weighted term by the activation barriers of another relevant 
step should be considered instead.

 
Figure 3. Partial dependence of methanol TOF on (a) , (b)  , (c) , (d)  , and (e)  based on the retrained GBR model. 𝐸1 𝐸5 𝐸6 𝐸1,5 𝐸2,5

The label “Cu”, “Au”, “Ni”, “Pd” and “Pt” represent Cu(111), Au-Cu(111), Ni-Cu(111), Pd-Cu(111) and Pt-Cu(111), respectively.

While the conventional DRC method only recognized two 
effective first-order descriptors (Table S4). Like the evaluation 
according to the permutation feature importance score (Figure 
1b),  corresponds to the highest DRC of 0.88 (Table S4) with 𝑅5

 as the secondary (DRC = 0.30). Accordingly, the 𝑅1

corresponding activation energies,  and , are likely to act 𝐸5 𝐸1

as effective descriptors for TOF. Differently, the impact from the 
other steps and thus the corresponding  is rather small and 𝐸𝑛

the possible interactions between the elementary steps are 
completely missed. Given that, the GBR model identifies the 
effective descriptors more accurately than the DRC method by 

including the normalized second-order descriptors and provide 
more in-depth understanding of reaction kinetics
3.3 Model Validation

Although this retrained GBR model has a good predictability 
on our synthetic dataset, realistic catalytic systems are likely to 
have different descriptor values and could potentially harm 
model’s performance. To validate the predictability and 
mechanism understanding on realistic systems, we used the 
metal (M = Au, Cu, Pd, Pt, Ni, Table S1)-Cu(111) alloy surfaces as 
testing systems. Although the activation barriers for these 
systems are within the range of the training set and testing set, 
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the specific values were unknown to the retrained GBR model 
and reported previously as catalysts for hydrogenation of 
CO/CO2 into CH3OH67-73. Here, the kMC simulations were 
carried out to estimate the TOF of CH3OH at the same 
conditions as the data generation. The kMC simulation was 
based on the DFT-calculated  on M-Cu(111) (Table S1), which 𝐸𝑛

were cited from our previous study1. TOFs were also estimated 
using the retrained GBR model, where the six descriptors, , 𝐸1 𝐸5

, , ,  and  were calculated based on the DFT results 𝐸6 𝐸1,3 𝐸1,5 𝐸2,5

(Table S5). The TOFs estimated by DRC model using the 
identified first-order descriptors  and  were used for 𝐸1 𝐸5

comparison. The kMC results were considered as the criteria to 
evaluate the predictability of the GBR model and DRC method. 
Indeed, the GBR model displays a decent performance with 
respect to the kMC-predicted TOF of CH3OH (Figure 4a and 
Table S6), showing a decreasing TOF via a sequence: Pt-Cu(111) 
> Pd-Cu(111) > Ni-Cu(111) > Cu(111) > Au-Cu(111). By 
comparison, the DRC-predicted TOFs are several orders of 
magnitude different from the kMC results (Figure 4b and Table 
S6). More importantly, there is a clear difference in trend of TOF 
from one system to the next, which is essential to the catalyst 
screening and is the interest of current study.

The lower predictability of DRC method as compared to the 
GBR model is mostly associated with the missing normalized 
second-order descriptors or lack of capture for the non-local 
behaviours. For instance,  decreases drastically from 28.83 𝐸5

kCal·mol-1 on Cu(111) to 14.68 kCal·mol-1 on Pt-Cu(111) (Table 
S1), which likely indicates a change in mechanism. That is, on Pt-
Cu(111)  is not necessarily taken as the effective descriptor 𝐸5

anymore (Figure 3b); instead,  and  are likely to have more 𝐸1 𝐸6

effect on TOF (Figure 3a,c and Table S1). But the DRC method 
assumes the same mechanism and keeps the same high weight 
of  for both Cu(111) and Pt-Cu(111), which results in such a 𝐸5

large error. In the current ML model, however, the data-driven 
framework allows us to vary the  simultaneously, and the 𝐸𝑛

identified normalized second-order descriptors adaptively 
change the weight of . In this way the GBR model maintains 𝐸𝑛

a good predictability on the TOF even for such non-local case. 
Wherein, the value of descriptors, e.g., for Pt-Cu(111), are very 
different from those of reference system, Cu(111) in this case 
(Figure 4).

Figure 4. (a) Comparison of the predicted methanol TOF from 
CO hydrogenation on M-doped Cu(111) between GBR model 
(shadowed red bar) and simplified GBR model (shadowed black 
bar) with the kMC simulated values (solid black bar) as 
criteria.(b) Predicted methanol TOF from CO hydrogenation on 
M- Cu(111) by DRC method. All TOFs are calibrated to the 
Cu(111) surface respectively.

The importance of the normalized second-order descriptors 
is clearly demonstrated by comparing between the GBR model 
including both first-order and normalized second-order 
descriptors (GBR, shadowed red bars in figure 4a) and the 
simplified GBR model only including the first-order descriptors 
(simplified GBR, shadowed black bars in figure 4a). Although the 
simplified GBR model retained a good performance on Pd-
Cu(111) and Pt-Cu(111), it is not capable to reproduce the trend 
in TOF of CH3OH, which is our interest here, by greatly over-
estimating the TOF for Ni-Cu(111). According to the kMC 
simulation, the CO hydrogenation is still hindered since the 
reverse reaction of *CO hydrogenation ( ) is almost barrierless 𝑅2

(  = 3.69 kCal mol-1), and the formed *CHO easily 𝐸2 ∙
decomposes back to *CO. Such kinetic complexity can be well 
captured by the GBR model with the identified normalized-
second order descriptor . Specifically, the TOF of CH3OH is 𝐸2,5

also sensitive to  when  is low. For the case of Ni-Cu(111), 𝐸2 𝐸5

low (6.36 kCal mol-1) become the major reason why the 𝐸2,5 ∙
GBR model recognized it as less active than Pd-Cu(111) and Pt-
Cu(111). 

3.4 Mechanism Understanding

The retrained GBR model can not only provide the 
quantitative description of TOF for CO hydrogenation to CH3OH 
on M-Cu(111) systems, but also enable the in-depth 
understanding of the promoting effects by alloying based on the 
DFT-calculated effective descriptors for M-Cu(111) systems 
(Table S5). Following the general optimization guidelines 
extracted from analysis of partial dependence of TOF, we start 
with the most determinative descriptor  (Figure 3b). Both Au- 𝐸5

Cu(111) and Cu(111) (Table S5) correspond to a highly activated 
 with the corresponding  higher than the critical point (27 𝑅5 𝐸5

kCal·mol-1). Accordingly, the *CH3O hydrogenation is likely the 
rate-limiting step to slow down the overall conversion to CH3OH 
(Figure 3b) and thus makes Au-Cu(111) and Cu(111) less active 
than the other catalysts studied. With the higher  (31.59 𝐸5

kCal·mol-1), Au-Cu(111) is less active than Cu(111) (  = 28.83 𝐸5

kCal·mol-1) 
With  less than 27 kCal·mol-1, Pd, Pt, Ni-Cu(111) likely 𝐸5

display higher TOF than Cu(111) and Au-Cu(111) (Figure 3b); 
however,  alone cannot differentiate the sequence of TOF 𝐸5

among Pd, Pt, Ni-Cu(111). To do that, the normalized second-
order descriptors  and  should be considered instead. 𝐸1,5 𝐸2,5

According to the effective , an obvious limitation on the TOF 𝐸2,5

over Ni-Cu(111) is observed (Figure 3e). The decomposition of 
*CHO into *CO ( ) on Ni-Cu(111) is very facile (  = 3.69 𝑅2 𝐸2

kCal·mol-1, Table S1), and results in a lower  value (6.36 𝐸2,5

kCal·mol-1) compared to that over Pt-Cu(111) (14.72 kCal·mol-1) 
and Pd-Cu(111) (16.71 kCal·mol-1, Table S5). As a result, Ni-
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Cu(111) is located in a region that TOF is greatly suppressed 
(Figure 3e) and is less active than Pd-Cu(111) and Pt-Cu(111).

Following that, the other two first order descriptors,  and 𝐸1

, were evaluated to determine the activity of Pd-Cu(111) and 𝐸6

Pt-Cu(111). Similarity in partial dependence of TOF between the 
two surfaces is clearly demonstrated in Figure 3, and the similar 
TOF is expected. The difference is likely associated with . The 𝐸6

*CO desorption from Pd-Cu(111) (  = 27.90 kCal·mol-1) is more 𝐸6

facile than *CO hydrogenation (  = 28.83 kCal·mol-1); while in 𝐸1

the case of Pt-Cu(111), the trend is opposite (  = 31.82 𝐸6

kCal·mol-1,  = 28.13 kCal·mol-1). That is, *CO prefers the 𝐸1

desorption rather than the hydrogenation on Pd-Cu(111), which 
hinders the CH3OH production. Although, the difference 
between  and  is as low as 0.93 kCal·mol-1, the entropic 𝐸1 𝐸6

contribution under reaction conditions greatly favours *CO 
desorption. As a result, Pt-Cu(111) outperforms Pd- Cu(111) 
toward CO hydrogenation to CH3OH.

Our results clearly show that using the five effective 
descriptors, ,  or  and  or  sequencially, the 𝐸1 𝐸1,5 𝐸2,5 𝐸1 𝐸6

increased TOF of CH3OH going from Au-Cu(111), Cu(111), Ni-
Cu(111), Pd-Cu(111) to Pt-Cu(111) can be well described. By 
comparison, the contribution from  is less significant. The is 𝐸1,3

particular the case for Pd, Pt, Ni-Cu(111). Wherein,   is 𝐸1

similarly high for all three systems (28.83 kCal·mol-1 for Pd-
Cu(111), 28.13 kCal·mol-1 for Pt-Cu(111), and 25.14 kCal·mol-1 
for Ni-Cu(111)). In this case, although  is below the critical 𝐸1

level (29 kCal·mol-1),  does not act as an alternative 𝐸1,3

descriptor for , and the trend in -dependent TOF, Ni-𝐸1 𝐸1,3

Cu(111) > Pt, Pd-Cu(111), does not follow that in kMC-simulated 
TOF (Figure S4). Yet, for other systems with lower ,  it can 𝐸1 𝐸1,3

be more effective to determine TOF.
 Given that, the mechanism understanding of effective 

descriptors can well rationalize the detailed sequence for TOF 
of CH3OH among Cu(111) and M-Cu(111) surfaces. More 
importantly, such understanding also provides the guidance on 
how to optimize each catalyst with improved TOF: specifically 
facilitating *CH3O hydrogenation over Au-Cu(111) and Cu(111) 
to prevent high , hindering *CHO decomposition over Ni-𝐸5

Cu(111) to prevent low , suppressing *CO desorption and/or 𝐸2,5

facilitating the *CO hydrogenation on Pd-Cu(111) and Pt-
Cu(111) to prevent higher  than .𝐸6 𝐸1

Overall, the ability of the current data-driven framework is to 
enhance the understanding of reaction network on a reference 
catalytic system obtained from DFT and kMC simulation, where 
all possible elementary steps are investigated in detail. Based 
on that, the framework can identify the effective descriptors 
beyond the single rate-determining step, capture the 
interaction between relevant elementary steps, and enable the 
accurate prediction of trend in catalytic activity and provide 
general principles for further catalyst optimization.

4. Conclusions
The ML-based data-driven surrogate model on the DFT-

calculated activation barriers and kMC-simulated TOFs was 
demonstrated to enhance the accuracy and efficiency in 

extracting effective descriptors that can control catalytic 
activity and thus predicting the catalytic activity. Unlike 
traditional derivative-based methods which only perturb one 
descriptor at a time, the current ML-based method allows 
descriptors to vary simultaneously and randomly, so that the 
ML model can learn non-local behaviours introduced by the 
interaction between different elementary steps. As a result, a 
set of effective descriptors, including three first-order 
descriptors and three normalized second-order descriptors, is 
identified efficiently. 

The trained GBR model based on the effective descriptors 
predicts the TOF for CH3OH synthesis from CO hydrogenation 
over metal-doped Cu(111) alloy surfaces more accurately than 
that using the DRC model and the simplified GBR model which 
only includes the three first-order descriptors. More 
importantly, such model goes beyond the typical mathematic 
character of ML, being able to greatly enhance the mechanism 
understanding of promoting effect by alloying as compared to 
that of DRC and enable the extraction of principles for catalyst 
optimization toward high CH3OH production. This approach can 
be applied to other reactions and catalysts, which opens 
alternative possibilities to describe the surface reaction kinetics 
and guide the subsequent optimization of catalysts accurately 
and effectively.
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