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The assembly of nano/micro colloidal particles into ordered materials is a crucial component of 
several cutting-edge technological applications (e.g., photonic crystals, meta-materials, cloaking 
devices etc.). Modeling the colloidal assembly process necessitates the ability to design, control 
and optimize the thermodynamics and kinetics of the process. Our work introduces a data-driven 
framework that enables the modelling of the colloidal assembly. We discover, through a manifold 
learning technique (Diffusion Maps), a set of effective collective observables from sampled data 
of Brownian Dynamics Simulations. We discuss the interpretability of our machine learning 
observables; we then learn the dynamics of the colloidal assembly process in terms of an effective 
Stochastic Differential Equation (eSDE). This is accomplished through either the traditional 
Kramers-Moyal expansion and/or through deep-learning schemes. We illustrate that the current 
deep-learning schemes allow a computationally efficient and accurate identification of the 
dynamics. We show that our discovered eSDE encodes accurately the physics not only of the 
Brownian Simulations but also, qualitatively, of experimental movies of colloidal particle 
trajectory ensembles. Our data-driven framework is transferable to systems with varying particle 
shape and to systems involving particle assembly (e.g. on curved surfaces) and can be used to 
design data-driven controller that accelerate/guide the assembly process. 
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Journal Name

Learning Effective SDEs from Brownian Dynamic Simu-
lations of Colloidal Particles

Nikolaos Evangelou,a Felix Dietrichb, Juan M. Bello-Rivasa, Alex Yeha, Rachel Steina,
Michael A. Bevana Ioannis G. Kevrekidis∗a

We construct a reduced, data-driven, parameter dependent effective Stochastic Differential Equa-
tion (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian
Dynamics Simulations. We use Diffusion Maps (a manifold learning algorithm) to identify a set of
useful latent observables. In this latent space we identify an eSDE using a deep learning architec-
ture inspired by numerical stochastic integrators and compare it with the traditional Kramers-Moyal
expansion estimation. We show that the obtained variables and the learned dynamics accurately
encode the physics of the Brownian Dynamic Simulations. We further illustrate that our reduced
model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced
model identification approach can be easily ported to a broad class of particle systems dynamics
experiments/models.

1 Introduction
The identification of nonlinear dynamical systems from experi-
mental time series and image series data became an important
research theme in the early 1990s1–3. After lapsing for almost
two decades, it is now experiencing a spectacular rebirth. A
key element of the older work was the use of neural architec-
tures2,4 (recurrent, convolutional, ResNet) motivated by tradi-
tional numerical analysis algorithms. Importantly, such architec-
tures allow researchers to identify effective, coarse-grained, mean-
field type evolution models from fine-scale (atomistic, molecular,
agent-based) data5,6.

In this paper, we identify coarse-grained, effective stochastic
differential equations (eSDE) for colloidal particle self-assembly
based on fine-grained, Brownian dynamics simulations under the
influence of electric fields7,8. We demonstrate that the identified
eSDE encodes accurately the physics of the Brownian Dynamic
simulations and captures the dynamics of corresponding experi-
mental data. Those experiments have previously been shown to
quantitatively match to BD simulations at equilibrium in terms
of time-averaged distribution functions8–10. Figure 1 shows a
sample path of a latent space trajectory {t,φ(t)}t≥0 computed
through our learned eSDE. The corresponding instantaneous par-
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Tel:(410) 516-2906
b, Department of Informatics, Technical University of Munich, 3 Boltzmannstr ,Munich,
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ticle conformations are indicated at representative points along
the trajectory. A key feature of our work is the selection of the
coarse-grained observables (the variables of our eSDE) in a data-
driven manner, using manifold learning techniques like Diffusion
Maps11. The dependence of the dynamics on physical control
parameters (here a driving voltage) is included in the neural ar-
chitecture and learned during training. A second key feature is
that the neural network architecture for eSDE identification is
not based on established Kramers-Moyal estimation techniques
e.g.12,13, but rather (in the spirit of the early work mentioned
above) on numerical stochastic integration algorithms14.

Fig. 1 A trajectory of an effective, reduced eSDE in the data driven
collective coordinate φ for electric-field mediated colloidal crystallization.

The motivation of the effective SDE is to better understand the
ability to assemble nano- and micro- colloidal particles into or-
dered materials and controllable devices. This could provide the
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basis for emerging technologies (e.g. photonic crystals, meta-
materials, cloaking devices, solar cells, etc.),15 but also impact
traditional applications (e.g. ceramics, coatings, minerals, foods,
drugs16,17). Despite the range of applications employing micro-
scopic colloidal particles, current state-of-the-art18 capabilities
for manipulating microstructures in such systems are limited in
two ways: (a) the degree of order that can be obtained, and (b)
the time required to generate ordered structures. Both of these
limitations are due to fundamental problems with designing, con-
trolling, and optimizing (i.e. engineering) the thermodynamics
and kinetics of colloidal assembly processes.

The identified parameter-dependent eSDE models we construct
can be used for design applications that involve interpolation for
new parameter values (not used in the training set). This allows
modeling colloidal assembly by performing simulations with the
(simpler) data-driven surrogate, thus sidestepping the computa-
tional cost of performing full Brownian Dynamic simulations at
these new parameter values.19. This work also paves the way
toward data-driven model-based control schemes for the kinetics
of colloidal assembly processes using parametric driving (e.g. via
an external electric field)19. Basically, understanding the tran-
sient stochastic evolution of colloidal ensembles across different
microstructural states provides the information necessary to im-
plement realistic control of such processes. As a direct exam-
ple, a related modeling approach7,20 was previously used to per-
form open and closed-loop control of colloidal crystallization, so
to rapidly assemble defect-free perfect crystals with circular mor-
phology. Ths was accomplished by removing grain boundaries
and controlling directional stresses on crystals.21,22 Crucially, we
also tackle the issue of interpretability of the learned effective
dynamic model by exploring relations between data-driven and
candidate physically meaningful observables. Those coarse phys-
ical observables are order parameters that provide intuition for the
colloidal self-assembly process21–23,23,24. We combine the data-
driven detection of effective latent spaces with the neural network
based, numerical analysis inspired, identification of parameter-
dependent stochastic eSDEs with state-dependent diffusion. This
is based on fine scale data from both Brownian dynamics simula-
tions and from experimental colloidal crystallization movies, and
the results are compared.

Developing low-dimensional surrogate models for physical sys-
tems has been explored by a number of authors. We report some
approaches that utilize machine learning and/or dimensionality
reduction here that could be beneficial to the reader. The authors
in25 identified an effective, coarse grained Fokker-Planck using
Kramers-Moyal with an application to micelle-formation of sur-
factant molecules. The identified equation in25 was constructed
in terms of the physical coarse variable, size of the cluster of the
surfactant molecules. The authors in26 constructed an 1D Smolu-
chowski equation in terms of coarse physical variables (radius of
gyration or the average crystallinity) for small colloidal systems of
32-particles. The authors in27 used simulation and experimental
colloidal ensembles with smaller than 14 particles to fit two di-
mensional Fokker-Planck and Langevin equations. The two coarse
variables in which the dynamics are being identified capture the
condensation and anisotropy of those small ensembles. A detailed

review that summarizes applications of machine learning to dis-
cover collective variables and for sampling enhancement was con-
ducted by the authors28. A framework to advance the simulation
time by learning the effective dynamics (LED) of molecular sys-
tems was proposed by the authors in29. LED uses mixture density
network (MDN) autoencoders to learn a mapping between the
molecular systems and latent variables and evolves the dynamics
using long short-term memory MDNs. In the context of acceler-
ating molecular simulations, the authors in30 proposed a frame-
work tested on polymeric systems that utilize graph clustering to
obtain coarse observable and allows to model system’s evolution
for long-time dynamics.

The main machine learning tools of our work involve (a) uti-
lizing a dimensionality reduction scheme that discovers a lower
dimensional structure of a given data set and (b) a deep neural
network architecture that learns an eSDE.

Regarding the first aspect of dimensionality reduction a wide
range of techniques have been proposed for discovering a set of
reduced observables. Among others, Principal Component Anal-
ysis31, Isomap32, Local Linear Embedding33, Laplacian Eigen-
maps34, Autoencoders35 and our method of choice: Diffusion
Maps11. The Diffusion Maps algorithms enables the discovery
of reduced coordinates when data are sampled from signal pro-
cessing36, from networks37, from (stochastic) differential equa-
tions38,39 but also from Molecular6 and Brownian simulations7.

A traditional approach for learning eSDEs has been the
Kramers-Moyal expansion5,12,13 and a detailed description of this
approach is given in Section 2.4.1. For non-Gaussian stochastic
differential equations, modifications of the tradiational Kramers-
Moyal expansion have also been proposed40,41. In42 the authors
proposed a stochastic physics-informed neural network frame-
work (SPINN) that minimizes the distance between the predicted
moments of the network (drift and diffusivity) from moments
computed with Kramers-Moyal. The authors in43 proposed an
extension of the framework called Sparse Identification of Nonlin-
ear Dynamics (SINDy) that can be used for stochastic dynamical
systems. The authors in44 proposed a physics informed gener-
ative model termed generative ensemble-regression that learns to
generate fake sample paths from given densities at several points
in time, without point-wise paths correspondence. The authors
in45 extracted an eSDE from long time series data in a memory-
efficient way, including learning the eSDE in latent variables. This
approach is valuable if the data is available as a few, long time se-
ries. In our approach we handle pairs of successive snapshots
instead. The most similar approach to learning eSDEs to the
one selected for our work is46. The authors introduce a Varia-
tional Autencoder (VAE) framework for recovering latent dynam-
ics governed by an eSDE. In their method, the latent space and
the stochastic differential equation are identified together within
the VAE scheme. Their loss function is also based on the Euler-
Maruyama scheme.

Our work deviates from the approaches mentioned above in
three key aspects: (a) we explicitly separate the latent space con-
struction from learning the eSDE; (b) we extend the loss function
informed by numerical integration schemes from14 to allow for
additional parameter dependence. Our latent space is defined
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through Laplace-Beltrami operator eigenfunctions, so, different
from46, (c) our latent space coordinates are invariant to isometry
and sampling density in the original space by construction.

2 Methodology

2.1 Brownian Dynamics

We model electric field-mediated quasi-2D colloidal assembly in
the presence of a quadrupole electrode. An illustration of the
set up is shown in Figure 2 In our simulations, each configura-
tion consists of N = 210 particles. The interactions between the
colloidal particles are electrostatic double layer repulsion upp

e,i, j,

dipole-field potentials up f
de,i and dipole-dipole interaction potential

upp
dd,i, j. The electrostatic repulsion, upp

e,i, j, between two particles i
and j is computed by.

upp
e,i, j(ri, j) = Bpp exp

{[
−κ(ri j −2α)

]}
. (1)

In Equation (1) ri j denotes the center-to-center distance between
the patricles, α is the radius of each particle and BPP is the elec-
trostatic repulsion pre-factor between colloidal particles.

The dipole field potential up f
de,i in the spatially varying electric

field for each particle i is computed by

up f
de,i(ri) =−2kT λ f−1

cm [E(ri)/E0]
2, (2)

where ri is the position of the ith particle, k is the Boltzmann’s
constant, T is the temperature, fcm is the Clausius-Mossotti fac-
tor, λ is a non-dimensional amplitude given by the relation λ =
πεmα3( fcmE0)

2

kT , εm is the medium dielectric constant, the local elec-
tric field magnitude is given by E(ri). The constant E0 is given by
the expression

E0 =
1√
8
(Vpp/dg) (3)

where Vpp denotes the peak-to-peak voltage and dg the electrode
gap. The dipole-dipole interaction potential upp

dd,i, j between two
particles i and j is estimated by

upp
dd,i, j(ri j) =−kT λP2(cosθi j)(2α/ri j)

3[E(ri/E0)]
2. (4)

P2(cosθi j) is the second Legendre polynomial, θi j denotes the an-
gle between the particle centers and the electric field direction.

The electric field at the center of the quadrupole can be approx-
imated by the expression ∣∣∣∣∣E(ri)

E0

∣∣∣∣∣= 4r
dg

(5)

where r is the distance from the quadrupole center.

The motion of the Brownian particles is governed by the equa-
tion

r(t +∆t) = r(t)+
DP

kT
(FP +FB)∆t +∇ ·DP

∆t (6)

where ⟨FB⟩ = 0, ⟨FB(t1)(FB(t2)T = 2(kT )2(DP)−1δ (t1 − t2), r(t)
denotes the position vector for all the N particles at time t, FB

denotes the Brownian force vector and FP the total conservative
force vector. The conservative force acting on each particle i is

given by
FP

i = ∇ri

[
up f

de,i +∑
j ̸=i

(upp
e,i, j +upp

dd,i, j)
]
. (7)

DP denotes the diffusivity tensor estimated by the Stoke-Einstein
relation

DP = kT (RP)−1 (8)

where RP is the grand resistance tensor RP given by

RP = (M∞)−1 +R2B −R∞
2B (9)

where R2B are the pairwise lubrication interactions and
(M∞)−1 −R∞

2B the many-bodied far-field interaction above a no-
slip plane. All the parameters used for the BD simulations are
included in Table 1 of the SI.

Fig. 2 [Left] Top view of simulated experiments of quasi 2D configura-
tions of N = 210 colloidal particles compressed with a quadrupole elec-
trode. [Right] Electric field magnitude contour plot in the vicinity of
the quadrupole electrode center. The arrows indicate the relative mag-
nitude and direction of force due to dipole-field interactions. Taken from
J.Chem. Phys 144, 204904 (2016) with permission.

2.2 Diffusion Maps

Introduced by11, Diffusion Maps offer a parametrization of a data
set of points X = {xi}N

i sampled from a manifold M , where xi ∈
Rm by uncovering its intrinsic geometry. This parametrization can
then be used to achieve dimensionality reduction of the data set.
This is obtained by initially constructing an affinity matrix A ∈
RN×N through a kernel function, for example the Gaussian Kernel

Ai j = exp
(−||xi − x j||2

2ε

)
, (10)

where || · || denotes a norm of choice. In this work we choose the
l2 norm; ε is a hyperparameter regulating the rate of decay of
the kernel. To achieve a parametrization of X regardless of the
sampling density, a normalization of A is performed as follows

Pii =
N

∑
j=1

Ai j, (11)

Ã = P−α AP−α (12)

where α = 1 is set to factor out the effect of sampling density. The
kernel Ã is further normalized

W (xi,x j) =
Ã(xi,x j)

∑
N
j=1 Ã(xi,x j)

(13)
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so that the matrix W becomes a row stochastic matrix. The eigen-
decomposition of W results in a set of eigenvectors φ and eigen-
values λ

Wφ i = λiφ i. (14)

To check if dimensionality reduction of X is possible, selection
of the eigenvectors φ that parameterize independent directions
(non-harmonic eignvectors) is needed. In our work this selec-
tion was made by implementing the algorithm presented in47. If
the number of the non-harmonic eigenvectors is smaller than the
original dimensions of X then Diffusion Maps achieves dimen-
sionality reduction.

Our data “points”, xi, consist of planar configurations of 210
particle locations obtained either from evolving computations or
from experimental movies; our data set is X = {xi}N

i=1 where
xi ∈ R210×2. A number of preprocessing steps are performed be-
fore Diffusion Maps can be computed. All configurations are cen-
tered and aligned to a reference configuration by using Procrustes
analysis, in particular the Kabsch algorithm48,49. The reference
configuration was selected as the configuration that has the small-
est value of the order parameter Rg (see Section 2.5). Centering
the data and applying the Kabsch algorithm removes the transla-
tional and rotational degrees of freedom. We then compute the
density function, fi, for each configuration at the nodes of a grid
and we normalize its integral to one. The density was estimated
by a kernel density estimation using Gaussian Kernels in Python.
More precisely, the gaussian_kde module from scipy was used for
this computation. The bandwidth for the kernel estimation was
selected based on Scott’s Rule50. The Diffusion Maps algorithm
then is applied to the data set F = {fi}N

i of the collected normal-
ized density function discretizations. The density formulation fi
eliminates the problem of permutational invariance of the parti-
cles in defining pairwise distances. As we mentioned also earlier
the selection of the leading non-harmonic Diffusion Maps coor-
dinates was made by the local linear algorithm proposed by the
authors in47. For our Diffusion Maps computations the datafold
package was used51.

2.3 Nyström Extension

Given a new out-of-sample data point, xnew /∈ X (and subse-
quently fnew /∈ F), in order to embed it in the Diffusion Maps coor-
dinates one might add it to the data set and recompute Diffusion
Maps. However, this is computationally inefficient and will lead
to a new Diffusion Maps coordinate system for every new point
added in the data set. To avoid these issues the Nyström Exten-
sion formula52,53 can be used

φi( fnew) =
1
λi

N

∑
j=1

W̃ ( fnew, f j)φi( f j), (15)

where φi( fnew) is the estimated value of the ith eigenvector for the
new point fnew, λi is the corresponding eigenvalue, and φi( f j) is
the jth component of the ith eigenvector.

This formula is extremely useful in mapping trajectories either
from the Brownian Dynamics simulations or from experimental
snapshots to the Diffusion Maps coordinates (an operation called

“restriction”). Restricted long trajectories are used as a test set to
validate our estimated eSDEs.

2.4 Learning SDEs from data
In this section we describe two approaches to estimate SDEs from
data. Let x(t) be a stochastic vector-valued variable whose evolu-
tion is governed by the SDE

dx(t) = ν(x(t))dt +σ(x(t))dBt , (16)

where ν : Rm → Rm is the drift, σ : Rm → Rm×m is the diffusivity
matrix, and B a collection of m one-dimensional Wiener processes.
The dynamics of such process can be approximated by estimating
the two functions ν and σ . We show how this estimation can
be performed, either from the statistical definition of the terms,
based on the Kramers-Moyal expansion12,13, or via a deep learn-
ing architecture inspired by stochastic numerical integrators14.

2.4.1 Kramers-Moyal expansion

For a stochastic process x(t), the differential change in time of its
probability density P(x, t) is given by

∂P(x, t)
∂ t

=
∞

∑
n=1

(
− ∂

∂x

)n
D(n)(x, t)P(x, t), (17)

which is known as the Kramers-Moyal expansion13. The mo-
ments of a transition probability, jumping from a position x(tk)
to a nearby position x(tk+h) in the next time step, are given by

D(n)(x, t) =
1
n!

lim
h→0

⟨[x(tk+h)− x(tk)]n⟩
h

. (18)

where ⟨·⟩ denotes the average. When x(t) is a Gauss-Markov pro-
cess; only the first two moments of Equation 17 are non-zero,
and the Kramers-Moyal expansion reduces to the forward Fokker-
Planck equation. The Fokker-Planck equation provides an alter-
native description of the dynamics expressed by Equation 16. For
N variables, the Fokker-Planck equation is given by

∂P
∂ t

=−
N

∑
i=1

∂

∂xi

(
D(1)

i (x)P
)
+

N

∑
i, j=1

∂ 2

∂xi∂x j

(
D(2)

i j (x)P
)
, (19)

where D(1) and D(2) are also the drift and diffusion coefficients
and the connection with the coefficients of Equation (16) is given
by the expressions ν(x) = D(1),σ2 = 2D(2). The estimation of the
drift and the diffusivity at a point xi can be performed by multiple
local parallel simulations (“bursts").

νi(x(tk))≈
1
h
⟨xi(tk+h)− xi(tk)⟩,

σ
2
i j(x(tk))≈

1
h
⟨(xi(tk+h)− xi(tk))(x j(tk+h)− x j(tk))⟩.

(20)

2.4.2 Deep Learning - Numerical Integrators

The deep learning approach that we have followed for the iden-
tification of eSDEs is based on the work of14. In this approach,
the drift and diffusivity are estimated through two networks νθ

and σθ , where θ are the weights of the networks. In our work
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we also introduce a small but meaningful modification of their
method by also including a “parameter neuron" along with the
snapshot of inputs D̃ = {xi(tk+h),xi(tk),hi, pi}N

i=1. This modifica-
tion allowed us to learn parameter dependent eSDEs. The param-
eter p in our case is the applied voltage to the particles (V ∗).
The collected data required for this approach do not necessar-
ily need to be sampled from long trajectories. Snapshots D̃ are
sufficient as long as the region of interest is sampled densely
enough. Here we introduce the scheme for the two-dimensional
case since our identified eSDE is also two-dimensional. Each
snapshot D̃

i
in this network includes (a) a point at time k in space

xi(tk) = (xi
1(tk),x

i
2(tk)); (b) its coordinates after a short time evolu-

tion xi(tk+h) = (xi
1(tk+h),xi

2(tk+h)); (c) the time interval between
the two points, hi; and (d) a parameter pi for the parameter
dependent eSDE. Between different sampled snapshots the time
step h does not need to be uniform; in our case this property will
prove to be quite useful as discussed in the results.

The loss function used in our case (based on14) is derived from
the Euler-Maruyama scheme, a numerical integration method for
SDEs. The scheme for the two-dimensional case,

⌈
xi

1(tk+h)

xi
2(tk+h)

⌉
=

⌈
xi

1(tk)
xi

2(tk)

⌉
+hi

⌈
νθ (xi

1(tk), pi)

νθ (xi
2(tk), pi)

⌉
+

⌈
σθ (xi

1(tk),x
i
1(tk), pi) σθ (xi

1(tk),x
i
2(tk), pi)

σθ (xi
2(tk),x

i
1(tk), pi) σθ (xi

2(tk),x
i
2(tk), pi)

⌉⌈
dBt1
dBt2

⌉
(21)

where dBt1 ,dBt2 are normally distributed around zero with vari-
ance hi. This scheme has a similar form for higher dimensions.
This scheme implies that each xi(tk+h) is normally distributed,

xi(tk+h)∼ N
(

xi(tk)+hi
νθ (x

i(tk), pi),hi
σθ (x

i(tk), pi)2
)

(22)

where the mean µ i
θ
= xi(tk)+ hiνθ (xi(tk), pi) and the covariance

matrix Σ
i
θ
= hiσθ (xi(tk), pi)2.

Under this assumption, we formalize a loss function that will
lead to a maximization of the probability of Equation (22). This
is achieved by combining the logarithm of the probability density
of the multivariate normal distribution with the assumed mean
and variance from Equation (22):

L (θ |xi(tk+h),x
i(tk),h

i, pi) :=

log
∣∣det(Σi

θ
)
∣∣+ 1

2
(xi(tk+h)−µ

i
θ
)T(Σi

θ
)−1(xi(tk+h)−µ

i
θ
) (23)

where the constant term is dropped since it does not affect the
minimization. The training of the network is performed by mini-
mizing the loss function L over the training set D̃.

2.5 Order Parameters - Free Energy Landscapes
Order parameters are coarse, collective variables that summa-
rize the physics involved in the colloidal self-assembly process54.
These quantities often encapsulate features of interest, for ex-
ample the compactness, or the local or global degree of order

of a particle assembly22,54. Such variables can then be used to
formulate (ideally analytical, but practically, here, data-driven)
models to study the collective dynamics of complex systems. Do-
main scientists often have prior knowledge of good candidate
order parameters based on experience, intuition, or mathemat-
ical derivations, and validate a good variable choice among such
candidates22. Order parameters that are typically used to study
colloidal self-assembly are Rg, ψ6 and C6

20. Rg is the radius of
gyration, which quantifies whether the particle ensemble is ex-
panded in a fluid state or condensed in a crystalline state; ψ6 is
the degree of global six-fold bond orientation order (near 0 for
ideal gas, 1 for perfect single domain crystal); C6 is the ensem-
ble average of a local order parameter based on the number of
neighbors each particle has with 6-fold order (0 for no neighbors
with 6 fold-order, 1 for 6 neighbors with 6-fold order). Expres-
sions for each of these are included in our prior publications.20.
In our case, we do not use these theoretical “usual candidate" col-
loidal order parameters in our model construction. We allowed
the data to determine which and how many collective variables
are needed by using the Diffusion Maps scheme. We then attempt
to establish explainability of our data-driven variables in terms of
the theoretical ones Rg,ψ6,C6, see Section 3.1.

The effective potential G(x) quantifies the free energy land-
scape. It is obtained from the equilibrium probability distribution,
the steady-state solution of the Fokker Planck equation13. The in-
tegral equation for this effective potential (alternatively, potential
of mean force or effective free energy), is given (up to a constant)
by the equation13

G(xi) =−kT
∫ xi

0

[
2(σ2)−1(ν −∇ · σ2

2
)

]
·dr. (24)

where ν is drift and σ is the diffusivity. For our computations we
chose the origin as the reference state.

3 Results

3.1 Latent Observables

We start by coarse-graining Brownian Dynamics simulation (de-
tails about the simulations and the sampling are in the Appendix).
Diffusion Maps discovers two latent non-harmonic coordinates
denoted as φ1,φ2

47. This suggests that two Diffusion Maps co-
ordinates are enough to provide a more parsimonious represen-
tation of the original data set. The selection of those two Diffusion
Maps coordinates was made by applying the local linear regres-
sion algorithm suggested by the authors in47. We first check the
interpretabilty of these data-driven observables by coloring the
Diffusion Maps coordinates as functions of the three order pa-
rameters Rg, ψ6 and, C6. Those order parameters are physically
meaningful coarse variables that measure the degree of conden-
sation of the material (Section 2.5). It is worth highlighting that
no pair of the three order parameters is exactly one-to-one with
the Diffusion Maps coordinates; however a clear trend appears:
condensed configurations arise at the center of our manifold em-
bedding, while further out from the center disordered/fluid like
structures are observed. This implies that our latent coordinates
encode the physics of the Brownian Dynamic Simulations.
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Fig. 3 The two leading Diffusion Maps coordinates (φ1,φ2) colored by
the physically meaningful order parameters Rg, ψ6 and, C6 respectively
(Rg clearly correlates with C6).

In Figure 3, coloring the Diffusion Maps coordinates with the
three order parameters visually indicates a macroscopic rotational
symmetry. This symmetry is probably coming from the particle
density fields used for our Diffusion Maps computations, see Sec-
tion 2.2 for more details). In addition to the symmetries factored
out by the Kabsch algorithm, testing for an additional azimuthal
symmetry requires taking data in the form of several radial slices
from every picture, in order to test/confirm that they all appear
approximately the same. We do not further pursue this, but would
like to point to relevant work on modding out symmetries that
might be useful to the reader in the context of dynamical sys-
tems55,56 and vector Diffusion Maps57.

3.2 Learning Effective SDEs

For Brownian Dynamics simulations at fixed normalized voltage
V ∗ = V

Vxtal
= 1.51V

1.89V = 0.8 (see Section A2 in the Appendix), we es-
timate the drift and diffusivity in the Diffusion Maps coordinates
with (a) a neural network architecture; and with (b) the Kramers-
Moyal expansion. The drift estimated by the two approaches is
plotted as a vector field on the two Diffusion Maps coordinates,
Figure 4. The drift component gives us an estimate of what the
trajectories will locally tend to do on average. As can be seen from
Figure 4 (on average) the trajectories will evolve towards the cen-
ter of the manifold, and therefore towards more condensed struc-
tures as expected from the detailed Brownian Dynamics simula-
tions.
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Fig. 4 The estimated drift from the neural network and the Kramers-
Moyal respectively is plotted as the on average vector field in the two
Diffusion Maps coordinates (φ1,φ2). The vector field is plotted in sub-
sampled data sets to improve visualization.

The estimated vector field from the neural network appears
smoother compared to the one obtained with the Kramers-Moyal.
This could be partially attributed to the fact that the neural net-
work during training for the drift learns simultaneously from
many points per iteration through the loss function. On the other
hand, Kramers-Moyal uses bursts around each individual data
point separately, without information about the nearby points.
Figure 5 offers another comparison between the estimated drift
from the neural network and the Kramers-Moyal Expansion. The
estimated drifts of the two methods are comparable, with the drift
estimated from the neural network often slightly larger in magni-
tude. The comparison for the estimated diffusivity with the two
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Fig. 5 The estimated drift, ν1,ν2, from the neural network (first row)
and the Kramers-Moyal, ν⋆

1 ,ν
⋆
2 , (second row) is plotted as a function of

the Diffusion Maps coordinates (φ1,φ2).

approaches leads to similar conclusions, Figure 6. The diffusiv-
ity estimated from the neural network appears smoother com-
pared to the one estimated from the Kramers-Moyal. Note the
neural network approach estimated the diffusivity matrix without
assuming it to be diagonal (as opposed to its Kramers-Moyal esti-
mation). Even though a trend appears in the diffusivity computed
through the network the computed diffusivity is practically con-
stant along the data and the trend is just an artifact of the fitted
diffusivity through the network. This would also become evident
for the null models with constant diffusivity used in Dietrich et
al14.
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Fig. 6 The estimated diffusivity from the neural network, σ11,σ22,σ12 =
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is plotted as a function of the Diffusion Maps coordinates (φ1,φ2).
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Given the estimated drift and diffusivity we wish to generate
trajectories for the reduced eSDEs in Diffusion Maps coordinates.
Evaluating the drift and diffusivity along the integration is trivial
for the trained neural network. For the Kramers-Moyal expan-
sion, interpolating from the computed values becomes necessary.
Since the functions of the estimated drift and diffusivity are not
smooth enough for a global interpolation scheme, a local near-
est neighbor interpolation was used during the integration. The
numerical integrator used for both cases was the Euler-Maryama
scheme.

From the estimated coefficients (drift and diffusivity), and
more precisely from the average vector field in Figure 4, it is ex-
pected that the trajectories will evolve toward the center of the
embedding for both estimated eSDEs.

To evaluate our models’ performance against ground-truth
data, we sampled Brownian Dynamics trajectories and restricted
those trajectories with Nyström Extension in the reduced Diffu-
sion Maps coordinates (φ1,φ2). A comparison between the mean
of 100 trajectories obtained from the two eSDEs is contrasted to
the mean of 100 restricted trajectories computed with Brownian
Dynamics simulations in Figure 7. The dynamics from the net-
work on average provide more accurate results compared to the
ones obtained from the Kramers-Moyal. To successfully estimate
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Fig. 7 The estimated dynamics from the neural network (first row) and
the Kramers-Moyal (second row) is shown compared to restricted (with
Nyström) trajectories of the Brownian Dynamics in the two Diffusion
Maps coordinates (φ1,φ2). The mean of 100 trajectories (starting from
the same initial condition) is used for all cases. To get a visual inspection
of the variance in the estimated 100 trajectories, the area between the
maximum and minimum values for those trajectories is being “filled” with
solid color. The red paths correspond to the data-driven eSDEs (neural
network or Kramers-Moyal) and the blue paths to the restricted Brownian
Dynamics Paths.

both the drift and the diffusivity for the neural network, train-
ing was performed in two stages. First, we chose a time step h
that gave a reasonable estimation of the drift; we then fixed the
part of the network that estimates the drift, and used snapshots at
smaller time steps h′ to estimate the diffusivity (see the discussion
in14).

We provide an uncertainty quantification (error analysis) com-
parison of the neural network model in Section A6 of the SI.

This analysis provides some more quantitative measurements on
of how certain the reported predictions are. The results suggest
the the robustness of the neural-network model. In addition, in
Section A7 of the SI we discuss a more quantitative comparison
between the two surrogate identified eSDEs (with Kramers-Moyal
and the neural-network). The results in this case suggest that the
discrepancy between the two surrogate models is in the range of
the expected error estimations of the neural-network model.

3.3 Learning a Parameter-Dependent eSDE

In this section we illustrate the ability to learn a parameter
dependent eSDE. For this case only the neural network was
used. We sampled data (snapshots) for four different voltages,
V⋆ = {0.5,0.6,0.7,0.8}. The larger the voltage becomes, the larger
the force that is acting on the particles, and thus the faster they
condense. On the contrary, as the voltage becomes lower, the
particles can move more freely and they condense slower. Those
physical features are expected to be captured in terms of the drift
and diffusivity of our eSDE . As the voltage increases the drift
(force) is expected to increase and the diffusivity to decrease. In
Figure 8 the obtained results from the neural network appear to
conform to those features of the simulations.
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Fig. 8 In the Diffusion Maps coordinates (φ1,φ2) we illustrate trajectories
computed through the neural network trained for different values of the
voltage, V ⋆ = {0.5,0.6,0.7,0.8} plotted from left to right. Trajectories of
the estimated eSDE from the neural network (red paths) are contrasted to
restricted (with Nyström Extension) trajectories computed with Brownian
Dynamics (blue paths) for different values of the voltage.

For four different initial conditions, and for the same time
length, trajectories were integrated with Euler-Maryama; the
same integration step was used for all parameter values. As the
parameter value increases, from left to right in Figure 8, the tra-
jectories appear to travel faster towards the center of the embed-
ding (towards more condense configurations). This can be at-
tributed to fact that the drift increases in magnitude. In addition,
as the voltage decreases, the trajectories appear more noisy, since
the diffusivity increases.

In Figure 9 the estimated diffusivity is plotted against the Dif-
fusion Maps coordinates and is colored with the voltage value.
Figure 9 supports the observation that as the voltage increases
the diffusivity decreases.

For the estimation of the parameter dependent eSDE, the flex-
ibility of having different step sizes hi proved quite useful. For
smaller values of the voltage V ⋆, for which the drift is also smaller,
larger time steps could be accurately employed.
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Fig. 9 The estimated diagonal diffusivity is plotted against φ1, φ2. Dif-
ferent colors correspond to different values of the parameter (V ∗). The
trend in the estimated diffusivity is in agreement with the physics of the
problem. The higher voltage forces the system to condense faster. On
the contrary, the smaller the voltage becomes, the easier it is for the
particles to move freely, and thus the effective diffusivity increases.

3.4 Free Energy Landscapes
We illustrate the ability to estimate free energy landscapes (po-
tential functions) from the coefficients of the reduced eSDE. In
Figure 10 the Free Energy in kT units is plotted as a function of
the Diffusion Maps coordinates φ1, φ2 for the four different volt-
ages in an increasing order. From Figure 10 the larger the volt-
age, the larger the range of effective potential values becomes.
From our computations it appears that the term ∇ ·σ2 is negligi-
ble compared to the other terms, and that the state dependence
of the diffusivity can be practically ignored.
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Fig. 10 The Free Energy Landscape, G(x)/kT , estimated by Equation
(24) for different voltages V ⋆ = {0.5,0.6,0.7,0.8} (from left to right) are
plotted as functions in the Diffusion Maps coordinates (φ1,φ2) respec-
tively.

3.5 Experimental Data
In this section we provide a qualitative comparison between our
reduced model and experimental dynamic data. The experimen-
tal set up from which the data were collected is described in8.
Note that each configuration used for the experimental data has
204 particles and not 210 as in our simulations. The radii of the
particles is the same as the one used for the simulation and the
voltage (V ⋆ = 0.74) for those experiments is in the range of the
voltages used to train the parameter dependent eSDE. Given the
experimental trajectories, we used the same preprocessing as for
the computational data, and then Nyström Extension was used
to restrict the experimental configurations in the Diffusion Maps
coordinates. The experimental data were rescaled in the same

range as the simulations based on the ratio of the radii of the two
reference configurations used for the Kabsch algorithm. Please
note that to restrict the configurations with 204 particles in the
Diffusion Maps coordinates obtained from the simulations, a dif-
ferent reference configuration was used for the Kabsch algorithm.
The reference configuration was selected also here as the config-
uration with the smallest value of Rg from the experimental tra-
jectories. Then the same density estimation described in Section
2.2 is applied. These steps allow us to project the experimental
particles to the Diffusion Maps coordinates despite their different
number of particles. We then use our trained neural network to
generate trajectories given the estimated initial conditions in the
Diffusion Maps coordinates. The integration of the eSDE was per-
formed for 125 seconds with time step h = 0.125. The time step
used to integrate the eSDE corresponds to the same frame rate
that the experimental measurements were sampled at (8 frames
per second8). The behavior of the restricted experimental trajec-
tories has the same qualitative behavior as the reduced model,
and as the restricted trajectories of the Brownian Dynamics.
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Fig. 11 Restricted with Nyström Extension experimental trajectories
compared with paths generated from the neural network eSDE trained
on the computational data. The red trajectories correspond to the paths
generated by the neural network and the blue trajectories to the trajec-
tories of the experiments, restricted to the latent space using Nyström
Extension.

4 Discussion
We demonstrated that the Diffusion Maps algorithm can discover
a set of latent observables given a data set of sampled dynamic
configurations of crystallizing colloidal particles. We explored the
correspondence between our obtained latent observables and es-
tablished theoretical order parameters (Rg, ψ6, C6). We learned
an eSDE by using the traditional Kramers-Moyal expansion and
compared it with a modern deep learning architecture based on
stochastic numerical integrators14. Both estimated reduced eS-
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DEs qualitatively reproduce the dynamics of the full simulations.
We showed that the neural network’s dynamics on average ap-
pear more accurate, by comparing the data-driven eSDEs with
restricted trajectories of the full Brownian Dynamics. It’s worth
mentioning that the computation cost and the number of data
points needed to learn an effective eSDE with the neural network
is much smaller than the corresponding Kramers-Moyal effort, we
provide a more detailed comparison in the Appendix. We illus-
trated the ability to learn a parameter dependent eSDE through
our neural network architecture. The coefficients (drift and dif-
fusivity) of the parameter dependent eSDE again seem to capture
the dynamics of the fine scale simulations. Lastly, we showed
that our reduced models qualitatively agree with dynamics of re-
stricted experimental data.

5 Conclusions
The developed eSDEs provides a compressed data-driven model
that we believe can help the study of self-assembly. Even though
the application was focused on colloidal assembly, this framework
can be applied to a range of different applications, from coarse-
graining epidemiological models to models of cell motility. Such
data-driven models could be useful tools for performing scientific
computations (e.g. estimation of mean escape times, construction
of bifurcation diagrams) even when analytical expressions are not
available.

Our reduced models, while capable of describing the coarse-
grained, collective dynamics, do not provide information about
the fine-scale conformations themselves. Our assumption that dif-
ferences in density profiles suffice to determine a similarity mea-
sure in configuration space leads to configurations with the same
density field being mapped to a single point in our coarse latent
space. Therefore, mapping back to the ambient space, i.e. lift-
ing, is a nontrivial task since there is a family of configurations
for each Diffusion Maps point. To support this argument we show
a comparison between a naive mapping of a generated trajectory
from the Diffusion Maps coordinates to the configurations with
nearest neighbors (what we call lifting, from coarse to fine) and a
trajectory generated by the Brownian Dynamic simulation in Fig-
ure 12 and in the accompanying video (provided in the SI). Both
trajectories start from the same initial condition. In Figure 12 for
a reduced trajectory of the eSDE estimated by the neural network
we find the nearest point in the Diffusion Maps coordinate that
belongs to our data set and lift based on that configuration. The
lifted trajectory exhibits large abrupt changes and appears thus
unrealistic. We believe that utilizing conditional Generative Ad-
versarial Networks (cGANs) constitutes a promising direction for
reconstructing realistic fine scale configurations conditioned on
coarse-grained features.

Learning eSDEs directly from experimental data is a possible
extension of our work. The main limitation of learning an eSDE
directly is that usually we do not have sufficient experimental
data; this is why BD models are matched (as well as possible) to
experiments, and then we analyze their simulations8–10. Perhaps
a transfer learning approach, where the eSDE is initially trained
in a large computational data set, and then refined/adapted to
experimental data could be an interesting approach for the con-

struction of data-driven models for studying self-assembly.
Another possible extension of our current work deals with us-

ing the identified eSDE for control problems. Merging the param-
eter dependent eSDE with feedback control policies could guide
the evolution of configurations from polycrystalline states to tar-
get single-domain crystals23?
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Fig. 12 The first row illustrates snapshots of the colloidal particles at
different time instances (t = 0s,12.5s,62.5s,125s). Those snapshots gen-
erated by mapping a trajectory integrated by the eSDE to the original
physical coordinates with the nearest neighbor algorithm (lifting). The
second row illustrates snapshots of colloidal particles for the same times-
tamps computed with Brownian Dynamics.
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