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Interactions between fluid species determine miscibility, phase behavior, and self-
assembly.  Computing interaction parameters (!chi parameters”) from analytical theory 
is an insuperable task for all but the simplest idealized architectures.  Molecular 
simulations would appear to be ideally suited for this task, as molecular shapes and 
interactions can be faithfully represented with properly designed simulation potentials.  
However, mixing free energies have entropic as well as enthalpic contributions, and so 
cannot be determined by simple time averages, but require special techniques, often 
involving thermodynamic integration.  But not all thermodynamic integration pathways 
are equally suitable for measuring subtle intermolecular interactions on the scale of 
fractions of kT per molecule.  In this work, we introduce a new, general approach to 
computing mixing free energies, for arbitrary molecular architectures.  We demonstrate 
it first for model ideal solutions, then test it on a well-characterized miscible blend:  
benzene / pyridine.  Our results demonstrate the utility and promise of the method —  
as well as the requirement that the simulation force fields faithful represent the 
molecular mixture under study.  We anticipate this method can be employed to study 
polymer blends, where determining chi from simulations for real polymer architectures 
remains a grand challenge.
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The excess free energy of mixing ∆Gex governs the phase behavior of mixtures and controls material
properties. It is challenging, however, to measure ∆Gex in simulations. Previously, we developed
a method that combines molecular dynamics (MD) simulations with thermodynamic integration
along the path of transformation of chains to predict the Flory Huggins interaction parameter χ for
polymer mixtures and block copolymers. However, this method is best applied when the constituent
molecules of the blends are structurally related. To overcome this limitation, we have developed a
new method to predict ∆Gex for mixtures. We perform simulations to induce phase separation within
a mixture by gradually weakening the interaction between different species. To compute ∆Gex, we
measure the thermodynamic work required to modify the interactions and the interfacial energy
between the separated phases. We validate our method by applying it first to equimolar mixtures of
labeled and unlabeled Lennard-Jones (LJ) beads, and labeled and unlabeled benzene, with results
in good agreement with ideal solution theory. Then we compute the excess free energy of mixing
for equimolar mixtures of benzene and pyridine, using both united-atom (UA) and all-atom (AA)
potentials. Our results using UA potentials predict a value for ∆Gex about four times the experimental
value, whereas using AA potentials gives results consistent with experiment, highlighting the need
for good potentials to faithfully represent mixture behavior.

1 Introduction
Most practical materials consist of more than one component, as
mixtures offer unique properties that are not accessible using pure
substances. In particular, polymer mixtures and block copolymers
have made an impact in a variety of applications, including mi-
croelectronics, photovoltaics, membranes, biomimetic materials,
and others.1–6 The performance of these materials is strongly de-
pendent on the structure and morphology of the blend.7 A key
challenge is thus to describe and predict the phase behavior of
such mixtures.

The key factor governing the phase behavior of mixtures is the
free energy of mixing ∆Gmix. For a two-component mixture,

∆Gmix = G12−X1G1−X2G2 (1)

Here Xi and Gi are the mole fractions and free energy of species
i, and G12 is the free energy of mixture.

As written in Eqn. 1, the mixing free energy ∆Gmix contains
both the ideal and excess contributions. For mixtures reasonably
described as regular solutions (i.e., the constituent molecules are
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roughly the same size and shape), the excess mixing free energy
∆Gex can be sensibly defined from

∆Gmix = ∆Gex +∆Gideal

∆Gideal = −kT (X1 logX1 +X2 logX2) (2)

Here ∆Gideal corresponds to the limiting case of an ideal solution,
in which the two components are physically identical except for
some innocuous label (the closest physical example being a mix-
ture of hydrogenated and deuterated solvents).

In turn, the excess mixing free energy is often used to define an
interaction parameter χ, which for regular solutions is typically
written

β∆Gex = X1X2χ (3)

(So defined, χ is not constant in general, but may depend on
temperature, pressure, and composition.)

Predicting ∆Gex for mixtures is a challenging task. Many ex-
periments, calculations, and simulations have been performed
to determine ∆Gex or equivalently χ, particularly for polymer
blends.8–16

At first sight, atomistic molecular dynamics (MD) simulations
appear well suited to the task of computing mixing free energies
for chemically realistic solutions, since the energetic and entropic
contributions to mixing depend on details of molecular shape
and interactions, which simulations aspire to accurately describe.
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However, MD simulations only give easy access to quantities that
can be computed from particle positions and momenta; the en-
ergy is such a quantity, but the entropy and free energy are not.
Thus special methods are always required to extract free energies
from simulations.

In previous approach, we developed a “morphing” method to
determine excess mixing free energies (and thus χ) for polymer
mixtures.17–20 In this approach, we perform molecular dynamic
(MD) simulations for a sequence of systems, along which se-
quence one species of molecule is progressively transformed or
“morphed” into another. We compute the work to transform the
species by thermodynamic integration, and determine mixing free
energies by comparing the work to morph molecules in a blend
and in the pure state.

We have applied this method to bead-spring polymer chains,
we have studied the effect of various factors like chain stiffness,
interaction mismatch, and chain architecture on χ. For chain of
different stiffness, Kozuch et al. found a positive entropic con-
tribution to χ, in agreement with the field theory predictions of
Fredrickson et al.12,17. Zhang et al. studied the effect of Lennard
Jones (LJ) interaction mismatch on χ, and validated their results
by comparing the interfacial profile for immiscible blends pre-
dicted by self-consistent field theory (SCFT) with MD simulation
results.18. Shetty et al. studied the effect of chain architecture
on χ, investigating blends with a more weakly-interacting bead
located at different positions on polypropylene-like bead-spring
chains.19

We have also extended the morphing method to chemically re-
alistic polymers, predicting χ for four real polymer blends.20. To
carry out “atomistic morphing”, we perform MD simulations for
a sequence of systems along which the forcefield parameters of
the molecules are progressively transformed from one species to
another. This is evidently more complicated for real polymers
than for bead-spring chains. We are obliged to adjust LJ pa-
rameters and partial charges, change bonded interactions as dou-
ble bonds morph into single bonds, and sometimes progressively
delete atoms altogether.

In this work, we explored a sequence of examples for which
the experimental χ value progressively decreased. We thereby de-
termined the practical limits to the atomistic morphing method,
which reflect both statistical error (which becomes more demand-
ing for small χ) and systematic error in the force fields. In
brief, the method holds promise for χ values down to of order
10−2. However, atomistic morphing has another practical limi-
tation: different species in the mixture must be structurally re-
lated. For mixtures involving species that are only distantly re-
lated structurally, atomistic morphing requires increasingly com-
plicated schemes in which many moieties are morphed, added,
or removed to transform one polymer species into another. This
quickly becomes impractical for all but the most structurally sim-
ilar pairs of polymers.

To overcome the limitation of structural similarity, in this study
we present a new method called “mutual ghosting" to predict the
excess free energy of mixing ∆Gex. Mutual ghosting works by
progressively weakening the interactions between two species in
a miscible blend, until they undergo phase separation. (As the

mutual interactions weaken, the two species become “ghosts” to
each other.) We can compute the work to achieve phase separa-
tion by thermodynamic integration.

However, the state induced by weakened interactions is not
complete phase separation, in two respects: 1) an interface be-
tween the separated phases is present, and 2) a dilute amount
of species A may be present in the B-rich phase, and vice versa.
To determine the work to completely separate the two species,
we must measure the interfacial tension of the A-B interface, and
compute the work to “sweep” the dilute stragglers into their own
phase.

The mixing free energy ∆Gmix that we seek is then the negative
of the total work ∆Gdemix to completely demix the system into its
pure components, given by

∆Gdemix = ∆Gweak−∆Gint +∆Gsweep (4)

Here ∆Gweak is the thermodynamic work to weaken the A-B inter-
actions; ∆Gint = 2Aγ is the A-B interfacial free energy (two inter-
faces in a periodic system of cross-sectional area A), and ∆Gsweep

is the work to transfer the stragglers (see Appendix for details).

The mutual ghosting method gives the full mixing free energy
∆Gmix; to obtain the excess free energy of mixing ∆Gex, we must
subtract the ideal contribution. This imposes a limitation on the
sensitivity of the method; to measure weak deviations from ideal
mixing, we must measure ∆Gmix quite accurately.

To test our new method, we first apply it to ideal mixtures, for
which the excess free energy of mixing ∆Gex should vanish. The
simplest such system is an equimolar mixture of Lennard Jones
(LJ) beads, differing only in their labels A and B. For a simple
chemically specific ideal mixture, we likewise apply mutual ghost-
ing to an equimolar mixture of labeled and unlabeled benzene.

We then apply our method to an equimolar benzene-pyridine
mixture. Benzene and pyridine have very similar molecular
shapes, but rather different interactions because of the substantial
dipole on pyridine (about 2.2 Debye); thus such mixtures serve
as a good example of a regular solution, for which the mixing free
energy can be written as in Eqn. 2. Also, vapor-liquid equilibrium
(VLE) data is available for benzene-pyridine solutions; VLE data
can be used to infer the mixing free energy, for comparison of our
mutual ghosting results to experiment.

As with any simulation method, our results depend on the force
field we use to represent the molecules being simulated. For ben-
zene and pyridine, we investigate both united atom (TraPPE UA)
and all-atom (OPLS-AA) potentials. Both have been well tested
for the respective pure fluids, but neither have been specifically
tested or tuned for benzene-pyridine mixtures.

To distinguish between shortcomings of the potentials in de-
scribing real molecules and difficulties with the mutual ghosting
method, it is useful to compare to results for χ obtained with
other simulation methods using the same potentials. Because
they are structurally so similar, χ for benzene and pyridine de-
scribed by both UA and AA potentials can readily be obtained
using atomistic morphings.
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2 Methods
The mutual ghosting method consists of a sequence of MD sim-
ulations in which attractive interactions between two species in
a mixture are progressively weakened, which causes the species
to demix. The work to demix ∆Gdemix is computed by thermo-
dynamic integration; the interfacial tension γ between the result-
ing phases is measured by standard techniques. Finally, the work
∆Gsweep to transfer species A molecules from the B-rich phase to
the A-rich phase and vice versa is computed from the concentra-
tions of these “straggler” molecules. The mixing free energy ∆Gmix

is then given in terms of these results by Eqn. 4.
To illustrate mutual ghosting in detail, we apply it to the sim-

plest ideal mixture, an equimolar mixture of pointlike particles
interacting with identical LJ interactions, differing only in their
labels. For an ideal mixture, we expect ∆Gmix to be given by the
ideal-mixing result, which serves as a first test of our method.

2.1 Ideal solution of LJ beads

Our first model ideal solution consists of a liquid of LJ beads with
diameter σ = 0.2 nm, and interaction strength ε equal to kT at
the simulation temperature of 300K (i.e., ε = 2.49 kJ/mol), at a
pressure of 1 bar.

To build the equilibrated solution, we first randomly insert
5000 LJ beads into a cubic simulation box of linear dimension
6 nm. We randomly label the beads as species A and B. We then
minimize the system energy, followed by simulation at fixed NPT
for 5 ns.

All simulations were performed using GROMACS.21 These sim-
ulations run at 250 ns/day on 8 cores with 1 GPU, with a timestep
of 1 fs. The particles diffuse at a rate of 6.9 nm2/ns, so that 5 ns
is more than adequate to equilibrate the species concentrations.
Fig. 1 (a) displays a snapshot of the resulting solution, in which
A beads are shown as red and B as blue.

Fig. 1 Snapshots of the (a) equilibrated LJ beads melt, (b) after phase
separation and (c) with only red beads.

We then perform a series of simulations in which the LJ in-
teraction strength between red and blue beads is systematically
decreased, while blue-blue and red-red interactions remain the
same. As the interactions between blue and red beads weaken,
beads of the same species increasingly cluster together, ultimately
separating into immiscible phases (see Fig. 1 (b)).

The weakening of the LJ interactions between red and blue
beads is controlled by a parameter λ :

LJ(r,λ ) = (1−λ )

(
C(12)

r12 −
C(6)

r6

)
(5)

Here C(12) = 4εσ12 and C(6) = 4εσ6, where σ and ε are the LJ
diameter and interaction energy.

To modify nonbonded interactions between two species A and
B while leaving A-A and B-B interactions undisturbed, the only
practical way is to use tabulated interactions, with separate ta-
bles for A-B and all other interactions. This approach works for
molecules of arbitrary complexity, and handles Coulomb as well
as LJ interactions. In GROMACS, this can be done with .mdp op-
tions

coulombtype = User
vdwtype = User
energygrps = A B

with index groups A and B defining species A and B.)
The A-B table table_A_B.xvg is computed from the standard

table table6-12.xvg with all entries multiplied by 1−λ . More
precisely, we used a “soft cutoff” scheme in which the potential
singularity at r = 0 is softened as λ becomes small.22. The soft-
cutoff potential we used takes the form

Vsc(r) = (1−λ )V (rsc)

rsc = (ασ
6
scλ + r6)1/6 (6)

with α = 0.5 and σsc = 0.2 nm. This potential avoids problems
that occur when nearly-vanished particles have insufficient repul-
sive interactions to prevent other particles from approaching their
weak but still singular potential at r = 0.

The work dW to weaken the interactions by ∂λ at λ is given by
dW = ∂G/∂λ , with the latter derivative given by(

∂G
∂λ

)
=

〈
∂H
∂λ

〉
λ

≈ 〈∆H〉λ
∆λ

(7)

in which Hλ is the system Hamiltonian at a given value of
λ . Physically, Eqn. 7 says the generalized thermodynamic force
∂G/∂λ acting through a small displacement ∆λ equals the aver-
age change in system energy 〈∆H〉, which is the work done.

We emphasize that the first equality in Eq. 7 is thermodynami-
cally exact, derivable from the appropriate partition function. In-
deed, this same general relation is used for atomistic morphing,
in which λ controls the morphed atomistic parameters. For the
Gibbs ensemble, the thermodynamic work of Eq. 7 includes the
effects of volume change on mixing (to see this, note that only
the Hamiltonian depends on the morphing parameter λ , while
the system volume is a property of the microstate), which in any
case are very small for most regular solutions.

The sequence of λ values is chosen to reasonably represent the
integrand Eqn. 7. The last frame of the simulation at a given λ

is used as the initial configuration for the next λ value, which is
a sensible procedure if the λ values are closely spaced, and the
ensembles at neighboring λ values overlap significantly.

We evaluate the derivative 〈∂H/∂λ 〉 using a finite difference
between adjacent λ values (last line in Eqn. 7). In detail, we com-
pute ∆Eλ by rerunning the simulation trajectory at a given λ with
the interaction tables corresponding to neighboring λ values, and
taking the difference of the average energy in the original and
rerun.
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Fig. 2(a) displays results for the integrand ∂G/∂λ versus λ for
our LJ beads ideal solution. The points in the graph indicate the
λ values taken, which are chosen to give good representation of
the integrand. To ensure good averaging of the integrand, each λ

value corresponds to a simulation run of 20 ns.
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Fig. 2 (a) Free energy integrand dG/dλ versus λ and (b) free energy to
weaken interactions ∆Gweak versus λ for bead-bead separation.

To compute the free energy ∆Gweak to weaken the interactions,
we integrate the generalized thermodynamic force ∂G/∂λ with
respect to λ ; Fig. 2 (b) presents the integral versus λ . Evidently,
as λ progressively increases and we continue to weaken the A-B
interaction, the work to demix continues to increase. Because A
and B have largely separated beyond about λ = 0.3, this reflects
the increase in interfacial tension as the A-B interactions weaken.

To completely demix the system, we must remove the interface
between the two phases. To this end, we measure the interfacial
tension γ in terms of the pressure anisotropy in the usual way, as

2γ/L = Pz− (1/2)(Px +Py) (8)

for interfaces normal to the z axis in a cubic cell of linear dimen-
sion L. The total interfacial free energy ∆Gγ is then 2γA (there
are two interfaces of area A = L2 in the periodic system), which
increases with λ as shown in Fig. 3.

Comparing Figs. 3 and 2(b), we see that the increasing work to
effect the phase separation at larger values of λ is nearly identical
to the increasing free energy of the A-B interface. This suggests
that when the work to achieve phase separation is computed via
Eqn. 4, the result will be nearly constant with λ .

Even after the A-B interfacial tension is accounted for, the
phase separation induced by weakening the A-B interactions is
not complete; for a system of small molecules, a few “stragglers”
of species A may be present in the B-rich phase, or vice versa. This
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Fig. 3 Interfacial free energy ∆Gint versus λ for LJ beads mixing.

is the case for our LJ bead simulations, as shown in Fig. 4 (a). We
count the stragglers by integrating the number density in each
phase, and calculate the work ∆Gsweep to transfer or “sweep” the
stragglers to their own phase, which turns out to be kT per par-
ticle (see Appendix for details). Fig. 4 (b) shows how ∆Gsweep

depends on λ ; as λ increases, the phase separation is more com-
plete, and fewer stragglers remain to be swept into the proper
phase.
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Fig. 4 (a) Number density of beads versus box co-ordinate at two λ

values and (b) work to sweep ∆Gsweep versus λ .

We determine the free energy of mixing ∆Gmix, or rather its neg-
ative, the free energy of de-mixing ∆Gdemix, from the measured
values using Eqn. 4. We obtain ∆Gex from ∆Gmix by subtracting
the ideal part of the mixing free energy, using Eqn. 2.

Putting together our results for the work ∆Gweak to weaken the
A-B interactions, the interfacial free energy ∆Gint , and the work
∆Gsweep to sweep the stragglers into the appropriate phase, we
obtain the work to completely demix the system ∆Gdemix, which
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is the negative of ∆Gmix (see Fig. 5). As evident in the figure,
the demixing free energy for this ideal solution is independent
of λ (above λ ≈ 0.3, at which phase separation first occurs), and
consistent with the ideal-mixing result ∆Gideal = kT log2.

The individual contributions to ∆Gdemix each vary with λ — the
work ∆Gweak to weaken the A-B interaction increases (Fig. 2), the
interfacial free energy ∆Gint likewise increases in nearly the same
way (Fig. 3), and the small work ∆Gsweep to sweep the stragglers
out decreases (Fig. 4) — but the sum is quite constant. We can
thus improve our value for ∆Gdemix by averaging the independent
values, and estimate our statistical error from the variance. From
simulations, ∆Gdemix = 1.738± 0.009 kJ/mol for LJ beads sepa-
ration from itself, consistent with the expected kT log2 = 1.729
kJ/mol within the small statistical error.
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Fig. 5 Demixing free energy ∆Gdemix per bead versus λ for ideal solution
of LJ beads.

2.2 Benzene and pyridine mixtures

For molecular mixtures, we consider an ideal solution of equimo-
lar labeled and unlabeled benzene, followed by an equimolar mix-
ture of benzene and pyridine, as a good representation of a regu-
lar solution.

To prepare the equilibrated initial state of a benzene-benzene
ideal solution, we begin by randomly inserting 2500 benzene
molecules into a cubic simulation box of linear dimension 10 nm.
To equilibrate, we 1) minimize the energy, 2) resize the system to
the experimental density during a 1 ns simulation, and 3) equi-
librate for 1 ns under NPT conditions at 300K at 1 bar pressure.
For the benzene ideal solution, we use OPLS-AA (Optimized Po-
tentials for Liquid Simulations- All Atom) potentials.23

We prepare equimolar benzene-pyridine solutions in the same
way, using 1250 benzene and 1250 pyridine molecules in a cu-
bic 10 nm simulation box. We perform benzene-pyridine mutual
ghosting simulations using the united-atom TraPPE (Transferable
Potentials for Phase Equilibria Force Field) potential, as well as
the all-atom OPLS-AA potential, to see how the two potentials
compare in their predictions.24,25

Our MD simulations for benzene and pyridine employ a
timestep of 1 fs, and run at 25 ns/day on 16 cores with 1 GPU.
Each λ value in the sequence of mutual ghosting simulations
is run for 50 ns. Benzene diffuses in our simulations at a rate
of about 1.7 nm2/ns (in good agreement with the experimental

value of 2.2 nm2/ns), so runs of this length are more than suffi-
cient to equilibrate concentration fluctuations across the system.

Finally, we perform atomistic morphing simulations20 to com-
pute the mixing free energy for benzene-pyridine solutions by
a completely independent route, to compare with our mutual
ghosting results using the same TraPPE and OPLS-AA force fields.

To summarize the atomistic morphing method, starting with
a pure benzene liquid, we perform two series of simulations, in
which we transform either all or half of the benzene molecules to
pyridine, to obtain either pure pyridine or an equimolar benzene-
pyridine solution. By thermodynamic integration with respect to
the morphing parameter λ , we compute the work to effect each
transformation, and thereby calculate ∆Gpyr and ∆Gbenz−pyr, with
pure benzene as the reference state. The excess mixing free en-
ergy ∆Gex is given by

∆Gex = ∆Gbenz−pyr− (1/2)∆Gpyr (9)

Note that atomistic morphing although more cumbersome and
less general than mutual ghosting because it requires structural
similarity between species, has the advantage that it gives the
excess mixing free energy directly, with no need to subtract the
ideal mixing contribution.

3 Results

3.1 Benzene ideal solutions

Following the same procedures described in Section 2.1 and il-
lustrated for the ideal solution of labeled and unlabeled LJ beads,
we perform mutual ghosting simulations for ideal equimolar solu-
tions of labeled and unlabeled benzene. Fig. 6(a) displays results
for the free energy ∆Gweak to weaken the interactions between
labeled and unlabeled molecules, and Fig. 6(b) displays the inter-
facial free energy ∆Gint , both as a function of λ .

In contrast to our results for ideal solutions of LJ beads, for
benzene-benzene ideal solutions we find no “straggler” molecules
in the wrong phase (presumably because the interactions per
molecule are larger compared to kT for benzene than for our
LJ beads). Hence for these molecular solutions, we do not need
to correct for the work to transfer stragglers to the appropriate
phase.

Fig. 7 shows the demixing free energy ∆Gdemix per molecule
versus λ for ideal solutions of benzene in benzene. As for the
LJ bead ideal solution results, the demixing free energy is inde-
pendent of λ once phase separation has occurred, with the in-
crease in interfacial free energy ∆Gint compensating precisely for
the increase in the work ∆Gweak to weaken the interactions. Aver-
aging the data points in Fig. 7, we find ∆Gdemix = 1.713± 0.005
kJ/mol, reasonably consistent with the ideal solution result of
∆Gideal = kT log2 = 1.729 kJ/mol.

3.2 Benzene-pyridine solutions

We perform mutual ghosting simulations for equimolar benzene-
pyridine solutions using united-atom TraPPE as well as all-atom
OPLS-AA potentials. Figs. 8 (a) and (b) presents our results for
the work to weaken the interactions ∆Gweak and the free energy
∆Gint of the resulting interface, for both potentials. (As for ben-
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Fig. 6 (a) Free energy to weaken interactions ∆Gweak as a function of
λ and (b) interfacial free energy ∆Gint versus λ for benzene-benzene
mixture.

zene ideal solutions, we observe no straggler molecules in the
wrong phase, so no correction is required to account for sweep-
ing stragglers into the correct phase.)

For both potentials, we again find that as we weaken the inter-
actions between benzene and pyridine, the work ∆Gweak increases
in the same way as the interfacial free energy ∆Gint . As a conse-
quence, the demixing free energy predicted using either potential
is constant over the range of λ for which the mixture has sepa-
rated (see Fig. 9).

However, our results using TraPPE UA and OPLS-AA potentials
differ substantially from each other: using TraPPE potentials, we
find ∆Gex equal to 0.49± 0.01 kJ/mol, while for OPLS-AA poten-
tials we obtain a much smaller value of 0.17± 0.01 kJ/mol. The
latter result is much closer to the experimental value of 0.125
kJ/mol, obtained from fitting vapor-liquid equilibrium (VLE) data
for benzene-pyridine solutions to regular solution theory.26

So is the discrepancy between mutual ghosting results using
TraPPE and OPLS potentials (and between both these results and
experiment) evidence of a shortcoming in the method, or in the
potentials? To shed light on this question, we performed atomistic
morphing simulations for an equimolar benzene-pyridine solution
of 2500 molecules, using the same potentials.

Fig. 10 displays the results of atomistic morphing simulations
for the free energy integrand ∂Gex/∂λ for TraPPE UA and OPLS-
AA potentials. As evident from the figure, the area under the
curve is larger for the TraPPE results. Performing the inte-
gral to obtain ∆Gex, we find ∆Gex = 0.375± 0.005 kJ/mol for
TraPPE potentials, versus 0.165 kJ/mol for OPLS-AA potentials.
These atomistic morphing results, using a completely different
approach, are consistent with our mutual ghosting results, in the
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Fig. 7 Demix free energy ∆Gdemix per molecule versus λ for benzene-
benzene mixture.

following respects: a) the TraPPE-derived value is much higher
than the OPLS-AA value, b) the OPLS-AA values from atomistic
morphing and mutual ghosting are in close agreement, and c) the
OPLS-AA values are in much better although not perfect agree-
ment with experiment.

Table 1 summarizes our results obtained using both potentials,
with both methods, reported both as excess mixing free energies,
and as χ parameters on a per molecule basis, obtained from Eqn.
3. Error bars for simulation ∆Gex results (both UA and AA) are
0.01.

Source ∆Gex (kJ/mol) χ

TraPPE UA 0.49 0.79
0.38 0.61

OPLS-AA 0.17 0.27
0.17 0.27

experiment 0.125 0.2

Table 1 Excess mixing free energy results for benzene-pyridine solutions,
computed using TraPPE and OPLS-AA potentials, by mutual ghosting
(top values) and atomistic morphing (bottom values).

4 Conclusion
We present a new “mutual ghosting” simulation method to deter-
mine the free energy of mixing ∆Gmix for miscible solutions. The
new method works by artificially weakening the interactions be-
tween species A and B to induce phase separation, then measures
the interfacial tension between the immiscible phases. The work
∆Gdemix to demix the two species (which equals −∆Gmix) is the
sum of the work ∆Gweak to weaken the interactions, minus the
interfacial free energy ∆Gint . ∆Gdemix can be computed by ther-
modynamic integration along the path of weakening interactions.
Sometimes, a dilute admixture of “straggler” molecules of species
A remains in the B-rich phase, and vice versa; in such cases, we
add to ∆Gdemix the thermodynamic work ∆Gsweep to sweep these
stragglers to the appropriate phase, to complete the separation of
A and B.

Mutual ghosting overcomes an important limitation of our pre-
viously developed “atomistic morphing” method,20 which deter-
mines the excess free energy of mixing ∆Gex from simulations by
computing the work to progressively transform one species into

6 | 1–8Journal Name, [year], [vol.],

Page 7 of 9 Molecular Systems Design & Engineering



Atomistic United

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2000

4000

6000

�

�G
se
p
(k
J/
m
ol
)

D
G

w
ea

k (
kJ

/m
ol

)

United Atomistic

0.2 0.3 0.4 0.5 0.6
0

1000

2000

3000

4000

�

In
te
rfa
ci
al
Fr
ee
E
ne
rg
y
(k
J/
m
ol
)

D
G

in
t (

kJ
/m

ol
)

Fig. 8 (a) Free energy to weaken interactions ∆Gweak as a function
of λ and (b) interfacial free energy ∆Gint versus λ for benzene-pyridine,
using TraPPE UA (blue, filled circles) and OPLS-AA (green, open circles)
potentials.

another, but in practice requires the two species to be closely re-
lated structurally. In contrast, mutual ghosting can applied to
completely dissimilar species. However, atomistic morphing com-
putes ∆Gex directly, without subtracting the ideal mixing free en-
ergy ∆Gideal from ∆Gmix, as must be done for mutual ghosting.
For nearly-ideal mixtures, this imposes stringent requirements on
the statistical error of mutual ghosting simulations.

We test our new method first by applying it to ideal solutions,
first a mixture of labeled and unlabeled Lennard-Jones particles,
then a mixture of labeled and unlabeled benzene. In both cases,
we compute ∆Gmix = ∆Gideal to very good accuracy. For simplic-
ity, in the present work we consider only equimolar mixtures;
however, like the atomistic morphing method, the new mutual
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Fig. 9 Demix free energy ∆Gdemix per molecule versus λ for benzene-
pyridine mixture, using TraPPE UA (blue, filled circles) and OPLS-AA
(green, open circles) potentials.
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Fig. 10 Excess free energy integrand ∂Gex/∂λ versus λ for benzene-
pyridine mixture from “atomistic morphing” simulations, using TraPPE
UA (blue) and (b) OPLS-AA (green) potentials.

ghosting method can be applied equally well to non-equimolar
mixtures.

Then, we apply mutual ghosting to equimolar benzene-pyridine
solutions, which are convenient to study for several reasons: 1)
because benzene and pyridine have similar size and shape, they
are reasonably described as regular solutions; 2) because they
are structurally similar, we can use atomistic morphing as well as
mutual ghosting to determine ∆Gex for the same force fields; and
3) experimental results for ∆Gex can be inferred from published
vapor-liquid equilibrium data.

As with any chemically specific simulation, our results rely on
the fidelity of the force fields we use to model the system. In
this work, we simulate benzene and pyridine using two differ-
ent force fields, the TraPPE UA (united atom) and the OPLS-AA
(all atom) force fields. Both are commonly used, both have been
tested against pure fluid properties, and neither has been specifi-
cally tuned to represent benzene-pyridine mixtures.

We find that mutual ghosting simulations using TraPPE UA po-
tentials predict ∆Gex four times larger than experiment, while
OPLS-AA potentials give values about 30 percent larger than ex-
periment. Simulation results using atomistic morphing are rea-
sonably consistent with mutual ghosting values, particularly for
OPLS-AA potentials. This finding highlights the fact that sim-
ulation predictions for mixing free energies are only reliable if
the underlying force fields reasonably represent the interacting
species, and that validation of potentials for pure-fluid properties
may not ensure good results for mixtures.

5 Appendix: sweeping up the stragglers
Consider a two component, phase separated system consisting of
species A and B, with a dilute amount of B in A-rich phase and
vice versa. For a system in equilibrium, the chemical potential µB

of B molecules is same in both the phases (∆µ = 0). As a result,
the thermodynamic work ∆µ to transfer a single B molecule from
the A-rich phase to B-rich phase is initially zero.

However, as we continue to transfer B molecules, the concen-
tration of B in the A phase drops, and the translational entropy of
the remaining B molecules in the A-phase increases, given by Eq.
10:

∆S(c) =−k log(c/c0) (10)
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Here c0 is the equilibrium concentration of B in the A-rich phase,
and c its reduced value after some transfers have taken place.

Hence, the work to transfer a B molecule to the B-rich phase as
a function of its concentration in the A-rich phase is

∆µ(c) = ∆E−T ∆S =−kT log(c/c0) (11)

(We assume here that B molecules are dilute enough in the A-rich
phase that they may be regarded as an ideal solute, and interac-
tions between B molecules in the A-rich phase neglected.) The
same arguments hold true for dilute A molecules in B-rich phase.

We integrate to find the work to transfer all the B molecules
to B-rich phase (assuming the dilute concentration of A in the B-
rich phase is largely unaffected, since very few B molecules are
transferred). The work per unit volume is then

W/V =
∫ c0

0
dc∆µ(c) = kT c0 (12)

Correspondingly, the work per particle transferred is simply kT.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
Financial support from the National Science Foundation under
awards DMREF-1629006, DMREF-1921854, and DMR-1905632
are acknowledged.

Notes and references
1 M. T. Shaw, Polymer Engineering & Science, 1982, 22, 115–

123.
2 C. M. Bates and F. S. Bates, Macromolecules, 2017, 50, 3–22.
3 L. M. Robeson, Polymer Engineering & Science, 1984, 24, 587–

597.
4 I. W. Hamley, Nanotechnology, 2003, 14, R39–R54.
5 M. Sommer, S. Huettner and M. Thelakkat, Journal of Materi-

als Chemistry, 2010, 20, 10788–10797.
6 S. Aid, A. Eddhahak, S. Khelladi, Z. Ortega, S. Chaabani and

A. Tcharkhtchi, Polymer Testing, 2019, 73, 222–231.

7 C. W. Macosko, Macromolecular Symposia, 2000, 149, 171–
184.

8 T. Nishi and T. T. Wang, Macromolecules, 1975, 8, 909–915.
9 C. Kim and D. Paul, Polymer, 1992, 33, 1630–1639.

10 O. Olabisi, Macromolecules, 1975, 8, 316–322.
11 L. Leibler, Macromolecules, 1980, 13, 1602–1617.
12 G. H. Fredrickson, A. J. Liu and F. S. Bates, Macromolecules,

1994, 2503 – 2511.
13 E. Helfand and Y. Tagami, Journal of Polymer Science Part B:

Polymer Letters, 1971, 9, 741–746.
14 A. Chremos, A. Nikoubashman and A. Z. Panagiotopoulos, The

Journal of Chemical Physics, 2014, 140, 054909.
15 C. P. Callaway, K. Hendrickson, N. Bond, S. M. Lee, P. Sood

and S. S. Jang, ChemPhysChem, 2018, 19, 1655–1664.
16 Q. P. Chen, J. D. Chu, R. F. DeJaco, T. P. Lodge and J. I. Siep-

mann, Macromolecules, 2016, 49, 3975–3985.
17 D. Kozuch, W. Zhang and S. Milner, Polymers, 2016, 8, 241.
18 W. Zhang, E. D. Gomez and S. T. Milner, Phys. Rev. Lett., 2017,

119, 017801.
19 S. Shetty, M. M. Adams, E. D. Gomez and S. T. Milner, Macro-

molecules, 2020, 53, 9386–9396.
20 S. Shetty, E. D. Gomez and S. T. Milner, Macromolecules, 2021,

54, 10447–10455.
21 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, Journal

of Chemical Theory and Computation, 2008, 4, 435–447.
22 B. TC, M. AE, van Schaik RC, G. PR and van Gunsteren WF,

Chemical Physics Letters, 1994, 222, 529–539.
23 W. L. Jorgensen and D. L. Severance, Journal of the American

Chemical Society, 1990, 112, 4768–4774.
24 C. D. Wick, J. M. Stubbs, N. Rai and J. I. Siepmann, The Jour-

nal of Physical Chemistry B, 2005, 109, 18974–18982.
25 C. D. Wick, M. G. Martin and J. I. Siepmann, The Journal of

Physical Chemistry B, 2000, 104, 8008–8016.
26 P. Garrett, J. Pollock and K. Morcom, The Journal of Chemical

Thermodynamics, 1973, 5, 569–575.

8 | 1–8Journal Name, [year], [vol.],

Page 9 of 9 Molecular Systems Design & Engineering


