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SAXS-guided unbiased coarse-grained Monte Carlo sim-
ulation for identification of self-assembly nanostructure
and dimension†

Silabrata Pahari,ab Shuhao Liu,a Chi Ho Lee,ab Mustafa Akbulut,ab Joseph Sang-Il Kwon ∗ab

Recent studies show that solvated amphiphiles can form nanostructured self-assemblies called dy-
namic binary complexes (DBCs) in the presence of ions. Since the nanostructures of DBCs are
directly related to their viscoelastic properties, it is important to understand how the nanostructures
change under different solution conditions. However, it is challenging to obtain a three-dimensional
molecular description of these nanostructures by utilizing conventional experimental characterization
techniques or thermodynamic models. To this end, we combined the structural data from small an-
gle X-ray scattering (SAXS) experiments and thermodynamic knowledge from coarse-grained Monte
Carlo (CGMC) simulations to identify the detailed three-dimensional nanostructure of DBCs. Specif-
ically, unbiased CGMC simulations are performed with SAXS-guided initial conditions, which aids us
to sample accurate nanostructures in a computationally efficient fashion. Henceforth, an elliptical
bilayer nanostructure is obtained as the most probable nanostructure of DBCs whose dimensions are
validated by scanning electron microscope (SEM) images. Then, utilizing the obtained molecular
model of DBCs, we could also explain the pH tunability of the system. Overall, our results from
SAXS-guided unbiased CGMC simulations highlight that using potential energy combined with SAXS
data, we can distinguish otherwise degenerate nanostructures resulting from the inherent ambiguity
of SAXS patterns.

1 Introduction
Over the last decade, there has been an increasing interest in in-
dustry and academia to develop complex fluids that can change
their rheological properties reversibly in response to the changes
in solution conditions1,2. These reversible fluids find great appli-
cations in the pharmaceutical, oil and gas, and speciality chemi-
cal industry sectors3–5. Specifically, the reversible nature of these
fluids is attained via the dynamic nanostructure of self-assembled
amphiphiles which are the primary building blocks of these com-
plex fluids. By carrying out further characterization and de-
tailed free energy calculations, it was revealed that these self-
assemblies have unique nanostructures. Some of the common
nanostructures identified include bilayers, spherical, and worm-
like micelles. Identification of these nanostructures is necessary
as significant changes in the viscoelastic properties of the materi-
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als take place with the varying nanostructure of these materials.
For example, the wormlike micelles, which are polymer-like flex-
ible supramolecular self-assemblies, entangle to give higher vis-
coelasticity than spherical micelles that form no entanglements.
Therefore, it has been widely studied to develop novel nanostruc-
tures of the supramolecular self-assemblies to attain target rheo-
logical properties6.

Recently, complex self-assembly called dynamic binary complex
(DBC) has been synthesized by Liu et al.7 via the complexation
between the zwitterionic beaten type of amphiphiles octadecy-
lamidopropyl (OAPB) and diethylenetriamine (DTA) ions. Specif-
ically, DBCs have a unique viscoelastic property which shows
sensitivity to the solution conditions like pH. In recent stud-
ies6,7, it was observed that DBCs consist of tubular nanostruc-
tures, and the viscoelastic properties of DBCs are determined
by the entanglement process of these tubular nanostructures
whose cross-sectional dimensions are almost an order of mag-
nitude larger than those of the conventional tubular wormlike
micelles (WLMs). It is difficult to rely on the existing imaging
techniques like transmission electron microscopy (TEM) to im-
age microgels such as DBCs. These techniques employ artificial
treatments like dehydration, which can often lead to inaccurate
imaging results due to significant changes in the morphology of
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microgels8. Specifically, when DBCs are dehydrated and the en-
trapped water molecules are removed, strong head-group inter-
actions among the amphiphilic monomers can lead to their ag-
gregation, thus making their accurate characterization difficult
in dehydrated phase. To address these limitations, methods like
cryogenic transmission electron microscopy (cryo-TEM) can be
utilized to obtain high-resolution nanostructure of DBCs in the
hydrated phase9,10. However, sample preparation is challenging
in cryo-TEM11; additionally, rapid cooling may perturb the am-
phiphile conformation, and also the contrast is extremely poor in
these methods, leading to low image quality12. These challenges
have limited the application of cryo-TEM to identify the nanos-
tructures present in microgels like DBCs. Furthermore, when
scattering methods like small-angle X-ray scattering techniques
(SAXS) are used to obtain the high-resolution three-dimensional
nanostructures of DBCs in dispersed phase13,14, there is an in-
herent challenge associated with the degeneracy resulting from
the reconstruction of three-dimensional nanostructures from a
one-dimensional SAXS scattering profile15–18. Henceforth, solely
utilizing SAXS scattering profiles, only simple structural features
such as radius of gyration and maximum diameter of the nanos-
tructures can be extracted19–22. However, this knowledge is not
sufficient in establishing the structure-property relationships of
DBCs23,24.

Motivated by the challenges associated with analyzing the de-
tailed three-dimensional nanostructures of DBCs, we combine re-
sults from experimental characterization techniques and molec-
ular simulations to derive a molecular model of DBCs that can
provide us a detailed picture of their nanostructure. Specifically,
this molecular model is discovered by considering multiple inter-
actions to understand how the nanostructure of DBCs is affected
by varying solution conditions.

In the past, several studies have combined experimental char-
acterization results with molecular simulations by performing
SAXS-guided molecular dynamics simulations to sample the na-
tive structure of biopolymers25–28. Specifically, SAXS data is uti-
lized in these procedures because of its widespread application in
structural characterization of both structured and intrinsically dis-
ordered molecules in solution. In these methods, a pseudo-energy
term is added to the system’s hamiltonian based on the discrep-
ancy between the experimentally observed SAXS data and compu-
tationally derived profiles. This bias term guides the simulations
to reach states that can replicate the experimentally measured
SAXS profiles. Although the energy landscapes of these simula-
tions are biased and the total potential energies calculated from
these simulations are not accurate, the ability of the methodology
to sample conformations of biopolymers that are inaccessible by
conventional molecular simulations received much attention29.
However, it is challenging to directly implement SAXS-guided
molecular-scale simulations to sample the detailed nanostructure
of DBCs because of the huge computational cost associated with
the ab-initio calculation of SAXS profiles for large nanostructures
like DBCs.

To avoid this computational issue, we explore how unbiased
molecular simulations with coarse-grained models can be com-
bined with SAXS to obtain the most probable nanostructures of

DBCs. Specifically, using unbiased sampling allows us to avoid the
computation of SAXS-biased pseudo-energy term via ab-initio De-
bye’s equation, and coarse-graining the molecular models further
improves the computational efficiency of the unbiased sampling
method. Furthermore, we use the information from SAXS ex-
perimental data as the seed selection criterion for coarse-grained
Monte Carlo simulations (CGMC)30–33. This is achieved by con-
verting the SAXS profile into a discrepancy value which mea-
sures dissimilarity between a target SAXS profile (i.e., experimen-
tal SAXS profile) and SAXS profiles computed theoretically from
molecular models. Subsequently, an iterative search procedure is
implemented, where parallel CGMC simulations are seeded with
a number of nanostructures with varying dimensions. Unlike the
conventional SAXS-guided simulations, in the unbiased sampling
procedure implemented in this work, the system’s total energy
is not modified. Therefore, the total potential energy computed
from the SAXS-guided unbiased CGMC simulations is defined as
an additional metric to identify the nanostructures of the DBCs.
Henceforth, minimizing the total potential energy and SAXS dis-
crepancy values, we could determine the most probable nanos-
tructures of DBCs.

2 Methods
In this section, the different methods implemented to obtain the
three-dimensional nanostructure of DBCs are highlighted.

2.1 SAXS-guided seed generation

The idea behind SAXS-guided unbiased sampling is to perform
an iterative search where parallel MC simulations are performed,
and based on some important structural features, probable nanos-
tructures are identified. Subsequently, new simulations are
seeded from these nanostructures. Seeding nanostructures based
on SAXS intensity profiles is the primary factor that allows us
to bias the search direction while leaving the total potential en-
ergy of the system unchanged. Specifically, in the unbiased SAXS-
guided MC simulations, the hamiltonian of the system is not mod-
ified, which as a result preserves the accuracy of the energy com-
puted from the MC simulations. In this unbiased sampling proce-
dure, iterations are continued until a reasonably accurate nanos-
tructure is identified. The information of the SAXS intensity pro-
file is incorporated in this procedure via the SAXS discrepancy
value defined in the following equation:

χ
2 = 1/N

N

∑
i=1

[
log(Ical(qi))− log(Iexp(qi))

]2
(1)

where N is the number of data points in the SAXS profile, Ical(qi)

is the calculated SAXS profile, and Iexp(qi) is the experimentally
measured SAXS profile. It is to be noted that the lower the SAXS
discrepancy value is, the closer the obtained nanostructure is to
the true DBC nanostructure. The seeded nanostructures for per-
forming the SAXS-guided MC simulations are obtained from re-
sults mentioned in previously published experimental characteri-
zation studies34–36.

In calculating the SAXS discrepancy values, the computation-
ally derived SAXS profiles are obtained from the Debye’s equa-

2 | 1–11Journal Name, [year], [vol.],

Page 2 of 11Soft Matter



tion. The SAXS scattering intensities are calculated within the
range of 0-0.25 Å−1. In SAXS calculations, the solvent effect is
considered by modeling the solvent as an electron gas with den-
sity equal to the average electron density of the solvent, which

is equal to 0.334 e/Å
3
. Furthermore, the hydration shell around

the nanostructures is modeled as a double layer with its contrast
being equal to 0.03 e/Å3. The details of calculating the ab-initio
SAXS profiles by considering the effect of solvent and hydration
shells are highlighted in Appendix A1.

2.2 MC simulation and coarse-grained force-field

MC simulations are primarily utilized to calculate the total po-
tential energies of seeded nanostructures at equilibrium. The im-
plemented MC simulation consists of simple and segment-wise
configurational biased MC (CBMC) moves and a coarse-grained
force-field. Specifically, as DBCs consist of long flexible chains
like OAPB amphiphiles and DTA ions7, it is important that an
efficient sampling scheme needs to be applied that allows us to
explore the dihedral and eulerian angluar domains efficiently.
This is done with a segment-wise CBMC simulation scheme where
the molecules are regrown in a segmentwise fashion37. Further
details of implementing the MC simulation is highlighted in Ap-
pendix A2 of the supplementary material.

To reduce the computational time and improve the sampling
efficiency of the MC simulations, a coarse-graining methodology
is implemented. In this methodology, the molecules are not rep-
resented by individual atoms, but by beads that approximate a
group of atoms. Therefore, utilizing the coarse-grained models
in MC simulations significantly reduces the number of interacting
centers, thereby the computation time38.

Subsequently, a coarse-grained force-field is utilized to model
the interactions between the coarse-grained molecules in the sys-
tem. Specifically, the bonded and non-bonded interaction param-
eters and equations between the coarse-grained molecules are de-
rived from the Martini-3 force-field.39. Therefore, the MC simula-
tions performed in this work are primarily coarse-grained Monte
Carlo simulations (CGMC). Further details of the force-field con-
sidered and the coarse-graining procedure are highlighted in Ap-
pendix A3 of the supplimentary information.

2.3 Seeding SAXS-guided nanostructures to unbaised CGMC

The developed SAXS-guided unbiased CGMC sampling proce-
dure begins by considering a set of initial nanostructures. These
initial seeds or nanostructures generated for performing SAXS-
guided coarse-grained Monte Carlo (CGMC) simulations are de-
rived from the results of various characterization and simulation
efforts reported in previous literature studies40–49. Specifically,
sixty-five geometries are considered for seeding the nanostruc-
tures to the developed SAXS-guided sampling scheme. The ba-
sis for screening these sixty-five geometries originates from the
known information that the characteristic length of DBC is a few
hundreds of nanometers. This knowledge about the system helps
us significantly narrow down our search by eliminating many of
the geometries existing in the literature for general amphiphile
self-assemblies. For example, supramolecular self-assemblies like

WLMs and globular micelles are eliminated because their char-
acteristic lengths are limited by the size of the amphiphiles (i.e.,
size of OAPB molecules), which at most extend to values of 6-
10 nm. It is to be noted that vesicular structures formed by the
folding of bilayers are feasible and probable candidates as they
can be of large characteristic dimensions. After we decided to fo-
cus on the vesicular structures, all the geometries identified as a
result of folding bilayers reported in the literature were consid-
ered in this work. For the purpose of demonstration, we have
highlighted a few of the geometries considered to generate the
initial seeds in Fig. 1. Subsequently, we have considered a set of
twenty dimensions of the characteristic lengths for each of these
geometries. Therefore, we seed the SAXS-guided coarse-grained
sampling procedure with 1300 nanostructures of varying dimen-
sions and geometry.

Fig. 1 Demonstration of a few initial seeds considered for SAXS-guided
coarse-grained Monte Carlo simulation, (a) sphere-cylindrical structure,
(b) buckle structures, (c) torroidal geometry, (d) flat bilayer structure,
(e) elongated bilayer cylindrical, and (f) networked tubular structure.

The twenty different nanostructures that are seeded from the
initial nanostructures, have values for their characteristic di-
mensions chosen within the interval from 100 nm to 1000 nm.
Specifically, at every iteration the dimensions of the nanostruc-
tures are chosen in the interval between max(0, lp − dlmax/n) and
min(1000, lp + dlmax/n), where dlmax = 1000 nm, n is the itera-
tion number, and lp is the characteristic length of the seeding
nanostructure. Once the dimensions of the nanostructures are
obtained, parallel CGMC simulations for all the seeded nanos-
tructures are launched, and their total potential energy at equi-
librium is evaluated. Then, nanostructures having lowest total
potential energies and SAXS discrepancy values are selected for
the subsequent iterations. The developed SAXS-guided unbiased
CGMC sampling procedure continues until improvement in SAXS
discrepancy values and total potential energy values becomes in-
significant.

Remark 1: Ab-initio reconstruction of molecular structures via
reverse Monte Carlo (MC) simulations has been explored in many
recent studies50,51. Specifically, in reverse MC simulation methodol-
ogy, starting from a random arrangement, the position of molecules
is perturbed via MC moves with an objective to attain the target
SAXS profiles. Although this method has been effective in attaining
the target structures of protein and small colloids, it faces the pri-
mary challenge of generating many degenerate structures51. This
challenge becomes significant when the size of self-assemblies be-
comes large, and the number of monomers involved increases. Ad-
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ditionally, the computational time taken for molecule-wise reverse
MC simulations is very high, and in the case of large self-assemblies,
computations become intractable16,50,52. Specifically, to avoid these
challenges, our method combines SAXS information with thermody-
namic knowledge from MC simulations to avoid degeneracy. Addi-
tionally, we coarse-grain our models and sample from a library of
structures, which allows us to gain high computational efficiency
over reverse MC simulation methodology and keeps our method
computationally tractable.

3 System description and coarse-grained model de-
velopment

In this section, the DBC system is explained in detail. Subse-
quently, the all-atom and coarse-grained representation of the
monomers forming the DBC system is presented.

3.1 System description
DBCs are dynamic nanostructures formed by the interactions
of ions, amphiphiles and solvent, i.e., DTA, OAPB and water
molecules. A detailed description of the synthesis of OAPB can
be found in the work of Liu et al7. Specifically, DBC system is
prepared by mixing the zwitterionic amphiphile, OAPB, with DTA
at a molar ratio of 3:1. Specifically, the suspension was homog-
enized via SJIA-2000W probe sonication (Ningbo Haishu Sklon
Electronic Instrument Co., Ltd., Ningbo, China) for 10 minutes at
20kHz frequency. The suspension pH was adjusted by dropwise
addition of 50 mM HCl and 50 mM NaOH. It was observed from
previous experimental studies that in DBCs formed by OAPB and
DTA ions, pH 6 is the rheologically important regime and at pH 9
the viscosity of these materials becomes significantly low.

3.2 Coarse-grained model

Fig. 2 Coarse-graining octadecylamidopropyl betaine (OAPB) and di-
ethylene triamine (DTA) molecules.

The seeded nanostructures considered for MC simulations are
modeled by the self-assembly of OAPB monomers and DTA ions.
However, as DBCs can have dimensions close to a few hundreds
of nanometers, a large number of monomers are required to be
considered to model such large structures. Therefore, consider-
ing the atomistic description of these monomers makes the MC
simulations computationally intractable. To reduce the number

of interacting centers in the MC simulations, coarse-graining of
DTA, OAPB, and water molecules is done using beads available in
the Martini-3 force-field. To derive the coarse-grained model for
the OAPB and DTA molecules, a map between the atomistic and
coarse-grained beads is derived in a trial-and-error manner39.
The initial guess of this map is primarily based on the structural
knowledge of the molecules. Subsequently, this map is improved
based on the mismatch between the results of coarse-grained and
all-atom simulations. The final coarse-grained model derived for
OAPB and DTA molecules is highlighted in Fig. 2.

It is important to observe that the energy profiles obtained
for the number pressure temperature (NPT) coarse-grained and
atomistic NPT sampling methodology are significantly different
(Fig. 3a and Fig. 3b). In the NPT CGMC sampling process, the
total potential energy of system reaches the equilibrium three or-
ders of magnitude faster with the coarse-grained model than the
all-atom model. Furthermore, in the coarse-grained model, the
total potential energy of the NPT ensemble decreases in a loga-
rithmic manner with the number of sweeps, while in the all-atom
model, it decreases linearly. This highlights the fact that in the
CGMC simulations, the computational efficiency would be signif-
icantly enhanced by utilizing the coarse-grained model.

((a) (b)

Fig. 3 Comparison of the total potential energy profiles, (1 sweep =
300 MC steps): (a) coarse-grained MC sampling, and (b) atomistic MC
sampling methodology.

The comparison of bond-length distributions obtained from the
coarse-grained and all-atom simulations for the covalent bonds in
the amphiphilic tails (C4-C4) and the head group (Q4-N6) of the
OAPB molecules are highlighted in Fig. 4a and Fig. 4b, respec-
tively. The bond length distribution (TQ1-TN6) obtained from the
atomistic and coarse-grained simulation of DTA molecules is high-
lighted in Fig. 4c. The density obtained from OAPB constant num-
ber pressure temperature (NPT) atomistic simulations is 978.0535
kg/m3 while the density obtained from the corresponding coarse-
grained simulations is 997.803 kg/m3. The density of DTA is
obtained as 866.458 kg/m3 from atomistic simulations, while its
counterpart from coarse-grained simulations is 868.032 kg/m3.

4 Results and discussion
In this section, the implementation of the SAXS-guided unbi-
ased CGMC simulation to sample the detailed three dimensional
nanostructure of DBCs is highlighted. Then a detailed analysis
providing insights into the pH tunability of DBCs is discussed. Fi-
nally, a few important insights into the structural features of DBCs
are highlighted.
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Fig. 4 Comparing atomistic and coarse-grained bond length distributions: (a) OAPB tail bond length, (b) OAPB head-group bond length, and (c)
DTA bond length.

4.1 Structural identification via SAXS-guided unbiased
CGMC

Owing to the inherent ambiguity of SAXS data analysis in pre-
dicting the three-dimensional nanostructures of self-assemblies,
it is essential that another metric needs to be introduced that can
aid us in reconstructing the unique three-dimensional nanostruc-
ture of DBCs. In this regard, we consider both SAXS discrepancy
values and the total potential energy of DBCs obtained at equilib-
rium. This is shown by plotting the total potential energies of the
nanostructures available from the SAXS-guided unbiased CGMC
simulation scheme with respect to their SAXS discrepancy values
in Fig. 5. It is observed that the sampling procedure begins with
seeding nanostructures that have high total potential energy and
high SAXS discrepancy values, as shown in the upper-right por-
tion of the plot. However, as the sampling procedure progresses,
the total potential energy and the SAXS discrepancy values of the
sampled nanostructures decrease. This is evident by comparing
the SAXS discrepancy values and the total potential energies at
the 10th and the 320th iterations of the sampling process. We
observe that by combining SAXS discrepancy values with CGMC
simulation results, we can sample nanostructures that result in
SAXS profiles closer to the target (i.e., one obtained from exper-
iments) and are also thermodynamically favorable. Henceforth,
the SAXS-guided unbiased CGMC sampling process terminates in
the final iteration when we can no longer seed nanostructures
that improve the SAXS discrepancy values or reduce the total po-
tential energy of the system.

It is observed from Fig. 5, that the total number of seeded
nanostructures eventually converges to only a few as the SAXS-
guided unbiased CGMC sampling scheme proceeds. This is ev-
ident by comparing the number of nanostructures seeded at the
80th and 320th iterations. This is because, towards the end of sam-
pling, many seeded nanostructures start having identical dimen-
sions, resulting in convergence. We observe that at the end of the
sampling procedure, we are left with four nanostructures (corre-
sponding to the points highlighted in red in Fig. 5) that have iden-
tical SAXS discrepancy values but different energy values. This
clearly indicates that based on the SAXS scattering profile only, it
is impossible to identify the most probable nanostructure of DBCs

as multiple geometrically discrete nanostructures have very simi-
lar SAXS profiles according to their discrepancy values30.

Fig. 5 SAXS discrepancy values, and total potential energy values at
different iterations of the SAXS-guided unbiased CGMC sampling ap-
proach.

Table 1 Geometrical dimensions of the four nanostructures obtained from
the SAXS-guided unbiased CGMC simulation.

Geometry Cross section dimensions

Bilayer
Inner layer

Diameter

cylinder
119.5 nm

Outer layer
Diameter
191.3 nm

Bilayer small
Inner layer

Minor axis Major axis

ellipse
50.6 nm 68.7 nm

Outer Layer
Minor axis Major axis
142.2 nm 157.5 nm

Bilayer larger
Inner layer

Minor axis Major axis

ellipse
138.6 nm 156 nm

Outer layer
Minor axis Major axis

212 nm 226.5 nm

Rod like
Diameter
217.4 nm
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Fig. 6 Four nanostructures obtained from the SAXS-guided unbiased CGMC sampling approach which have degenerate SAXS discrepancy values:
(a) bilayer cylindrical assembly, (b) bilayer small elliptical assembly, (c) bilayer large elliptical assembly, and (d) rod like cylindrical assembly. Final
SAXS fitting to the four different nanostructures: (e) bilayer cylindrical nanostructure, (f) bilayer smaller ellipse nanostructure, (g) bilayer larger ellipse
structure, and (h) cylindrical rod-like nanostructures.

To further highlight the ambiguity resulting from analyzing
SAXS scattering profiles alone, we present the four nanostruc-
tures having the least SAXS discrepancy values along with their
SAXS scattering profiles in Fig. 6. These results clearly show that
all of the nanostructures have identical SAXS profiles despite hav-
ing significantly different geometries (Fig. 6 and Table 1). Hence
another metric must be defined that can aid us to eliminate this
inherent ambiguity.

By comparing the energy profiles of the four nanostructures in
Fig. 7, it is clear that these nanostructures have very different
energy values. Furthermore, on observing the four nanostruc-
tures obtained from the CGMC simulation at equilibrium, it is
clearly understood that one of these nanostructures completely
dismantles (Fig. 8b), thus highlighting its low probability of be-
ing the nanostructure of DBCs. This idea is also supported by
the results from energy profiles (Fig. 7). Specifically, the nanos-
tructure with the least alignment at equilibrium has the highest
energy among all four, hence the lowest probability of being the
nanostructure of DBCs. Likewise, the nanostructure which has
the best alignment at equilibrium (Fig. 8c) has the least energy
and hence is concluded as the most probable nanostructure of
DBCs. Therefore, we show that by simultaneously considering
the two metrics, structural information from SAXS and thermody-
namic insights from MC simulations, we could clearly identify the
unique three-dimensional nanostructure of DBCs and resolve the
ambiguity associated with SAXS-only data analysis. Additionally,
from the SAXS profiles obtained by the CGMC simulations (i.e.,
Fig. 8e-h), we observe that the SAXS profiles for bilayer larger el-
lipse and cylindrical rod-like structures have excellent agreement
with the experimental data. On the other hand, the SAXS profiles

for the bilayer cylindrical and the bilayer smaller elliptical struc-
tures are different from the experimental data. The result clearly
shows that the most probable structure of DBCs sampled via the
SAXS-guided CGMC simulation strategy (i.e., the bilayer larger
elliptical structure) stays stable at equilibrium and the SAXS pro-
file obtained from it matches with the target SAXS profile that are
obtained from the experiments.

Fig. 7 The total potential energy profile of the four nanostructures ob-
tained from the SAXS-guided unbiased CGMC simulation.

Remark 2: It is to be noted that the interaction potential of the
molecules is not biased by any means so the accuracy of the ther-
modynamic calculations is high. Since the thermodynamic results
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Fig. 8 The four nanostructures obtained at equilibrium from the SAXS-guided CGMC simulation: (a) bilayer cylindrical assembly, (b) bilayer small
elliptical assembly, (c) bilayer large elliptical assembly, and (d) rod like cylindrical assembly. Comparison of the corresponding SAXS profiles of the
equilibrium structures with experimental results: (e) bilayer cylindrical nanostructure, (f) bilayer smaller ellipse nanostructure, (g) bilayer larger ellipse
structure, and (h) cylindrical rod-like nanostructures.

are accurate, the choice of the total potential energy of the system
as a metric to distinguish nanostructures having degenerate SAXS
profiles is also justified.

It is to be noted that while performing CGMC simulations,
the aforementioned nanostructures are solvated with water
molecules, when the DTA to amphiphile ratio is 1:3 (i.e., the value
considered in experimental formulation7). All the nanostructures
have DTA ions which are initially placed at a distance of 7 nm
from the OAPB surface. The images of most probable nanostruc-
ture of DBCs with DTA ions before and after equilibration are
shown in Fig. 9.

Remark 3: In preparing for the initial nanostructures for the
CGMC simulations, the distance of the DTA ions is kept to be 7 nm
from the OAPB surface. However, for the stable bilayer ellipse struc-
ture at equilibrium, the mean distance among the DTA ions is 6.1
nm from the surface of the inner ellipse and 10 nm from the surface
of the outer ellipse.

(b)(a)

Fig. 9 The relative position of the DTA ions: (a) initial state of the DTA
and OAPB molecules, and (b) final state the DTA and OAPB molecules
after the SAXS-guided unbiased CGMC simulations.

4.2 Experimental verification

In order to validate the findings, SEM images (Fig. 10) of the
DBCs formed by OAPB and DTA ions are obtained. Specifically,
these images highlight the elongated entangled structures that
are formed by the network and aggregation of the micelles. Due
to the frozen drying process which forms the large aggregates, the
entanglement and elongated structure of micelles could look sim-
ilar to the elongated layered elliptical nanostructures found from
SAXS and CGMC simulations. Furthermore, in the SEM image
with higher magnification, the single elongated layered elliptical
nanostructures of the micelle could be clearly observed on the
large aggregated surfaces, which validates the single shape ob-
tained from the SAXS and CGMC simulations. Meanwhile, the
diameter of the single elliptical nanostructures in the large aggre-
gates was determined at 200 nm, which is very close to the major
and minor axis values of the outer ellipse of bilayer larger struc-
ture obtained from the SAXS-guided unbiased CGMC simulation.

(a) (b)

Fig. 10 The SEM images of the solution formed by OAPB and DTA
ions: (a) formation of entangled structure, and (b) aggregated entangled
elongated structures.
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As mentioned previously and is evident from the results in this
section, with imaging techniques like SEM, samples are dehy-
drated, and hence aggregation of the nanostructures is clearly
observed. Therefore, we cannot observe the exact layered nanos-
tructures of the DBCs with SEM images here. This reiterates the
advantage of using the SAXS-guided CGMC simulations over con-
ventional experimental characterization methods. Specifically,
SAXS-guided CGMC simulations aid us in accurately obtaining
the three-dimensional nanostructures of DBCs by using the SAXS
diffraction pattern from the dispersed phase of DBCs alongside
CGMC simulations.

Remark 4: In the case of DBCs, polydispersity would exist in
the cross-section (i.e., the major axis of the ellipse) and length di-
rections. However, the polydispersity in the length direction does
not significantly affect the SAXS intensity profiles. Since the length
of DBCs extends to a few micrometers, X-ray scattering from these
length-scales takes place at very low angles that are not captured in
the SAXS experiments53,54. To analyze the case of polydispersity in
the major axis of the tubular elliptical structures, we evaluate an ap-
proximate size distribution of the major axis of the elliptical tubular
structure from the SEM images. This evaluated distribution is high-
lighted in Fig. 11. The PDI value obtained from this distribution is
4.15%. It is to be noted that for PDI values less than 10%, multiple
studies have proved that a molecular-level reconstruction of nanos-
tructures is possible from SAXS data, and monodisperse form fac-
tors can conviniently be considered in the SAXS data analysis55,56.
Therefore, following the validity of this widely accepted assumption
the effect of polydispersity has not been considered in the proposed
framework.

Fig. 11 Size distribution of the major axis of the tubular nanostructures.

4.3 Analyzing the significance of ions in providing pH tun-
ability

Experimental studies highlight that at room temperature (i.e.,
298 K) the viscosity of the DBCs decreases as the pH of the solu-
tion changes from 6 to 9. We attribute this property change to the
varying degree of ionization for the DTA molecules. Specifically,
at pH of 6 or below, DTA molecules carry two or more charges.

However, beyond pH of 9.2, DTA molecules have a single charge.
This is understood from the pKa values of the DTA molecule which
are highlighted as follows:

NH2C2H4NHC2H4NH2
H+

−−−−−−−→NH+
3 C2H4NHC2H4NH2

pKa = 10.07

NH+
3 C2H4NHC2H4NH2

H+

−−−−−−−→NH+
3 C2H4NHC2H4NH+

3
pKa = 9.21

NH+
3 C2H4NHC2H4NH2

H+

−−−−−−−→NH+
3 C2H4NH+

2 C2H4NH+
3

pKa = 4.42

Fig. 12 Insights into pH tunability of DBCs: (a) changing charge to
amphiphile ratio with varying pH, and (b) energy profiles obtained from
the SAXS-guided unbiased CGMC sampling of DBCs with varying ion to
amphiphile ratios.

Since the varying degree of ionization of the DTA molecules
changes the ion to amphiphile ratio in the solution, we hypothe-
size that this change will have a significant impact on the struc-
ture of DBCs which should finally affect their viscoelasticity. To
test this hypothesis, we performed CGMC simulations with the
identified structure of DBC by varying the DTA molecules to am-
phiphile ratio as 1:2, 1:3, and 1:6. It is to be noted that these ra-
tios correspond to the charge to amphiphile ratios of 1:1, 2:3, and
1:3, respectively, which correspond to solution conditions at pH
values of 4, 6, and 9.2, respectively, as is highlighted in Fig. 12a.
The energy profile obtained from CGMC sampling of DBCs under
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the varying solution conditions is highlighted in Fig. 12b. These
results show that the total potential energy of DBCs increases sig-
nificantly at low values of DTA to amphiphile ratio (i.e., at 1:6).
This is because the interaction between the DTA molecules and
amphiphilic head-groups (SQ2-TQ1) has a negative contribution
to the total potential energy, and this contribution decreases on
reducing the ion to amphiphile ratio. Furthermore, when increas-
ing the value of DTA molecule to amphiphile ratio from 1:3 to
1:2, the total potential energy of DBCs is found to increase. This
is because of the positive contribution to the total potential energy
by the interactions among the charged centers of DTA molecules.
Specifically, at a very high DTA concentrations, the repulsion en-
ergy between their charged centers is high, leading to increased
total potential energy. The simulation snapshots for three differ-
ent solution conditions, i.e., DTA to amphiphile ratio of 1:2, 1:3,
and 1:6, are highlighted in Fig. 13. These results show that when
the DTA to amphiphile ratio decreases from 1:3 to 1:6, the nanos-
tructure of DBCs completely disassembles, which explains why
DBCs loose their viscoelasticity at a high pH. However, at a low
pH the nanostructure of DBCs does not change significantly, high-
lighting why DBCs can have good viscoelasticity even at low pH
values close to 4.

(a)

(b)

(c)

Fig. 13 The nanostructure of DBCs at different pH values: (a) pH 4,
(b) pH 6, and (c) pH 9.2.

From the aforementioned results, it is noted that stronger in-
teraction between the ions and amphiphiles drives the total po-
tential energy of DBCs to lower values, which highlights that the
presence of DTA molecules is crucial to the stability of DBCs. The
pH tunability has made the application of DBCs to the oil and
gas industry very prominent57; in particular, DBCs can be used
to replace the conventional hydraulic fracturing approach using
slick water to ones utilizing complex fluids like DBCs58–60. Fur-
thermore, the insights we obtain in this work by performing a
deeper analysis of the structure and stability of DBCs can allow
us to extend their application across other industries by develop-
ing accurate structure-property relationships in future studies61.
In future studies, an effective design of DBC based complex fluids

can be considered by implementing the CGMC simulations devel-
oped in this work and by following the molecular design heuris-
tics proposed in recent literature studies34–36. Additionally, an
effective design of DBC based complex fluids can be considered
by implementing the CGMC simulations developed in this work
and by following the molecular design heuristics proposed in re-
cent literature studies34–36.

Remark 5: To highlight the thermal stability of DBC microstruc-
tures, a plot of the SAXS discrepancy value of the structures obtained
from CGMC simulations with increasing temperatures is shown in
Fig. 14. It is apparent from Fig. 14 that the SAXS discrepancy val-
ues drastically change with increasing temperatures, and we observe
that at a high temperature of 100°C, the DBCs completely disinte-
grate. We also note that at 50°C, the nanostructures are stable.
This explains the higher thermal stability of DBCs than conventional
WLMs, which degrade and lose their viscoelastic properties at tem-
peratures of 50-60 °C62.

Fig. 14 Demonstration of the varying structural stability of DBCs with
temperature.

5 Conclusion
SAXS-guided unbiased CGMC simulations were performed to
study the detailed three dimensional nanostructure of self-
assemblies called DBCs. In the SAXS-guided unbiased CGMC
simulation, first, nanostructures are derived from the existing lit-
erature. Subsequently, multiple nanostructures are seeded from
them by varying their characteristic dimensions. Then CGMC
simulations are performed on these seed nanostructures to ob-
tain a set of nanostructures that have the least energy and SAXS
discrepancy values. Henceforth, in every iteration of the SAXS-
guided unbiased CGMC simulation, the SAXS discrepancy values
of the seeded nonstructures are observed to decrease, implying
that after every iteration the sampled nanostructures result in
SAXS profiles closer to the target. The procedure continues until
the improvement in the SAXS discrepancy values and energy be-
comes insignificant. The results of the aforementioned procedure
show that CGMC simulations can be a complementary method
that can aid us to fully interpret the limited structural information
present in the SAXS data. The hybrid information obtained from
SAXS and CGMC simulations helps us clearly identify the nanos-
tructure and dimensions of DBCs. Specifically, the bilayer ellipse
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nanostructure is determined as the most probable nanostructure
of DBCs. The dimensions of the obtained nanostructures were
validated with experimental results from SEM images. Subse-
quently, using the molecular description of the derived nanostruc-
tures, the effect of pH on these nanostructures was highlighted.
The obtained results could explain the observations reported in
the previous literature.

6 Acknowledgment
The authors gratefully acknowledge financial support from the
Department of Energy (DE-FE0031778, DE-EE0007888-10-8),
the Texas A&M Energy Institute, the Artie McFerrin Department
of Chemical Engineering, and the Texas A&M High Performance
Research Computing facility.

Notes and references
1 D. Wu, W. Zou, H. Quan, B. Wei, H. Yin and Y. Feng, Journal

of Molecular Liquids, 2021, 325, 114656.
2 G. Maitland, Current Opinion in Colloid & Interface Science,

2000, 5, 301–311.
3 D. S. Yakovlev and E. S. Boek, Langmuir, 2007, 23, 6588–

6597.
4 Q. Chen, W. Liu, H. Liu, X. Huang, Y. Shang and H. Liu, Lang-

muir, 2020, 36, 9499–9509.
5 S. Pahari, J. Moon, M. Akbulut, S. Hwang and J. S.-I. Kwon,

Chemical Engineering Research and Design, 2021, 174, 30–41.
6 B. Bhat, S. Liu, Y.-T. Lin, M. L. Sentmanat, J. Kwon and M. Ak-

bulut, PloS One, 2021, 16, e0260786.
7 S. Liu, Y.-T. Lin, B. Bhat, K.-Y. Kuan, J. S.-I. Kwon and M. Ak-

bulut, RSC Advances, 2021, 11, 22517–22529.
8 S. Zaefferer, Crystal Research and Technology, 2011, 46, 607–

628.
9 A. P. Gelissen, A. Oppermann, T. Caumanns, P. Hebbeker, S. K.

Turnhoff, R. Tiwari, S. Eisold, U. Simon, Y. Lu, J. Mayer et al.,
Nano Letters, 2016, 16, 7295–7301.

10 S. Helvig, I. D. Azmi, S. M. Moghimi and A. Yaghmur, Aims
Biophysics, 2015, 2, 116–130.

11 R. M. Glaeser, Annual Review of Biochemistry, 2021, 90, 451–
474.

12 F. Scheffold, Nature Communications, 2020, 11, 1–13.
13 D. Svergun, C. Barberato and M. H. Koch, Journal of Applied

Crystallography, 1995, 28, 768–773.
14 B. Angelov, A. Angelova, M. Drechsler, V. M. Garamus, R. Mu-

tafchieva and S. Lesieur, Soft Matter, 2015, 11, 3686–3692.
15 P. V. Konarev, M. V. Petoukhov, V. V. Volkov and D. I. Svergun,

Journal of Applied Crystallography, 2006, 39, 277–286.
16 M. Li, W. Wang and P. Yin, Chemistry, 2018, 24, 6639–6644.
17 L. Feigin, D. I. Svergun et al., Structure analysis by small-angle

X-ray and neutron scattering, Springer, 1987, vol. 1.
18 F. Herranz-Trillo, M. Groenning, A. Van Maarschalkerweerd,

R. Tauler, B. Vestergaard and P. Bernadó, Structure, 2017, 25,
5–15.

19 M. V. Petoukhov and D. I. Svergun, Acta Crystallographica Sec-
tion D: Biological Crystallography, 2015, 71, 1051–1058.

20 S. Yang, Advanced Materials, 2014, 26, 7902–7910.
21 T. N. Cordeiro, F. Herranz-Trillo, A. Urbanek, A. Estaña,

J. Cortés, N. Sibille and P. Bernadó, Current Opinion in Struc-
tural Biology, 2017, 42, 15–23.

22 P. V. Konarev and D. I. Svergun, IUCrJ, 2015, 2, 352–360.
23 S. Pahari, B. Bhadriraju, M. Akbulut and J. S.-I. Kwon, Journal

of Colloid and Interface Science, 2021, 600, 550–560.
24 W. Zou, X. Tang, M. Weaver, P. Koenig and R. G. Larson, Jour-

nal of Rheology, 2015, 59, 903–934.
25 D. Kimanius, I. Pettersson, G. Schluckebier, E. Lindahl and

M. Andersson, Journal of Chemical Theory and Computation,
2015, 11, 3491–3498.

26 J. S. Hub, Current Opinion in Structural Biology, 2018, 49,
18–26.

27 M. Chan-Yao-Chong, D. Durand and T. Ha-Duong, Journal of
Chemical Information and Modeling, 2019, 59, 1743–1758.

28 M. R. Hermann and J. S. Hub, Journal of Chemical Theory and
Computation, 2019, 15, 5103–5115.

29 S. A. Hollingsworth and R. O. Dror, Neuron, 2018, 99, 1129–
1143.

30 C. Zhao and D. Shukla, Scientific Reports, 2018, 8, 1–13.
31 B. A. Berg, Phys.Stat. Mech, 2005, 7, 1–52.
32 M. Quesada-Pérez and A. Martín-Molina, Soft Matter, 2013,

9, 7086–7094.
33 T. J. Weyer and A. R. Denton, Soft Matter, 2018, 14, 4530–

4540.
34 D. Valencia-Marquez, A. Flores-Tlacuahuac, A. J. García-

Cuéllar and L. Ricardez-Sandoval, Computers & Chemical En-
gineering, 2022, 156, 107523.

35 U. Abdulfatai, A. Uzairu, G. A. Shallangwa and S. Uba, Jour-
nal of Bio-and Tribo-Corrosion, 2020, 6, 1–9.

36 D. Chaffart, S. Shi, C. Ma, C. Lv and L. A. Ricardez-Sandoval,
The Journal of Physical Chemistry B, 2022, 126, 2040–2059.

37 J. K. Shah, E. Marin-Rimoldi, R. G. Mullen, B. P. Keene,
S. Khan, A. S. Paluch, N. Rai, L. L. Romanielo, T. W. Rosch,
B. Yoo et al., Cassandra: An open source Monte Carlo package
for molecular simulation, 2017.

38 S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman and
A. H. De Vries, The Journal of Physical Chemistry B, 2007, 111,
7812–7824.

39 P. C. Souza, R. Alessandri, J. Barnoud, S. Thallmair,
I. Faustino, F. Grünewald, I. Patmanidis, H. Abdizadeh, B. M.
Bruininks, T. A. Wassenaar et al., Nature Methods, 2021, 18,
382–388.

40 Q. Meng, Y. Kou, X. Ma, Y. Liang, L. Guo, C. Ni and K. Liu,
Langmuir, 2012, 28, 5017–5022.

41 G. Zaldivar, S. Vemulapalli, V. Udumula, M. Conda-Sheridan
and M. Tagliazucchi, The Journal of Physical Chemistry C,
2019, 123, 17606–17615.

42 H. Cui, M. J. Webber and S. I. Stupp, Peptide Science: Original
Research on Biomolecules, 2010, 94, 1–18.

43 R. K. Kankala, S.-B. Wang and A.-Z. Chen, Iscience, 2020, 23,
101687.

44 S. H. Seo, J. Y. Chang and G. N. Tew, Angewandte Chemie

10 | 1–11Journal Name, [year], [vol.],

Page 10 of 11Soft Matter



International Edition, 2006, 45, 7526–7530.
45 D. Liu, Y. Li, F. Liu, W. Zhou, A. Sun, X. Liu, F. Chen, B. B. Xu

and J. Wei, Polymers, 2020, 12, 265.
46 S. Izvekov, A. Violi and G. A. Voth, The Journal of Physical

Chemistry B, 2005, 109, 17019–17024.
47 J. J. Panda and V. S. Chauhan, Polymer Chemistry, 2014, 5,

4418–4436.
48 J. Prates Ramalho, P. Gkeka and L. Sarkisov, Langmuir, 2011,

27, 3723–3730.
49 M. S. Nikolic, C. Olsson, A. Salcher, A. Kornowski, A. Rank,

R. Schubert, A. Frömsdorf, H. Weller and S. Förster, Ange-
wandte Chemie, 2009, 121, 2790–2792.

50 S. Yang, M. Parisien, F. Major and B. Roux, The Journal of
Physical Chemistry B, 2010, 114, 10039–10048.

51 A. T. Tuukkanen, G. J. Kleywegt and D. I. Svergun, IUCrJ,
2016, 3, 440–447.

52 D. Franke, M. Petoukhov, P. Konarev, A. Panjkovich,
A. Tuukkanen, H. Mertens, A. Kikhney, N. Hajizadeh,
J. Franklin, C. Jeffries et al., Journal of applied crystallogra-
phy, 2017, 50, 1212–1225.

53 S. Pikus, J. Jamroz and E. Kobylas, Żywność-Nauka-
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