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Abstract
The relaxation dynamics of polystyrene (PS)/silica nanocomposites after a large step deformation 
are studied by a combination of small-angle scattering techniques and rheology. Small-angle x-ray 
scattering measurements and rheology show clear signatures of nanoparticle aggregation that 
enhances the mechanical properties of the polymer nanocomposites (PNCs) in the linear 
viscoelastic regime and during the initial phase of stress relaxation along with accelerated 
relaxation dynamics. Small-angle neutron scattering experiments under the zero-average-contrast 
condition reveal, however, smaller structural anisotropy in the PNCs than that in the neat polymer 
matrix, as well as accelerated anisotropy relaxation. In addition, the degrees of anisotropy 
reduction and relaxation dynamics acceleration increase with increasing nanoparticle loading. 
These results are in sharp contrast to the prevailing viewpoint of enhanced molecular deformation 
as the main mechanism for the mechanical enhancement in PNCs. Furthermore, the observed 
acceleration of stress relaxation and reduction in structural anisotropy point to two types of 
nonlinear effects in the relaxation dynamics of PNCs at large deformation. 

* † Corresponding Authors. Email Addresses: wangy@ornl.gov, chengsh9@msu.edu 
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Introduction

Mechanical reinforcement in polymer nanocomposites (PNCs) has a complex origin. An 

important mechanism of reinforcement in PNCs is the so-called hydrodynamic effect1-11, which 

has been extensively studied both theoretically and experimentally. In the case of dilute 

suspensions (volume fraction of particulates smaller than ~2-3%, assuming no aggregations)12, 

analyses with the hydrodynamic equations1-5, 7, 13-16 indicate that the presence of solid particles 

distorts the velocity or displacement fields of the surrounding medium, and at the same time gives 

rise to an enhancement in viscosity or modulus. However, such analyses become increasingly 

difficult at higher particle concentrations17, and the reinforcement mechanism in PNCs with high 

nanoparticle (NP) loadings remains an area of active research18-31. To explain the high mechanical 

strength of filled rubbers at large deformation, Mullins and Tobin6 introduced the concept of strain 

amplification, arguing that the presence of non-deformable fillers produces enhanced microscopic 

deformation in the polymer matrix32. While this concept of strain amplification has been widely 

used in the polymer community33, 34, it has also led to considerable confusion. In particular, there 

have been conflicting experimental reports on microscopic evidence of molecular overstraining35-

38. Recently, our combined rheology and small-angle neutron scattering (SANS) experiments39 on 

poly(methyl methacrylate) (PMMA) and silica (SiO2) nanocomposites revealed that the average 

structural anisotropy of the polymer matrix was not amplified by NPs, due to a redistribution of 

strain field akin to the classical hydrodynamic picture of Einstein and Smallwood1. This finding 

offers a key clue to understanding the microscopic reinforcement mechanism in polymer 

nanocomposites.

This work further exploits the relaxation dynamics in a series of nanocomposites of 

polystyrene (PS) and silica nanoparticles after a step uniaxial extension. The current investigation 
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differs from the previous study39 in multiple ways. First, in addition to SANS, small-angle x-ray 

scattering (SAXS) is employed to monitor the spatial distribution of nanoparticles in both the 

undeformed and deformed states. The combination of SANS and SAXS provides complementary 

structural information on the polymer matrix and nanoparticles. Secondly, compared with the 

PMMA/SiO2 system, the dispersion of silica nanoparticles in polystyrene is poor due to the non-

attractive polymer-nanoparticle interactions, leading to the formation of NP clusters and networks. 

Lastly, compared with a moderate loading of 8 v% in the previous work, significantly higher NP 

concentrations up to 24 v% are surveyed in the current study.

The results of the current investigation are in broad agreement with the prior findings from 

the PMMA/SiO2 system, lending further support to the hydrodynamic reinforcement mechanism 

of PNCs39. In addition, new intriguing phenomena have been revealed, including the reduced 

polymer structural anisotropy and accelerated relaxation dynamics, in PS/SiO2 nanocomposites 

with considerable NP aggregates and networks, pointing to two types of previously not well-

discussed nonlinear effects associated with the redistribution of strain field in the vicinity of 

nanoparticles.

Experimental

Materials 

Protonated polystyrene (H8-PS) with weight average molecular weight ( ) of   𝑀w 310 kg/mol

and polydispersity index (PDI) of  was purchased from Scientific Polymer Products, Inc. 1.05

Deuterated polystyrene (D8-PS, degree of Deuteration > 97%) with  was 𝑀w = 304 kg/mol

obtained from Polymer Source, Inc. Both were used as received. Suspensions of bare spherical 

silica (SiO2) nanoparticles (TEM images see Ref. 27 and Ref. 40) with average radius 𝑅 = 7 ± 2 

 (polydispersity of ) in methyl ethyl ketone (MEK) were supplied by the Nissan nm 𝑝𝑑 ≈  0.30
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Chemical America Corporation. To remove the surfactants in the original NP suspensions, a 

solvent exchange procedure was applied to the silica/MEK suspension to replace MEK with 

tetrahydrofuran (THF). Specifically, NPs in the silica/MEK suspension were precipitated in 

hexane and redispersed in tetrahydrofuran (THF) to a concentration of 40 mg/mL. The NPs after 

the solvent exchange were used in the preparation of all PNCs. PS/SiO2 nanocomposites were 

prepared by a solution casting method following a previous protocol40-42. First, H8-PS and D8-PS 

of desired ratios were dissolved in THF to a concentration of . A trace amount of 0.005 g/mL

Irganox® 1010 antioxidant (0.01 wt% with respect to the mass of the polymer) was added to the 

solution at this stage. This parent solution was then passed through a poly(tetrafluoroethylene) 

(PTFE) filter with the pore size of  to remove impurities and dusts. The filtered PS/THF 20 𝜇m

solution was transferred to glass flasks, where different amounts of SiO2/THF suspension were 

added to achieve the desired nanoparticle loadings. The PS/SiO2/THF mixtures were dried in a 

rotary evaporator, forming a thin film on the inner surface of the flask. The PS/SiO2 film was 

removed from the flask and dried at  under vacuum (  (~1.33 Pa)) for 48 hours 413 K 10 ―2 torr

before further characterization. Two sets of PS/SiO2 nanocomposites were prepared. The first set 

of PS/SiO2 was prepared for the sole purpose of identifying the zero-average-contrast (ZAC) 

condition for SANS. The loading of nanoparticles was fixed at 8 v% and the ratio of the 

hydrogenous PS to deuterated PS (H/D ratio) varied from 0.35:0.65 to 0.90:0.10. The second set 

of PS/SiO2 was made for the combined small-angle scattering and rheology study, which was the 

focus of this work. The H/D ratio of PS was fixed at the contrast matching point, 0.57:0.43, while 

the volume fraction of SiO2 varied from 8.7 v% to 18 v% to 24 v%. Note that the 8.7 v% with H/D 

= 0.57:0.43 was also used for the ZAC point identification. The compositions of these two sets of 

PS/SiO2 nanocomposites are summarized in Table 1.
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Table 1 Compositions of PS/SiO2 nanocomposites

Sample name SiO2 loading (v%) H/D ratio

CM1 8 0.35:0.65

CM2 8 0.50:0.50

CM3 8 0.55:0.45

CM4 8 0.60:0.40

CM5 8 0.65:0.35

CM6 8 0.80:0.20

Zero average 
contrast 

identification

CM7 8 0.90:0.10

PS0 0 0.57:0.43

PS8.7 8.7 0.57:0.43
PS18 18 0.57:0.43

Structural 
anisotropy 

quantification
PS24 24 0.57:0.43

Thermogravimetric analysis (TGA)

TGA analysis (Q50, TA Instruments) was employed to identify the mass fraction  of the 𝑚NP

nanoparticles in the PNCs. The samples were heated in an air atmosphere from 313 K to 1073 K 

with a constant rate of 20 K/min. The volume fraction of the NPs, , was obtained through the 𝜙NP

relation  with  and  being the mass 𝜙NP =
𝑚NP/𝜌NP

𝑚NP 𝜌NP + (1 ― 𝑚NP) 𝜌p
𝜌NP = 2.16 g/cm3 𝜌p = 1.05 g/cm3

densities of the nanoparticle43 and polymer, respectively. 

Rheology

Small-amplitude oscillatory shear (SAOS) experiments were conducted on an Anton Paar 

MCR302 rheometer with a pair of parallel plates of 8 mm in diameter. Prior to loading, the PNC 

samples were molded into disks of 8 mm in diameter and 1 mm in thickness by a hydraulic press 

(Carver, Inc.) at 453 K, which is more than 1.2 times of the glass transition temperature, , of 𝑇𝑔

PNCs44. The frequency sweep measurements in the range of 102-10-2 rad/s were performed 
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between 383 K and 453 K with an interval of 10 K. The gap was adjusted accordingly during the 

measurements at different temperatures to ensure accurate measurements of modulus. The applied 

strain amplitude was in the linear response region varying from 0.1% to 1% depending on the 

testing temperature and NP loadings. Linear viscoelastic master curves of the PNCs were 

constructed through the time-temperature superposition principle45.

Stress relaxation experiments of the neat matrix polymer and PNCs were carried out on an 

RSA-III solid analyzer (TA Instruments) at  and . The samples were 𝑇 = 393 K 𝑇 = 400 K

uniaxially stretched to an elongation ratio  with a constant Hencky strain rate of 𝜆 =  1.8 𝜀 = 0.01 

 at , and to  and  with  at . The Weissenberg s ―1 𝑇 = 393 K 𝜆 =  1.2 1.5 𝜀 = 0.1 s ―1 𝑇 = 400 K

numbers  were approximately the same for the step deformations at 393 K and 400 K, where the 𝜀𝜏

 is the terminal relaxation time of the neat polymer defined by the low-frequency crossover of the 𝜏

storage and loss moduli. These deformation rates fall in the middle of the rubbery plateau region 

and thus should not invoke any glassy response. The experiments at , and  at  𝜆 =  1.2 1.5 𝑇 = 400 K

were performed to examine the stress relaxation behavior of PNCs; the samples during stress 

relaxation at  at  were measured by small-angle scattering techniques. 𝜆 =  1.8 𝑇 =  393 𝐾

Specifically, the stress relaxation at  was terminated at , , , , 𝜆 =  1.8 𝑡 =  0 𝜏 0.01 𝜏 0.03 𝜏 0.1 𝜏 0.3 𝜏

, and  (with  being the terminal relaxation time of the neat polymer at 1.0 𝜏 𝜏 = 3.958 × 104 s

) by rapidly quenching the sample below the glass temperature. We chose  𝑇 =  393 𝐾 𝑇 =  393 K

as the test temperature so that the effective quenching time (less than ~10 s) was significantly 

shorter than the terminal relaxation time of the polymer matrix. The structures of the undeformed 

and deformed PS and PS/SiO2 nanocomposites were investigated by small-angle scattering 

techniques (SAXS and SANS). 
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Small-angle x-ray scattering (SAXS)

 SAXS measurements were conducted at the 12-ID-B beamline of the Advanced Photon 

Source at the Argonne National Laboratory. The energy of the incident x-ray beam was 13.3 keV 

(  Å). In all measurements, the sample-to-detector distance was 2 m and a two-𝜆 = 0.935

dimensional (2D) Pilatus 2M detector was used. The scattering angles were calibrated with silver 

behenate and the absolute scattering intensity was determined from a glassy carbon standard.

Small-angle neutron scattering (SANS)

SANS measurements were performed on the NGB30 SANS beamline at the Center for 

Neutron Research (NCNR) of the National Institute of Standards and Technology (NIST). Three 

different configurations were used to cover a wide range of scattering wavenumbers of 0.004

. The measured scattering intensity was corrected for the detector background and  ― 0.3 Å ―1

sensitivity, and placed on an absolute scale using direct beam measurements. Using the values of 

Kuhn length  and radius of gyration  from the literature46, 47, we find that  𝑙K 𝑅G 𝜋/𝑙K ≈ 0.19 Å ―1

and  that are well covered by the instrument.𝜋/𝑅G ≈ 0.02 Å ―1

Technical background

Zero-average-contrast (ZAC) approach to polymer nanocomposites

For mixtures of hydrogenous and deuterated polymers of matching chain lengths, the 

measured coherent scattering intensity is proportional to the single-chain structure factor (also 

called the form factor of a polymer chain)48-51. However, the determination of single-chain 

conformation in polymer nanocomposites is strongly hampered by the presence of nanoparticles35, 

52-54. Fortunately, such a problem can be resolved or at least minimized by adopting a zero-average-

contrast approach55-60.
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For a polymer nanocomposite containing nanoparticles, and hydrogenous and deuterated 

polymers of matching molecular weights, the (volume normalized) coherent scattering intensity 𝐼(

 is given by55𝐐)

𝐼(𝐐) = (𝜌H ― 𝜌D)2𝜙(1 ― 𝜙)
𝜙p

𝜈chain
𝑆intra(𝐐)

+ [𝜙𝜌H + (1 ― 𝜙)𝜌D ― 𝜌0]2[ 𝜙p

𝜈chain
𝑆intra(𝐐) + 𝑉p𝜙p𝑆inter(𝐐)],

(1)

where  is the scattering wave vector, , , and  are respectively the scattering length densities 𝐐 𝜌H 𝜌D 𝜌0

(SLDs) of the hydrogenous polymers, deuterated polymers, and NPs,  is the volume fraction of 𝜙

the hydrogenous chains in polymer phase,  is the volume fraction of polymer phase in the PNC, 𝜙p

 is the total volume of polymer phase, and  is the number density of chains in the polymer 𝑉p 𝜈chain

phase. The normalized intrachain [ ] and interchain [ ] partial structure factors 𝑆intra(𝐐) 𝑆inter(𝐐)

defined as follows:

𝑆intra(𝐐) ≡
1

𝑀𝑁2

𝑀

∑
𝛼

𝑁

∑
𝑚,𝑛

〈𝑒 ―𝑖𝐐 ∙ (𝐑𝛼,𝑚 ― 𝐑𝛼,𝑛)〉,
(2)

𝑆inter(𝐐) ≡
1

𝑀(𝑀 ― 1)𝑁2

𝑀

∑
𝛼 ≠ 𝛽

𝑁

∑
𝑚,𝑛

〈𝑒 ―𝑖𝐐 ∙ (𝐑𝛼,𝑚 ― 𝐑𝛽,𝑛)〉

≈
1

𝑀2𝑁2

𝑀

∑
𝛼 ≠ 𝛽

𝑁

∑
𝑚,𝑛

〈𝑒 ―𝑖𝐐 ∙ (𝐑𝛼,𝑚 ― 𝐑𝛽,𝑛)〉.

(3)

where  is the total number of chains,  is the chain length (number of segments per chain), and 𝑀 𝑁

 is the position vector of segment  in chain . When the average contrast 𝐑𝛼,𝑚 𝑚 𝛼 𝜙𝜌H + (1 ― 𝜙)𝜌D

 is zero, Eq. (1) becomes:― 𝜌0

𝐼(𝐐) = (𝜌H ― 𝜌D)2𝜙(1 ― 𝜙)
𝜙p

𝜈chain
𝑆(𝐐),

(4)
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with . In other words, by matching the average SLD of the hydrogenous and 𝑆(𝐐) ≡ 𝑆intra(𝐐)

deuterated polymers to the SLD of the nanoparticle, the single-chain structure factor of the polymer 

matrix can be obtained by SANS. A detailed derivation and additional comments of Eq. (4) is 

given in the Appendix.

Spherical harmonic expansion analysis of deformed polymers

To quantify the nonequilibrium structures of PNCs as well as the pristine polymer, the 

spherical harmonic expansion (SHE) technique39, 51, 61-67 is employed in the analysis of the 2D 

SANS and SAXS spectra. As explained in the preceding discussion, the ZAC approach allows us 

to access the single-chain structure factor  of the polymer matrix in PNCs. Specifically, the 𝑆(𝐐) 𝑆(

 can be calculated from the following formula:𝐐)

𝑆(𝐐) =
𝐼coh(𝐐)

𝜙plim
𝑄→0

𝐼iso,neat(𝑄) ≈
𝐼(𝐐)

𝜙plim
𝑄→0

𝐼iso,neat(𝑄),
(5)

where  is the coherent scattering intensity, and  is the zero-angle scattering 𝐼coh(𝐐) lim
𝑄→0

𝐼iso,neat(𝑄)

intensity of the pristine polymer melt in the isotropic state. Strictly speaking, the incoherent 

scattering “background”  should be subtracted from the total scattering intensity  to 𝐼inc 𝐼(𝐐)

produce the “correct” single-chain structure factor51. However, this subtraction procedure is not 

carried in our current analysis, due to three reasons. First, the coherent scattering from the PNC 

dominates the signal at low , which is the region we are most interested in. Secondly, since the 𝑄

incoherent background is isotropic, it will not contribute to the anisotropic components of the 

spherical harmonic expansion. Lastly,  can only be estimated from a model-dependent fitting 𝐼inc

procedure51. In the case of uniaxial extension, the single-chain structure factor can be expanded by 

spherical harmonics as65:
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𝑆(𝐐) = ∑
𝑙:even

𝑆0
𝑙 (𝑄)𝑌0

𝑙 (𝜃,𝜑) = ∑
𝑙:even

𝑆0
𝑙 (𝑄) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃). (6)

Here, the stretching is along the z-axis of the spherical coordinates.  is the polar angle and  is 𝜃 𝜑

the azimuthal angle.  and  are respectively the spherical harmonics and associated 𝑌0
𝑙 (𝜃,𝜑) 𝑃0

𝑙 (𝑥)

Legendre functions of degree  and order 0.  is the -dependent spherical harmonic 𝑙 𝑆0
𝑙 (𝑄) 𝑄

expansion coefficient, and can be evaluated from the measured 2D SANS spectra as:

𝑆0
𝑙 (𝑄) =

1
2∫

𝜋

0
𝑆(𝑄,𝜃,𝜑 = 0) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃)sin 𝜃d𝜃

=
1

2𝜙plim
𝑄→0

𝐼iso,neat(𝑄)∫
𝜋

0
𝐼𝑥𝑧(𝑄,𝜃) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃)sin 𝜃d𝜃,

(7)

where  is the scattering intensity associated with the 2D SANS spectrum.  is the 𝐼𝑥𝑧(𝑄,𝜃) 𝑆0
0(𝑄)

isotropic expansion coefficient, whereas  ( ) are the anisotropic expansion coefficients. 𝑆0
𝑙 (𝑄) 𝑙 ≥ 2

Further details of the spherical harmonic expansion technique can be found in our previous work39, 

51, 64-67. It is worth noting that the orthogonality and normalization relation for our spherical 

harmonic functions is:

∫
2𝜋

0
d𝜑∫

𝜋

0
sin 𝜃d𝜃𝑌𝑚

𝑙 (𝜃,𝜑)𝑌𝑚′

𝑙′ (𝜃,𝜑) = 4𝜋𝛿𝑙𝑙′𝛿𝑚𝑚′,
(8)

where  and  are Kronecker delta functions. Additionally, the associated Legendre functions 𝛿𝑙𝑙′ 𝛿𝑚𝑚′

in our work65 include the Condon-Shortly phase factor . Because of the symmetry ( ― 1)𝑚

requirements64, 65,  is always even and this detail has no practical importance. Lastly, the leading 𝑚

anisotropic expansion coefficient  has a close connection to the entropic stress39, 67, 68.𝑆0
2(𝑄)

Similarly, the spherical harmonic expansion analysis can be applied to the 2D SAXS spectra 

of the PNCs. Due to the high polydispersity of the silica nanoparticles ( ), we are unable 𝑝𝑑 ≈  0.30

to obtain direct information on the spatial distribution of NPs (interparticle structure factor) by 
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simply dividing the scattering intensity by a “form factor”69-71. Nevertheless, the scattering 

intensity  can be expanded by spherical harmonics as:𝐼(𝐐)

𝐼(𝐐) = ∑
𝑙:even

𝐼0
𝑙 (𝑄)𝑌0

𝑙 (𝜃,𝜑) = ∑
𝑙:even

𝐼0
𝑙 (𝑄) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃). (9)

The corresponding spherical harmonic expansion coefficients  can be obtained by the 𝐼0
𝑙 (𝑄)

integral:

𝐼0
𝑙 (𝑄) =

1
2∫

𝜋

0
𝐼𝑥𝑧(𝑄,𝜃) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃)sin 𝜃d𝜃,
(10)

where  is the scattering intensity given by the 2D SAXS detector. To evaluate Eq. (10) 𝐼𝑥𝑧(𝑄,𝜃)

from the experimental data, the scattering intensities  in the Cartesian coordinates are first 𝐼(𝑄𝑥,𝑄𝑧)

tabulated in the terms of the polar coordinates.  belong to the same bin of  are used to 𝐼𝑥𝑧(𝑄,𝜃𝑖) 𝑄

calculate : . Because of the symmetry of 𝐼0
𝑙 (𝑄) 𝐼0

𝑙 (𝑄) =
𝜋

2𝑁∑𝑁
𝑖 = 1𝐼𝑥𝑧(𝑄,𝜃𝑖) 2𝑙 + 1𝑃0

𝑙 (cos 𝜃𝑖)sin 𝜃𝑖

uniaxial extension, it suffices to compute  and  as:  and sin 𝜃𝑖 cos 𝜃𝑖 sin 𝜃𝑖 = |𝑄𝑥|/ 𝑄2
𝑥 + 𝑄2

𝑧 cos 𝜃𝑖

.= |𝑄𝑧|/ 𝑄2
𝑥 + 𝑄2

𝑧

The details and benefits of the spherical harmonic expansion analysis have been discussed in 

our previous publications39, 64-67, 72. We note that the traditional methods of analyzing the scattering 

intensities in the parallel and perpendicular directions35, 37 yield only partial structural 

information39, 51. Moreover, analysis of the gyration tensor often faces practical challenges65 and 

can provide only a coarse-grained picture of molecular deformation. By contrast, the spherical 

harmonic expansion approach circumvents the problems in polymer radius of gyration analysis 

and makes full use of the structural information in 2D small-angle scattering spectra. 
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Results

Rheology of PNCs

Figure 1(a) presents the linear viscoelastic master curves of the PNCs as well as the neat 

matrix polymer at a reference temperature , where the storage [ ] and loss [𝑇 =  393 𝐾 𝐺′(𝜔) 𝐺′′(𝜔)

] moduli are shown as a function of the angular frequency , along with the dynamic shift factors 𝜔

. The shift factor can be described by the Williams-Landel-Ferry equation , 𝑎𝑇 log 𝑎𝑇 = ―
𝐶1(𝑇 ― 𝑇0)
𝐶2 + 𝑇 ― 𝑇0

where ,  K, and the reference temperature  K, consistent 𝐶1 = 9.03 ± 0.5 𝐶2 = 60 ± 3 𝑇0 = 393

with the result of a previous publication73. No vertical shifts are needed for the construction of 

master curves. Although the master curves construction of PNCs remains a topic of active debate40, 

the elastic moduli of PNCs in the rubbery plateau region is typically not strongly influenced by the 

choice of construction protocol. Two key features are worth noting. First, the rubbery plateau 

moduli of PNCs are significantly higher than that of the neat matrix polymer. Second, no terminal 

relaxation region is observed for the PNCs within the experimental frequency range and a second 

plateau region can be resolved at low frequencies. In other words, strong mechanical reinforcement 

is found in PNCs over a wide frequency range. Furthermore, the loss factors  tan δ ≡ 𝐺″/𝐺′

[Figure 1(b)] of all samples are almost identical at intermediate and high frequencies, suggesting 

that the mechanical reinforcement in the rubbery plateau region is primarily hydrodynamic in 

nature. We note that polymer bridges in principle can contribute to the mechanical properties of 

PNCs27, 40, 74, 75. However, only polymer bridges shorter than the entanglement molecular weight 

can give enhancement to the plateau modulus of PNCs. Since the PNCs and neat PS exhibit almost 

identical loss tangents in the high frequency, Rouse region (Figures 1a and 1b), the amount of short 

bridges should be small in the current system that plays a secondary role in mechanical 

reinforcement in the rubbery plateau region. The concentration ( ) dependence of plateau 𝜙SiO2
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modulus  is shown in Figure 2(a), along with the predictions of the Einstein-𝐺pl(𝜙SiO2)

Smallwood1, 3, , and Guth-Gold2, 𝐺pl(ϕSiO2)/𝐺pl(0) = 1 + 2.5𝜙SiO2 𝐺pl(ϕSiO2)/𝐺pl(0) = 1 + 2.5

, equations. Here, the plateau modulus is defined as the storage modulus at the 𝜙SiO2 +14.1𝜙2
SiO2

frequency where the loss factor  displays a minimum and  is the volume fraction of tan 𝛿 𝜙SiO2

nanoparticles. The stronger reinforcement effect relative to the Einstein-Smallwood and the Guth-

Gold relations is commonly seen in PNCs, which has been attributed to a higher effective pervaded 

volume of NPs and the presence of NP clusters10, 25, 76. On the other hand, the emergence of low-

frequency plateau is often attributed to the NP network or polymer bridge network27, 40. The 

formation of NP network in PNCs is also consistent with the non-dissolvable nature of these PNCs 

in good solvent, such as THF. Aggregation of SiO2 nanoparticles in PS is not surprising and may 

be attributed to the repulsive PS-SiO2 interaction. As we shall show below, the SAXS 

measurements also support the existence of large particle aggregates in the PS/SiO2 

nanocomposites. We emphasize that the current study focuses on the relaxation dynamics of PNCs 

at intermediate time scales, where hydrodynamic reinforcement dominates. 
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Figure 1. (a) Linear viscoelastic spectra of neat PS and PNCs at 393 K. Open symbols: . Filled 𝐺′
symbols: .  is the shift factor. (b) Corresponding loss factor . Inset: dynamic 𝐺″ 𝑎𝑇 𝑡𝑎𝑛 𝛿 ≡ 𝐺″/𝐺′
shift factors.
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Figure 2. Dependence of the rubbery plateau modulus  on the volume fraction of silica 𝐺𝑝𝑙
nanoparticles . Solid line: Einstein-Smallwood equation: . 𝜙𝑆𝑖𝑂2 𝐺𝑝𝑙(𝜙𝑆𝑖𝑂2)/𝐺𝑝𝑙(0) = 1 + 2.5𝜙𝑆𝑖𝑂2 
Dashed line: Guth-Gold equation: . 𝐺𝑝𝑙(𝜙𝑆𝑖𝑂2)/𝐺𝑝𝑙(0) = 1 + 2.5𝜙𝑆𝑖𝑂2 +14.1𝜙2

𝑆𝑖𝑂2

Figure 3a-3c show the evolution of engineering stress  of PNCs and the neat 𝜎(𝑡) = 𝐹(𝑡)/𝐴0

matrix polymer at  (Hencky strain ),  ( ), and  ( ) and 𝜆 = 1.2 𝜀 ≈ 0.18 𝜆 = 1.5 𝜀 ≈ 0.4 𝜆 = 1.8 𝜀 ≈ 0.6

the subsequent stress relaxation, where  is the tensile force at time  and  is the initial cross-𝐹(𝑡) 𝑡 𝐴0

section area normal to the tensile force77. During deformation, all PNCs exhibit much higher stress 

than the neat polymer, and the degree of such enhancement increases with increasing nanoparticle 

loading. This behavior is in line with the linear viscoelastic properties of PNCs, where the rubbery 

plateau modulus  grows rapidly with increasing nanoparticle volume fraction . 𝐺pl 𝜙SiO2

Interestingly, the deformed neat polymer can retain the stress for a much longer time than the 

PNCs during stress relaxation, even at the smallest strain of . This speedup in relaxation 𝜆 = 1.2 

dynamics of deformed PNCs can be better illustrated by the normalized stress  𝜎(𝑡relax) 𝜎0

following the standard definition of stress relaxation45, as shown in the inset of Figure 3a-3c. Here, 
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 is the engineering stress at the onset of stress relaxation and  the elapsed time during stress 𝜎0 𝑡relax

relaxation. Another important observation from Figure 3a-3c is that there are no signs of sudden 

losses of stress during stress during the initial relaxation or some long-lived relaxation modes for 

all PNCs up to  (  at T = 393 K) when the stress relaxation is almost complete.1 𝜏 𝜏 = 3.958 × 104 s

The observation of accelerated stress relaxation in PNCs is intriguing. A “naïve” application 

of the Boltzmann superposition principle based on the linear viscoelastic data would predict a 

retarded relaxation in the PNCs, particularly for the ones with high nanoparticle loadings45. 

Nonlinear effects thus involve in the relaxation dynamics of PNCs at large deformation. Figure 

4a-4c compare the stress relaxation of neat polymer and PNCs at different strains of , , 𝜆 =  1.2 1.5

and . For the neat PS (Figure 4a), the stress relaxation behavior does not change with the 1.8

deformation up to , consistent with previous measurements of stress relaxation of linear 𝜆 = 1.8

entangled polymers65, 78. Interestingly, both PS8.7 (Figure 4b) and PS24 (Figure 4c) show 

obvious strain dependence of the stress relaxation. The larger the deformation, the faster the stress 

relaxation. These observations are in agreement with the general expectation that incorporation of 

NPs can significantly reduce the linear response region of PNCs — nonlinear stress relaxation of 

PNCs can take place even at small strains.

External deformation can also lead to microstructure changes in PNCs, including breakup of 

NP agglomerates. However, a rigorous quantification of such structural rearrangements of PNCs 

with small-angle scattering techniques remains challenging: the methods developed in the previous 

studies of undeformed PNCs79 cannot be applied directly to deformed PNCs with anisotropic 

structures. By contrast, the rheological behavior of PNCs is sensitive to the microstructure changes 

of NP agglomerates and can thus provide useful insights. Figure 5 shows the stress ratios 

(reinforcement factors) of PNCs and the neat matrix polymer, , during the 𝑋 = 𝜎𝑃𝑁𝐶(𝜆) 𝜎𝑛𝑒𝑎𝑡(𝜆)
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step uniaxial extension, where the dashed lines represent the reinforcement factors predicted by 

the Guth-Gold relation. In each PNC, the stress ratio decreases gradually after the initial rise, 

approaching the hydrodynamic limit at large strains. Such a behavior is indicative of breakup of 

NP agglomerates. The breakup of NP agglomerates is consistent with the rather complete stress 

relaxation of PNCs in Figure 3a, further supporting the dominant polymer deformation for the 

high mechanical strength of PNCs. Despite the progressive reduction in the reinforcement factor, 𝑋

, with deformation, the experimental reinforcement factors at  are all slightly higher than 𝜆 =  1.8

the hydrodynamic reinforcement factors of PNCs from the Guth-Gold relation, suggesting a 

slightly higher effective loading of NPs, , in PNCs due to the residue NP aggregates. A rough 𝜙𝑒

estimate from the reinforcement factor shows  is smaller than 10% for all the PNCs at 𝜙𝑒 ― 𝜙𝑆𝑖𝑂2

, and occluded polymers thus should not make any significant contributions to the stress 𝜆 =  1.8

relaxation and the structural anisotropy of deformed PNCs. 
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Figure 3. Evolution of engineering stress  during stretching and stress relaxation for neat 𝜎(𝑡)
polymer and PNCs at (a)  at , (b)  at , and (c)  at 𝜆 = 1.2 𝑇 =  400 𝐾 𝜆 = 1.5 𝑇 =  400 𝐾 𝜆 = 1.8

. Inset: normalized stress  during stress relaxation, where  is the stress 𝑇 =  393 𝐾 𝜎(𝑡relax)/𝜎0 𝜎0
immediately after the step deformation. 
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Figure 4. Stress relaxation, , with normalized time , at different elongation 𝜎(𝑡relax) 𝜎0 𝑡relax/𝜏
ratios , , and  of (a) neat PS, (b) PS8.7, and (c) PS24. The neat polymer shows 𝜆 = 1.2 1.5 1.8
identical stress relaxation, exhibiting linear response at . Both PS8.7 and PS24 show 𝜆 ≤ 1.8
noticeable acceleration in stress relaxation with elongation ratios, signifying the involvement of 
nonlinear relaxation dynamics in PNCs.

Figure 5. Reinforcement factor, , during step uniaxial extension. Dashed lines: 𝑋 ≡ 𝜎(𝜆)/𝜎neat(𝜆)
reinforcement factor  predicted by the Guth-Gold equation: .𝑋 𝑋 = 1 + 2.5𝜙SiO2 +14.1𝜙2

SiO2
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Small-angle x-ray scattering (SAXS)

The scattering intensities  of the undeformed PNCs in SAXS measurements are shown in 𝐼(𝑄)

Figure 6. Using the form factor formula for a spherical particle, it is easy to verify that the Porod 

power-law scattering ( ) at high  (  ) originates from the nanoparticle-polymer ~𝑄 ―4 𝑄 ≈ 0.1 Å ―1

interface. On the other hand, the second power-law regime at low  (  ) is associated 𝑄 ≈ 0.01 Å ―1

with the interface between polymers and soft agglomerates of nanoparticles79-81. The soft 

agglomerates are different from hard agglomerates in filled elastomers23 formed through sintering 

of the primary nanoparticles. Such multiple Porod regions in small-angle scattering have been 

widely observed in PNCs79, 81, 82. The observation of large-scale aggregates (or agglomerates) in 

SAXS is consistent with the strong mechanical reinforcement revealed by linear viscoelastic 

measurements (Figure 2), as well as scanning electron microscopy (SEM) measurements (inset of 

Figure 6). Although it is clear that large-scale aggregates are present in PNCs, detailed analyses 

of the NP aggregates are beyond the scope of the current study. As discussed in a following section, 

the lack of quantitative information about NP aggregations does not affect discussions of polymer 

dynamics during stress relaxation, since the microstructures of PNCs remain unchanged within the 

experimental time scale.

Figure 7 presents the 2D SAXS spectra of the undeformed and deformed PNCs at different 

stages of the stress relaxation. Interestingly, little difference is observed for the SAXS spectra of 

different samples, regardless of the particle concentration, deformation state, and duration of stress 

relaxation. The lack of local NP structural changes is intriguing and highlights the important 

decoupling of the nanoscale nanoparticle rearrangement from macroscopic deformation. This is 

different from previous SAXS measurements of PMMA/SiO2 nanocomposites with affine 

deformation of individual nanoparticles83. The strong decoupling between macroscopic 
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deformation and local structural anisotropy of the nanoparticle phase is further confirmed by 

quantitative analysis using the spherical harmonic expansion technique, which we shall discuss 

later. Both our rheological data (Figure 3) and previous investigations indicate that the soft 

agglomerates of nanoparticles could break up at large strains24, 41, 80, 81, 84. However, the negligible 

changes in the SAXS revealed that “local” structures of PNCs appear to be unaltered during stress 

relaxation at all s probed by SAXS.  𝑄

Figure 6. SAXS spectra of the undeformed PNCs. The inset shows an SEM image of the PS24 
sample ( ) with large-size NP agglomerations (the bright regions). The dark region in 𝜙SiO2 = 0.24
the inset image is the polymer phase.
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Figure 7. 2D SAXS spectra of PS/SiO2 PNCs. (a)-(c): PS8.7. (d)-(g): PS18. (h)-(k): PS24. The 
color map presents  on a linear scale.log10𝐼(𝑄)

Small-angle neutron scattering (SANS)

Zero average contrast (ZAC). In principle, the single-chain structure factor of the polymer  𝑆(𝐐)

can be obtained from SANS measurements under the ideal ZAC condition, namely, 𝜙D𝜌D + 𝜙H𝜌H
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, as detailed in the Technical Background Section. By knowing the relevant atomic ― 𝜌0 = 0

coherent scattering lengths85 and material densities, the appropriate H/D ratio for the ZAC SANS 

experiment can be theoretically calculated and experimentally identified. A series of PNCs with a 

fixed NP loading but different H/D ratios [from 0.35:0.65 (CM1) to 0.90:0.10 (CM7)] were 

prepared (see the Materials and Methods Section for details). This covers a range of average SLD, 

, from  to  for the polymer phase, while the 𝜌p = 𝜙D𝜌D + 𝜙H𝜌H 4.48 × 10 ―6Å ―2 1.83 × 10 ―6Å ―2

SLD of the nanoparticle  if the mass density of the silica particle is 2.16 𝜌0 ≈ 3.41 × 10 ―6Å ―2

g/cm3. The results of SANS measurements on these samples are shown in Figure 8, where both 

the absolute intensity  and normalized intensity  are presented. Under ideal 𝐼(𝑄) 𝐼(𝑄)/(𝜙H𝜙D𝜙p)

ZAC condition, the normalized coherent scattering intensity of PNCs, , should 𝐼(𝐐)/(𝜙H𝜙D𝜙p)

match that of the neat polymer [Eq. (4)]. In practice, achieving ideal ZAC in PNCs is challenging53 

as revealed in Figure 8 with strong upturn in scattering at the , regardless of the H/D 𝑄 < 0.01 Å ―1

ratio of the matrix polymer. Various mechanisms have been speculated for the low  upturn, 𝑄

including the scattering of the filler clusters36, the potential H/D demixing86, interfacial polymer59, 

87, 88, and the presence of voids or defects89. Nevertheless, the best contrast matching is found in 

the samples with H/D  0.57:0.43 at .≈ 𝑄 > 0.01 Å ―1

Figure 9a presents the normalized scattering intensity  of PS8.7, PS18, PS24, and the 𝐼(𝑄)/𝜙p

neat polystyrene ( ) with H/D ratio of 0.57:0.43 in the polymer phase. The scattering 𝜙p = 1

intensity of all the PNCs has an upturn at , and a small bump at  is 𝑄 < 0.01 Å ―1 𝑄 ≈ 0.04 Å ―1

observed for PS18 and PS24. To gain further insight into the structural features of the PNCs, the 

SANS and SAXS spectra are directly compared in Figure 9b. The SAXS data are vertically shifted 

so that the SANS and SAXS data are matched at low s. The result in Figure 9b suggests that 𝑄

low-  upturn in SANS may originate from the filler clusters in the PNCs. Moreover, the 𝑄
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“shoulder” of in SAXS spectrum seems to conincide with the “bump” around  in PS18 𝑄~0.04 Å ―1

and PS24. Due to the uncertainties of the physical origin of the low  upturn in scattering and the 𝑄

technical challenges of ZAC of PNCs, we are only comfortable to analyze scattering at 𝑄 > 0.01 

, where reasonable ZAC is achieved. Given  of PNCs, our analysis focusing Å ―1 𝜋 𝑅𝐺 ≈ 0.02 Å ―1

at  covers the most relevant length scales for the chain dynamics. Moreover, as we 𝑄 > 0.01 Å ―1

shall demonstrate below, the slight “mismatch” at  appears to contribute only to the 𝑄~0.04 Å ―1

isotropic component ( ) of the spherical harmonic expansion and the analysis of structural 𝑆0
0

anisotropy (e.g., ) is thus unaffected. Since the focus of the current study is the polymer 𝑆0
2

anisotropy, , after a step deformation, the isotropic contributions leading to the shoulder peak 𝑆0
2(𝑄)

at  should not affect our analysis. From this perspective, the spherical harmonic 𝑄~0.04 Å ―1

expansion analysis is well suited for quantitative analysis of the nonlinear dynamics of 

multicomponent polymeric materials, bypassing a number of non-trivial theoretical and technical 

challenges confronted in conventional analysis for deformed polymers.
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Figure 8. Results of SANS measurements of PS/SiO2 nanocomposites with different ratios of 
hydrogen and deuterium atoms (H/D). The nanoparticle loading is 8 v%. Black solid line: the result 
of PS8.7. Cyan dashed line: the result of PS0. (b) Normalized scattering intensity , 𝐼(𝑄) (𝜙𝑝𝜙𝐻𝜙𝐷)
where  is the volume fraction of polymer in the PNC, and  and  are respectively, the 𝜙𝑝 𝜙𝐻 𝜙𝐷
volume fractions of hydrogeneous and deuterated polystyrenes in the polymer phase.
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Figure 9. (a) Normalized SANS intensities  of PS0, PS8.7, PS18, and PS24. Dashed line: 𝐼(𝑄)/𝜙p
fitting of the neat polystyrene SANS data with the Debye function: , 𝐼(𝑄) = 𝐼0𝑔D(𝑄2𝑅2

G) + 𝐼inc
where . The fitting parameters are:  cm-1 (95% 𝑔D(𝑥) = 2(𝑒 ―𝑥 ―1 + 𝑥)/𝑥2 𝐼0 = 380.9 ± 11.2
confidence interval),  Å (95% confidence interval), and  𝑅G = 162.1 ± 2.7 𝐼inc = 0.1582 ± 0.0073
cm-1(95% confidence interval). (b) Comparison of SANS and SAXS spectra of PS8.7, PS18, and 
PS24. The SAXS curves are vertically shifted so that the SANS and SAXS data are matched at 
low s. Symbols: SANS data. Dashed lines: SAXS data.𝑄

Neutron scattering of deformed PNCs. Figure 10 presents the 2D SANS spectra of the deformed 

polymers [PS0 (matrix polymer), PS8.7, PS18, and PS24] at  during stress relaxation at 𝜆 =  1.8
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, , and . To properly compare the results at different particle concentrations, 𝑡relax = 0 𝜏 0.1 𝜏 1.0 𝜏

the absolute scattering intensity  is normalized by the volume fraction of the polymer . 𝐼(𝑄) 𝜙p

Immediately after the step uniaxial extension ( ), strong structural anisotropy is observed 𝑡relax = 0 𝜏

in all samples. As the tensile stress drops during relaxation, the anisotropy also decreases 

significantly with increasing time . Upon careful inspection, it appears that PNCs exhibit 𝑡relax

lower anisotropy than the neat polystyrene at a given relaxation time. To resolve such difference 

and quantitatively analyze the evolution of single-chain structure during stress relaxation, we resort 

to the spherical harmonic expansion technique. The results of the SHE analysis are presented in a 

next section.

Figure 10. 2D SANS spectra of the deformed PS and PNCs. (a)-(c): results for PS0. (d) and (e): 
PS8.7. (f)-(h): PS18. (i)-(k): PS24. The color map presents  on a linear scale.log10[𝐼(𝑄)/𝜙p]
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Discussions

SHE analysis of structural anisotropy of deformed PNCs

An example of spherical expansion analysis of 2D SANS spectrum is given in Figure 11, 

where the expansion coefficients , , , and  of PS8.7 and the neat matrix are 𝑆0
0(𝑄) 𝑆0

2(𝑄) 𝑆0
4(𝑄) 𝑆0

6(𝑄)

shown at  and . Overall, the expansion coefficients of the two samples are 𝜆 =  1.8 𝑡relax = 0 𝜏

almost identical, which is consistent with the “visual impression” from the 2D spectra (Figure 10) 

and in line with the previous result on PMMA/SiO2 nanocomposites39. At moderate molecular 

deformation, the isotropic component  dominates the SANS spectrum. The 𝑆0
0(𝑄)𝑌0

0(𝜃)

contribution of higher order (degree) components becomes progressively smaller as  increases. 𝑙

The spherical harmonic expansion method isolates the dominating contribution from the isotropic 

term, and thereby permits accurate analysis of structural anisotropy. We note that the leading 

anisotropic coefficient  is connected to the microscopic tensile stress of the polymer chains39, 𝑆0
2(𝑄)

67. Therefore, our analysis of the structural relaxation dynamics will focus on the coefficient .𝑆0
2(𝑄)
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Figure 11. Spherical harmonic expansion coefficients  of the single-chain structure factor 𝑆0
𝑙 (𝑄)

of PS0 and PS8.7 immediately after the step uniaxial extension. 

Molecular mechanism of the high stress of PNCs at large deformation

Strong mechanical enhancement was observed in PNCs in both the linear response region and 

at large deformation, as shown in Figure 1, Figure 2, and Figure 3. Two types of mechanisms are 

potentially responsible for the high mechanical strength of the PNCs beyond the hydrodynamic 

effect: molecular overstraining of the polymer chains6 and elastic deformation of the NP 

aggregates (network)25, both of which in principle can be analyzed by small-angle scattering 

techniques.

Figure 12 shows the leading anisotropic expansion coefficient  of PS0, PS8.7, PS18, ― 𝑆0
2(𝑄)

and PS24 from SANS during stress relaxation at , , and . Interestingly, the 𝑡relax = 0 𝜏 0.1 𝜏 1.0 𝜏

PNCs exhibit slightly smaller structural anisotropy than the neat polymer at all s, indicating the 𝑄

lack of enhancement in molecular orientation at all length scales from  to . Note that 𝑙𝐾 𝑅𝐺

conventional 2D-SANS analyses35, 37 of  along with and perpendicular to the stretching direction 𝑅𝐺

provide little information on the structural anisotropy at length scales below . From this 𝑅𝐺

perspective, the spherical harmonic expansion analysis offers a much more complete analysis for 

SANS spectra of deformed polymers. 

Moreover, the degree of structural anisotropy reduction increases with particle loading. This 

result has not been previously reported. On the other hand, at  and , the tensile 𝜆 = 1.8  𝑡relax = 0 𝜏

stresses of PS8.7, PS18, and PS24 are , , and  times higher than the neat polymer, 1.27 2.5 3.3

respectively. According to the strain amplification proposition6, the average enhancement of local 

strain is at least , which yields amplification factors  and  for the 1 + 2.5𝜙SiO2 𝑋 = 1.45 𝑋 = 1.6 𝜙SiO2

 and  samples, respectively. While the reduction of structural anisotropy and = 0.18 𝜙SiO2 = 0.24
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the enhancement of mechanical stress seems contradictory, a similar phenomenon was observed 

in our recent combined SANS and rheology investigation of a PMMA/SiO2 nanocomposite39. The 

explanation lies in the hydrodynamic theory of mechanical reinforcement1, 3, 4, 15, 16, where the 

presence of solid particles gives rise to a redistribution of local strain field but produces no 

enhancement of the average structural anisotropy39. Although this qualitative picture applies to the 

current PS/SiO2 system, the reduction of anisotropy is beyond the reach of this simple explanation 

based on dilute suspensions and requires a more realistic treatment of the local strain field. 

Additionally, due to the presence of large-scale aggregates in PS/SiO2, the potential stress 

contribution from the nanoparticle network should also be carefully considered to arrive at a clear 

understanding of the mechanical reinforcement of these highly-filled PNCs.

To further quantify the relaxation dynamics of polymer structural anisotropy39, 67, the 

normalized expansion coefficients  of all samples are shown in Figure 13 for 𝑆0
2(𝑄;𝑡relax)/𝑆0

2(𝑄;0)

, , , , and . The quantity  can be 𝑡relax = 0.01 𝜏 0.03 𝜏 0.1 𝜏 0.3 𝜏 1.0 𝜏 𝜙(𝑄;𝑡) ≡ 𝑆0
2(𝑄;𝑡)/𝑆0

2(𝑄;0)

interpreted as a -dependent structural anisotropy relaxation function67, which characterizes the 𝑄

relative change of anisotropy at different length scales. Compared with the neat polymer matrix, 

the structural anisotropy relaxation is faster in PNCs at all s. This trend is consistent with the 𝑄

relaxation of mechanical stress  (inset of Figure 3c), which should not be surprising, 𝜎(𝑡)/𝜎0

considering the strong correlation between structural anisotropy and microscopic stress of 

polymers67. 

The spherical harmonic expansion technique is also applied to the 2D SAXS spectra (Figure 

7) to quantify the structural changes of nanoparticles during stress relaxation. The expansion 

coefficients  and  of the scattering intensity  are shown in Figure 14. Three 𝐼0
0(𝑄) 𝐼0

2(𝑄) 𝐼(𝐐)

prominent features are worth noting. First, the coefficients are almost identical, regardless of the 
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elapsed time during stress relaxation for all the PNC samples. Secondly, the SAXS spectra are 

dominated by the isotropic component of the expansion, in agreement with the cyclic symmetry 

of the 2D spectra (Figure 7). Lastly, weak structural anisotropy can be detected at low s, even 𝑄

for the undeformed samples. Because of the extremely slow diffusion of NPs in the highly viscous 

polymer matrix,  at , the distortion of the large-scale structure of 𝜏 ≈
6𝜋𝜂𝑅3

𝑁𝑃

𝑘𝐵𝑇 ~ 11 𝑑𝑎𝑦𝑠 𝑇 =  393 𝐾

NP agglomerates during molding cannot be fully relaxed under normal experimental conditions. 

Note that the shear and Young’s moduli of SiO2 nanoparticles are around 30 GPa and 70 GPa, 

respectively43. Thus, negligible elastic deformation of SiO2 nanoparticles is expected during 

molding and stretching. This further supports the conclusion that the minor differences of 

expansion coefficients at low s should be mainly associated with the initial state imparted by 𝑄

sample preparation, rather than a result of the deformation or the subsequent relaxation. Ideally, 

in-operando measurements capable of characterizing large-scale structures, such as rheo-USAXS, 

in-situ atomic force microscopy, in-situ SEM, and in-situ TEM, could be employed to quantify the 

detailed microstructure rearrangement of PNCs at deformation or during stress relaxation. 

However, applications of these in-situ microscopy methods and rheo-USAXS encounter technical 

challenges associated with sample preparations, measurements, and data interpretation90-93. 

Nevertheless, Figure 14 indicates that the local structures of the NP dispersion remain largely 

unchanged during the stress relaxation. Given the full relaxation of the tensile stress at long time 

scales for all PNCs (Figure 3), one may thus infer that the short-range NP-NP interactions do not 

make any significant contribution to the total stress. Combining the rheological, SANS, and SAXS 

results, we conclude that the mechanical reinforcement mechanism in these PS/SiO2 

nanocomposites is like that of the PMMA/SiO2 system39: a redistribution of strain field in the 

vicinity of nanoparticles, which is hydrodynamic in nature.
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Figure 12. Leading anisotropic expansion coefficient  of the deformed PS and PNCs at 𝑆0
2(𝑄)

various stages of stress relaxation: (a) , (b) , and (c) .𝑡relax = 0𝜏 𝑡relax = 0.1𝜏 𝑡relax = 1𝜏
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Figure 13. Relaxation of structural anisotropy of the deformed PS and PNCs. Here,  is the 𝑆0
2(𝑄;0)

leading anisotropic spherical harmonic expansion coefficient immediately after the step extension, 
i.e., at . For the neat polymer and the PNC with , the data at five different 𝑡relax = 0 𝜙SiO2 = 0.18
relaxation times , 0.03, 0.1, 0.3, and  are presented. For the PNC with , 𝑡relax = 0.01 1𝜏 𝜙SiO2 = 0.087
only the data at  is available. The data for the PNC with  are at two 𝑡relax = 0.1𝜏 𝜙SiO2 = 0.24
different relaxation times  and .𝑡relax = 0.1𝜏 𝑡relax = 1𝜏
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Figure 14. Spherical harmonic expansion coefficients  obtained from the 2D SAXS spectra. 𝐼0
𝑙 (𝑄)

PNC with (a) . (b) . (c) . Circles: . Squares: . 𝜙SiO2 = 0.087 𝜙SiO2 = 0.18 𝜙SiO2 = 0.24 𝐼0
0(𝑄) 𝐼0

2(𝑄)
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Reduction of structural anisotropy and acceleration of relaxation dynamics

One noticeable difference between the current PS/SiO2 nanocomposites and the previous 

PMMA/SiO2 system39 is the accelerated stress and structural anisotropy relaxations in the PS/SiO2 

PNCs. In both cases, a step uniaxial strain is applied to the neat polymer and the PNCs. However, 

the dispersion of NPs is poor in the PS and NP concentrations as high as 24v% are investigated. It 

is not unreasonable to assume that the disturbance (“redistribution”) of the local strain field is 

substantially larger in the highly filled PS/SiO2 nanocomposites. For entangled polymer melts, the 

stress relaxation behavior below a critical step strain of  is essentially linear as shown in 𝜆 ≈ 1.8

Figure 465, 78, 94. At low NP loading (PS8.7), the local strain field is not substantially distorted and 

the average relaxation dynamics of the PNC fall closely the linear response of the neat matrix 

polymer. By contrast, when the disturbance of the strain field is large (PS24), polymers in regions 

of significantly enhanced local strains are driven into deep nonlinear response. As a result, the 

average relaxation dynamics, in this case, become accelerated78, 94 (Figures 3 and 4). Therefore, 

the hydrodynamic effect of NPs on the distortion of local strain field plays a critical role in the 

accelerated stress relaxation of deformed PNCs.

Another interesting observation is the reduced structural anisotropy [ ] in the deformed 𝑆0
2(𝑄)

PNCs compared with the neat matrix polymer (Figure 12). This difference underscores the 

significant influence of particle dispersion state on the local strain field. In the dilute limit, the 

classical hydrodynamic theory of mechanical reinforcement predicts a redistribution of strain field 

near a spherical particle with no enhancement of the average strain in the bulk. While this picture 

is in accordance with the result from PMMA/SiO2 nanocomposites, it cannot explain the slight 

reduction of anisotropy in the PS/SiO2 system. It is important to recognize that the relation between 

structural anisotropy and local strain is approximately linear only in the small deformation limit39, 
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and magnitude of anisotropy [ ] might saturate at large deformation. When the disturbance 𝑆0
2(𝑄)

of the local strain field is large, as we may already conclude from the accelerated relaxation 

dynamics, the nonlinear relation between anisotropy and strain should lead to a reduction of the 

average expansion coefficient (anisotropy). In addition, two other factors may affect the local 

strain field in the PS/SiO2 nanocomposites. One is the presence of considerable NP aggregates, 

which can promote the formation of occluded polymers. However, our SANS results cannot be 

fully described by the recently proposed network model,95 with the assumption of presence of 

occluded polymers. Additionally, as discussed in the Results Section, the volume fraction of the 

occluded polymer in all the PNCs should be less than 10% at . Given the strong accelerated 𝜆 =  1.8

stress relaxation of PNCs (Figure 3 and Figure 4) and the more than 10% difference in  between 𝑆0
2

neat PS and PS18 and PS24 (Figure 12), the occluded polymer should play only a secondary role 

in the reduction in the structural anisotropy. The other is the large fraction of “interfacial layer 

polymers” at high NP loadings42, 43, 96-102, including polystyrene on silica and other oxides103, 104. 

Extensive experimental and computational studies have suggested that the structure and dynamics 

of polymers in the vicinity of a nanoparticle can be substantially different from those in the bulk99, 

105-110. A detailed understanding of the local strain fields at the interface during deformation, 

however, is beyond the scope of this work and requires further theoretical and computational 

studies. Nevertheless, it is helpful to point out that our recent nonlinear rheological measurements 

suggest that the interfacial layer polymers do not seem to play a leading role in the mechanical 

reinforcement of PNCs at large deformation41. 

Conclusion

In summary, the relaxation dynamics of deformed polystyrene/silica nanocomposites are 

investigated by the combination of small-angle x-ray scattering, small-angle neutron scattering, 
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and rheology. Applications of the spherical harmonic expansion technique and the zero-average-

contrast approach permit quantitative SANS studies of the single-chain structure factor of the 

polymer matrix after a large step uniaxial deformation. While the nanoparticles enhance the 

mechanical stress in the linear viscoelastic regime and during the initial phase of step relaxation, 

reduced structural anisotropy and accelerated relaxation dynamics are observed in the polymer 

nanocomposites. We show that these observations can be rationalized with the hydrodynamic 

reinforcement picture when additional nonlinear effects associated with strain field redistribution 

are considered. Specifically, in the presence of large macroscopic deformation and local 

disturbance field, the reduction of structural anisotropy and acceleration of relaxation dynamics 

are results of the nonlinear response of entangled polymers and the nonlinear relation between 

polymer structural anisotropy and microscopic strain. 

Appendix

Zero-average-contrast matching approach to polymer nanocomposites

In this appendix, we give a derivation of the scattering function of polymer nanocomposites 

consisting of nanoparticles, and hydrogenous and deuterated polymers of matching molecular 

weights, for the reader's convenience. By exposing the details of the derivation, potential 

challenges of achieving ideal ZAC condition can be better appreciated. According to the 

fundamental theorem of small-angle neutron scattering by incompressible liquids50, the 

unnormalized scattering intensity can be expressed as:

𝐼(𝐐) = ∑
𝛼

(𝑣𝛼∆𝜌𝛼)2𝑆𝛼𝛼(𝐐) + ∑
𝛼 ≠ 𝛽

(𝑣𝛼∆𝜌𝛼)(𝑣𝛽∆𝜌𝛽)𝑆𝛼𝛽(𝐐), (11)

where  is the molecular volume of the species α,  is the corresponding contrast factor 𝑣𝛼 ∆𝜌𝛼

(scattering length density difference between the species α and the reference species), and  𝑆𝛼𝛽(𝐐)
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is the partial structure factor, defined as , with  𝑆𝛼𝛽(𝐐) ≡ ∑𝑁𝛼

𝑚 = 1
∑𝑁𝛽

𝑛 = 1〈exp [ ― 𝑖𝐐 ∙ (𝐑𝑚 ― 𝐑𝑛)]〉 𝐑𝑚

being the position of the scattering unit . In the case of the current PNC system, it is convenient 𝑚

to choose silica nanoparticles as the reference species. Therefore,  can be written as: 𝐼(𝐐)

𝐼(𝐐) = 𝑣2
H(𝜌H ― 𝜌0)2𝑆HH(𝐐) + 𝑣2

D(𝜌D ― 𝜌0)2𝑆DD(𝐐)
+2𝑣H(𝜌H ― 𝜌0)𝑣D(𝜌D ― 𝜌0)𝑆HD(𝐐),

(12)

where , , and  are the scattering length densities of the hydrogenous polymers, deuterated 𝜌H 𝜌D 𝜌0

polymers, and nanoparticles, respectively. Following the standard technique, we can decompose 

 and  into contributions from interchain and intrachain correlations:𝑆HH(𝐐) 𝑆DD(𝐐)

𝑆HH(𝐐) = 𝜙𝑀𝑁2𝑆HH,intra(𝐐) + 𝜙2𝑀2𝑁2𝑆HH,inter(𝐐), (13)

𝑆DD(𝐐) = (1 ― 𝜙)𝑀𝑁2𝑆DD,intra(𝐐) + (1 ― 𝜙)2𝑀2𝑁2𝑆DD,inter(𝐐), (14)

where  is the molar fraction of hydrogenous chains in the polymer phase (excluding the particles), 𝜙

 is the total number of polymer chains, and  is the chain length. In absence of isotopic effect, 𝑀 𝑁

we have  and . Additionally, it is reasonable to 𝑆HH,intra = 𝑆DD,intra 𝑆HH,inter = 𝑆DD,inter = 𝑆HD,inter

assume that . The contributions from HH, DD, and HD correlations to  are 𝑣H = 𝑣D = 𝑣 𝐼(𝐐)

therefore respectively:

𝑣2(𝜌H ― 𝜌0)2[𝜙𝑀𝑁2𝑆intra(𝐐) + 𝜙2𝑀2𝑁2𝑆inter(𝐐)], (15)

𝑣2(𝜌D ― 𝜌0)2[(1 ― 𝜙)𝑀𝑁2𝑆intra(𝐐) + (1 ― 𝜙)2𝑀2𝑁2𝑆inter(𝐐)], (16)

2𝑣2(𝜌H ― 𝜌0)(𝜌D ― 𝜌0)𝜙(1 ― 𝜙)𝑀2𝑁2𝑆inter(𝐐). (17)

After some arithmetic rearrangements, we find:

𝐼(𝐐) = 𝑣2(𝜌H ― 𝜌D)2𝜙(1 ― 𝜙)𝑀𝑁2𝑆intra(𝐐)

+ 𝑣2[𝜙𝜌H + (1 ― 𝜙)𝜌D ― 𝜌0]2[𝑀𝑁2𝑆intra(𝐐) + 𝑀2𝑁2𝑆inter(𝐐)].

(18)

Since  is the total volume of the polymers, the above result can be rewritten as:𝑣𝑀𝑁 = 𝑉p
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𝐼(𝐐)
𝑉 = (𝜌H ― 𝜌D)2𝜙(1 ― 𝜙)

𝜙p

𝜈chain
𝑆intra(𝐐)

+ [𝜙𝜌H + (1 ― 𝜙)𝜌D ― 𝜌0]2[ 𝜙p

𝜈chain
𝑆intra(𝐐) + 𝑉p𝜙p𝑆inter(𝐐)].

(19)

The left-hand side of the equation is the volume normalized scattering intensity, which is the 

typical “absolute scattering intensity” given by a SANS instrument. Here,  is the total volume 𝑉p

of the polymer phase,  is the volume fraction of the polymer phase in the PNC, and  is the 𝜙p 𝜈chain

number density (per volume) of chains in the polymer phase. When the average contrast 𝜙𝜌H +

 is zero, the second term on the right-hand side of Eq. (19) vanishes, and we have:(1 ― 𝜙)𝜌D ― 𝜌0

𝐼(𝐐)
𝑉 = (𝜌H ― 𝜌D)2𝜙(1 ― 𝜙)

𝜙p

𝜈chain
𝑆intra(𝐐)

= (𝑏H ― 𝑏D)2𝜙(1 ― 𝜙)𝜙p𝑛seg𝑁𝑆intra(𝐐),

(A10)

where  is the polymer segment density (per volume) in the polymer phase and  and 𝑛seg 𝑏𝐻 = 𝜌𝐻𝜈 𝑏𝐷

 are the scattering length of the hydrogenous segment and the deuterated segment. We note = 𝜌𝐷𝜈

that Eq. (A10) is identical to the well-known result for isotopically labeled polymer melts, except 

for the prefactor . In the main text, the volume normalized scattering intensity (absolute 𝜙p

scattering intensity) is simply denoted by ; additionally,  is the same as the single-𝐼(𝐐) 𝑆intra(𝐐)

chain structure factor and is abbreviated as .𝑆(𝐐)

The derivation of Eq. (A10) relies on two main assumptions: incompressibility and ideal 

mixing of hydrogenous and deuterated chains. While the former assumption should hold well, 

deviations from the ideal mixing condition might be expected. In particular, it is well known that 

the structures of polymers near the nanoparticle surface can be strongly disturbed, leading to a 

breakdown of the simple assumption of spatial homogeneity in the polymer phase. 
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