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ABSTRACT: 

Grafting polymer chains on nanoparticles’ surfaces is a well-known route to control their self-
assembly and distribution in a polymer matrix. A wide variety of self-assembled structures are 
achieved by changing the grafting patterns on an individual nanoparticle’s surface. However, 
accurate estimation of the effective potential of mean force between a pair of grafted nanoparticles 
that determines their assembly and distribution in a polymer matrix is an outstanding challenge in 
nanoscience. We address this problem via deep learning.  As a proof of concept, here we report a 
deep learning framework that learns the interaction between a pair of single-chain grafted spherical 
nanoparticles from their molecular dynamics trajectory. Subsequently, we carry out the deep 
learning potential of mean force-based molecular simulation that predicts the self-assembly of a 
large number of single-chain grafted nanoparticles into various anisotropic superstructures, 
including percolating networks and bilayers depending on the nanoparticles’ concentration in 
three-dimensions. The deep learning potential of mean force-predicted self-assembled 
superstructures are consistent with the actual superstructures of single-chain polymer grafted 
spherical nanoparticles. This deep learning framework is very generic and extensible to more 
complex systems including multiple-chain grafted nanoparticles. We expect that this deep learning 
approach will accelerate the characterization and prediction of the self-assembly and phase 
behaviour of polymer-grafted and un-functionalized nanoparticles in free space or a polymer 
matrix.  
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Mixtures of nanoscopic objects and macromolecules are of interest to many areas of science and 
technology. The structure, morphology, and phase behaviour of these multicomponent systems 
such as colloidal suspension, composite microgels, protein crowding in a cell, and polymer 
composites are determined by the complex interplay between the packing entropy of nanoparticles 
with varying size and shape and interparticle interaction with varying strength and range.1–8 In 
many of these systems, nonadsorbing macromolecules induce attractive forces between 
nanoparticles (NPs), which are known as depletion forces.9–11 The depletion force has been 
exploited extensively to assemble nanoparticles into a variety of superstructures. Often, non-
adsorbing polymer chains are grafted on spherical NPs’ surfaces to direct their assembly into 
various complex superstructures, including sheets, rings, icosahedra, and tetrahedra.12–14 The 
grafting length, graft density, curvature of a NP are crucial parameters that determine the nature 
of a superstructure.15–21 From one-dimensional (1D) string to three-dimensional (3D) network-like 
aggregates are reported to form based on these two controlling parameters.22 On the other hand, 
stronger NP-polymer interaction leads to steric stabilization, dispersion, and bridging of NPs in a 
polymer matrix. Microscopic liquid state theory23–28 and molecular simulations29–31 have been 
successfully used to estimate the potential of mean force (PMF) between a pair of NPs that are 
dissolved in a homopolymer matrix. However, the complexity of this potential energy surface 
increases due to the anisotropy in shape and interaction of the NPs. An accurate estimation of the 
PMF that governs the self-assembly, dispersion, and bridging of non-spherical nanoparticles,32–34 
nanoparticles with tethered polymers,35,36 nanoparticles with physical roughness37,38 are 
challenging. Moreover, the architecture, polydispersity, and monomer sequence of polymers – 
grafted chains or bare chains increase the complexity of the PMF.39–44 The PMF is traditionally 
estimated from the radial distribution function (RDF) of NPs  in a polymer matrix (𝑔𝑁𝑃 ― 𝑁𝑃(𝑟))
as , where  and are the Boltzmann constant and temperature of 𝑃𝑀𝐹 = ―𝑘B𝑇𝑙𝑛[𝑔𝑁𝑃 ― 𝑁𝑃(𝑟)] 𝑘B 𝑇 
the system, respectively.43,45,46 Alternatively, it is calculated from the force experienced by a NP 
of a composite system.47–52 However, the points of grafting on an individual NP’s surface are not 
spatially isotropic for low grafting density, and this spatially asymmetric polymer distribution 
causes the effective, two-body inter-NP potential to have a strong orientational dependence that 
produces anisotropic self-assemblies. To coarse-grain out the information regarding tethered 
polymers, it is, therefore, desirable to replace the lost information by an effective interaction 
between the centroids of the NPs that captures its radial as well as orientational dependencies.53 
Therefore, the most commonly used expression of PMF tends to fail in capturing this angular-
dependent effective interaction between NPs that determines their aggregation accurately.54 
Moreover, estimating the PMF of a nanocomposite system requires experimentally or 
computationally predicted distribution of NPs in the system. Therefore, predicting the PMF in a 
polymer nanocomposite system a-priori is challenging.   

In order to address these problems, here, we postulate that the Behler-Parrinello symmetry 
functions55,56 within a deep learning framework can capture the local environment of interacting 
polymer grafted NPs and provide a numerically accurate approach for constructing the PMF. As a 
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proof of concept, we consider one polymer chain tethered NP in an implicit solvent condition and 
establish a deep learning framework to learn and predict the PMF between them. Previous studies 
suggest that NPs with a single tethered chain form a wide range of complex structures from wormy 
micelles to hexagonally packed cylinders to gyroid to lamellar bilayers depending on the volume 
fraction.57,58 Here we aim to estimate the PMF of these self-assembled structures via deep learning. 
We conduct coarse-grained molecular dynamics simulations (CGMD) of a small cluster of single 
polymer chain grafted nanoparticles (GNPs) for a range of temperatures. The configurations and 
the corresponding cohesive energies of these clusters that are collected across the temperature 
range are used to build a generalized deep neural network PMF. The central idea of this approach 
is to represent the total energy (E) of a GNP cluster as a sum of the contributions from the 
individual building blocks as schematically shown in Figure 1. The total energy of an aggregate 
of GNPs can thus be written as . Here, N is the total number of GNPs in 𝐸 = ∑𝑁

𝑖 = 1(𝐸𝑖 + ∑𝑀
𝑗 = 1𝑒𝑗)

an aggregate, and M is the number of grafting points in a GNP. The interaction energy of the 
centroid of an NP and a point of grafting on the surface of an NP are Ei and ej, respectively. The 
Ei and ej depend on the local chemical environment of the system and decay radially. We choose 
to truncate them at a predefined cut-off distance. We represent the energy surfaces of the centroid 
and the point of grafting using a set of Behler-Parrinello-type symmetry functions. We expect that 
this higher dimensional representation of the potential energy surface will capture the angular 
dependency of the effective interaction between NPs due to the presence of grafted polymers. Two 
deep neural network models (DNNs) are built to represent these two energy surfaces of the system 
using the GNP cluster data. We posit that these two DNNs together provide the potential of mean 
force between the building blocks.  The trained models make accurate predictions of the energy of 
unseen GNP clusters. Further, we conduct large-scale MD simulations of NPs that are interacting 
via the  deep learning potential of mean force (DL-PDF) and predict superstructures. We find that 
these superstructures are identical to those obtained from MD simulations. The DL-PMF is 
therefore able to capture the anisotropic interaction among the grafted NPs and yields accurate 
self-assembled superstructures. This framework is very generic and extensible to capture the PMF 
between a pair of filler nanoparticles in any composite system. We expect that this deep learning 
framework for PMF will accelerate the characterization, understanding, and prediction of 
microstructures and phase behavior of polymer nanocomposites and other blends. 

To train the DNNs, we conduct CGMD simulations of clusters of 2 to 10 GNPs and generate 
the training data. Polymer chains are represented as a coarse-grained bead-spring model of Kremer 
and Grest59 wherein a pair of monomers is interacting via the Lennard-Jones (LJ) potential of the 

form  . The  is the unit of pair interaction energy and  is the size of a 𝑉(𝑟) = 4𝜀[(𝜎
𝑟)12

― (𝜎
𝑟)6] 𝜖 𝜎

monomer. In addition, two adjacent coarse-grained monomers of a polymer chain are connected 

by the Finitely Extensible Nonlinear Elastic (FENE) potential of the form 𝐸 = ―
1
2𝐾𝑅2

0 𝑙𝑛
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, where  and  for bond length  and  for . The [1 ― ( 𝑟
𝑅0)

2] 𝐾 = 30𝜖/𝜎2 𝑅0 = 1.5𝜎 𝑟 ≤ 𝑅0 𝐸 = ∞ 𝑟 > 𝑅0

LJ interaction between a pair of monomers is truncated and shifted to zero at a cut-off distance 𝑟𝑐

 to represent soft repulsion between them. The NP is also modeled via the LJ potential. = 21 6𝜎
The diameter of an NP (D) is  . The NP-NP interaction is truncated and shifted to zero at a 3𝜎
distance  to represent attraction between them.  One of the end monomers of a 𝑟𝑐 = 2.5 × 3𝜎
polymer chain is affixed to an NP surface. An NP and the grafted monomer of the affixed-polymer 
chain move as a rigid body during an MD simulation.60 The polymer-NP interaction is considered 
to be repulsive to model the nonadsorbing polymers. The polymer-NP interaction is truncated and 
shifted to zero at a cut-off distance  . We conduct implicit solvent molecular 𝑟𝑐 = 2 × 21 6𝜎
dynamics simulations of a cluster of GNP. The initial configuration of GNPs is placed in a large 
simulation box to form a cluster. We use the velocity-Verlet algorithm with a timestep of to 0.001𝜏
integrate the equation of motion. Here,  is the unit of time, and  is the mass of a 𝜏 = 𝜎 𝑚/𝜖 𝑚
monomer. All the simulations are conducted for a range of reduced temperature , 𝑇 ∗ = 𝑇𝑘𝐵 𝜖
which is maintained by the Langevin thermostat within the LAMMPS simulation environment.61 
The temperature is varied from to with a step size of . At each 𝑇 ∗ = 1.5 𝑇 ∗ = 0.2 Δ𝑇 ∗ = 0.1
temperature, the MD simulations are conducted for  steps. During these MD simulations, we 106

collect configurations of GNPs clusters across the range of temperature and cluster size. ~ 8000 

 We construct the potential energy surface using a combination of radial and angular symmetry 
functions. These radial and angular symmetry functions are represented as 𝐺1

𝑖 =

 and ∑
𝑗 ≠ 𝑖𝑒

―𝜂(𝑅𝑖𝑗 ― 𝑅𝑠)2
.𝑓𝑐(𝑅𝑖𝑗) 𝐺2

𝑖 = 21 ― 𝜁

Figure 1: Structure of the high dimensional deep learning model development framework for potential of mean force between a 
pair of polymer-grafted nanoparticles. Within this deep learning framework, a polymer grafted nanoparticle is mapped to a patchy 
particle wherein the grafted polymer chain is replaced by a patch at the point of grafting. The centroid of a nanoparticle and the 
point of grafting are represented by two types of deep neural networks. The individual energies of the centroids of nanoparticles 
and the patches in a cluster are added and equated to the total energy of the cluster that is calculated using CGMD simulation.     
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, respectively, where ∑𝑁𝑖

𝑗,𝑘 ≠ 𝑖(1 + 𝜆cos 𝜃𝑖𝑗𝑘)𝜁.𝑒 ―𝜂(𝑅2
𝑖𝑗 + 𝑅2

𝑖𝑘 + 𝑅2
𝑗𝑘).𝑓𝑐(𝑅𝑖𝑗).𝑓𝑐(𝑅𝑖𝑘).𝑓𝑐(𝑅𝑗𝑘) 𝑓𝑐(𝑅𝑖𝑗) = 0.5

  for  and  otherwise. The indices and  run over all [cos (𝜋𝑅𝑖𝑗

𝑅𝑐 ) + 1] 𝑅𝑖𝑗 < 𝑅𝑐 𝑓𝑐(𝑅𝑖𝑗) = 0.0 𝑗 𝑘

the neighboring particles  within a cut-off radius of . Here Rs is an adjustable 𝑁𝑖 𝑅𝑐 = 7.5𝜎
parameter. To capture the local interacting environment of a GNP accurately, we consider 25 radial 
symmetry functions  , each with a distinct value of , and 25 angular symmetry functions  , 𝐺1 𝜂 𝐺2

each with a distinct set of  values. The parameters of these 25 radial symmetry functions and 𝜂,𝜁,𝜆
25 angular symmetry functions are reported in Table I and Table II, respectively. The 𝜂, , and  𝜆 𝜁
are varied systematically to ensure the uniqueness of the symmetry functions. These symmetry functions 
are translationally and rotationally invariant. These sets of symmetry functions represent the 
energy surface of the centroid of an NP as well as the point of grafting. We choose these sets of 
symmetry functions based on our preliminary studies to improve the performance of the models. 
The variation of G1 and G2 for the selected parameter sets can be seen in supporting information 
(SI). A DNN architecture consists of four layers of neurons, all the neurons/nodes of a layer are 
fully connected to all the nodes in the next layer by weights. We consider two intermediate layers 
(hidden layers) consisting of 15 nodes each. The input layer has 50 nodes that hold 50 symmetry 

G1 𝜂 (−2) G1 𝜂 (−2) G1 𝜂 (−2) G1 𝜂 (−2) G1 𝜂 (−2)

1 0.00417 6 0.01551 11 0.0576 16 0.21386 21 0.79406

2 0.00543 7 0.02016 12 0.07488 17 0.27802 22 1.03229
3 0.00706 8 0.02621 13 0.09734 18 0.36143 23 1.34197
4 0.00917 9 0.03408 14 0.12654 19 0.46986 24 1.74456

5 0.01193 10 0.0443 15 0.1645 20 0.61082 25 2.2679

Table 1: The parameter sets for the radial symmetry functions that represent the high dimensional potential energy surface for 
the centroid as well as the point of grafting in a polymer grafted nanoparticle.

G2 𝜂 (−2) 𝝀 𝜻 G2 𝜂 (−2) 𝝀 𝜻 G2 𝜂 (−2) 𝝀 𝜻 G2 𝜂 (−2) 𝝀 𝜻

1 0.0004 1 2 8 0.0354 1 3 15 0.0704 1 4 22 0.1054 -1 5

2 0.0054 1 2 9 0.0404 1 3 16 0.0754 -1 4 23 0.1104 -1 5
3 0.0104 1 2 10 0.0454 -1 3 17 0.0804 -1 4 24 0.1154 -1 5

4 0.0154 -1 2 11 0.0504 -1 3 18 0.0854 -1 4 25 0.1204 1 6

5 0.0204 -1 2 12 0.0554 -1 3 19 0.0904 1 5
6 0.0254 -1 2 13 0.0604 1 4 20 0.0954 1 5

7 0.0304 1 3 14 0.0654 1 4 21 0.1004 1 5

Table 2: The parameter set for the angular symmetry functions that represent the high dimensional potential energy surface of the 
centroid as well as the point of grafting in a polymer grafted nanoparticle. 
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functions and represent the potential energy surface (PES) of a point. The output layer consists of 
one node that represents the potential energy of the point. Within this network topology, the three-
dimensional Cartesian coordinates of a GNP are mapped into rotational and translational invariant 
coordinates as  and  symmetry functions. A cluster of N GNPs is represented by 2N DNNs 𝐺1 𝐺2

during the training, as schematically shown in Figure 1. We note that the architecture of all the 
DNNs that represent the centroid of an NP as well as the point of grafting are identical. During the 
training, the symmetry functions of each point are fed to the corresponding DNN via its input 
layer, as schematically shown in Figure 1. The input signals are activated and passed through the 
layers using the standard procedure.62 The sum of all the outputs from all the DNNs serves as the 
predicted energy of a GNP cluster. During the training of DNNs, all the weights are optimized to 
reduce the difference between the predicted energy and actual energy of a GNP cluster using feed 
forward back-propagation algorithm.63  We note that two types of DNNs are built during the 
training. One type represents the PES of the centroid of an NP, and the second type represents the 
PES of the point of grafting on an NP’s surface. They have a distinct set of parameters i.e., the 
weights between connecting nodes. The Atomic Energy Network (AENet) software package62 is 
used to build these two DNN models.

The energy distribution of training data that are collected during the temperature quenching 
simulations of GNP clusters is shown in Figure 2a. These configurations are sampled within a 
temperature range of  to . We use 80% of these configurations for training the 𝑇 ∗ = 1.5 𝑇 ∗ = 0.2
models, and the remaining 20% of the data is used to test the performance of the models. A 
validation data set is also created by randomly selecting 10% of the training data that are used for 
cross-validation of the models’ performance during the training. As mentioned earlier, the 
Cartesian coordinates of the centroid of NPs and the point of grafting are converted to 

Figure 2: The energy distribution of all the GNP clusters that are collected for DNN model development is shown in (a), and 
the mean absolute error during the training is shown in (b) for training and validation data set. The energies are in LJ unit.  
The training and validation set consist of 5600 and 800 points, respectively. 
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translationally and rotationally invariant coordinates and fed to the DNNs during the training. The 
mean absolute error (MAE), which is the difference between the predicted energy at the network’s 
output (cf. Figure 1) and the actual energy of a GNP cluster during the training is plotted in Figure 
2b. During the training, the hyperparameters of the DNNs are optimized to minimize the MAE. A 
rapid reduction of MAE is observed during the early stage of the training and MAE is less than 
2% of the actual energy value within the 50 training cycles as shown in Figure 2b for both the 
training and validation data sets. We compare the actual and predicted energies for training and 
test data sets in Figure 3. The predicted energies are very close to their actual values. The error is 
slightly higher in low energy range. Overall, the coefficient of determination (R2) of the model is 
above 0.99 for both the training and test sets. This suggests that the DNNs can accurately capture 
the energy surface of a GNP cluster. As mentioned earlier, the DNNs is made of two types of DNN 
– one represents the local interacting environment of the centroid of an NP, and the second one 
represents that of the point of grafting on an NP’s surface. We, therefore, infer that the potential 
energy surface of an individual GNP can be represented by these two types of DNN.    

We now conduct MD simulations of nanoparticles based on the energy predicted by the deep 
learning models. In these simulations, a polymer grafted nanoparticle is represented by two  DNNs 
– one predicts the potential energy of the centroid of a nanoparticle, and the second one predicts 
the potential energy at the point of grafting on a nanoparticle’s surface. MD simulations of NPs 
interacting via these DL-PMF are carried out using LAMMPS.61 These MD simulations are 
performed in a bulk 3D environment in a periodic simulation box with a fixed volume fraction. 
The number of particles in these simulations are 100. Each particle has two interaction sites 

Figure 3: Performance of the DNNs. The predicted energy is plotted against the actual energy of clusters of nanoparticles for (a) 
training data set and (b) test data set, respectively. The dotted lines are the x=y lines. The energies are in LJ unit and normalized 
by number of nanoparticles in a cluster. The training and test set consist of ~5600 and 1600 data points.     
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represented by the two DNNs. The effective force on an NP is calculated from the predicted 
energy. For a particle k, along a Cartesian direction , , the force can be written as56 𝑟𝑘,𝛼 𝛼 = {𝑥,𝑦,𝑧}

. Here, NA is the number of particles within the cut-𝐹𝑘𝛼 = ―
∂𝐸

∂𝑟𝑘𝛼
= ― ∑𝑁𝐴

𝑖 = 1

∂𝐸𝑖

∂𝑟𝑘,𝛼
= ∑𝑁𝐴

𝑖 = 1
∑𝑀𝑖

𝑗 = 1

∂𝐸𝑖

∂𝐺𝑖𝑗

∂𝐺𝑖𝑗

∂𝑟𝑘𝛼

off distance, and Gij is the jth symmetry function for the ith particle.  The variable Mi varies from 1 
to 50, which is the total number of symmetry functions. Within this framework, we treat an NP 
and its patch as a rigid body. The total force and torque of the rigid body is computed as the sum 
of that of the NP and its patch. At each timestep of the MD simulation, the coordinates and 
velocities are updated so that the centroid of the NP and patch moves as a single entity.60 The 
simulations are carried out in an implicit solvent condition in an NVT ensemble, wherein the 

Figure 4: The DL-PMF predicted self-assembly of polymer grafted nanoparticles. The MD snapshots of the predicted self-
assembled structures are shown in the first column while the actual single chain grafted nanoparticles assembles are shown in the 
last column. The middle column compares the radial distribution functions for the two cases. The first row (a,b,c) corresponds to 
volume fraction 0.001, while the second row (d,e,f)and third row (g,h,i) correspond to volume fractions 0.15 and 0.24, respectively.    
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temperature is controlled using the Langevin thermostat. We use the velocity-Verlet algorithm 
with a timestep of 0.005 to integrate the equation of motion.  We conduct DL-PMF-based MD 
simulations of NPs for several volume fractions, which is defined as . Here, and  𝜙 = 𝑁𝑉0/𝑉 𝑁,𝑉0 

 correspond to the number of nanoparticles in the system, the volume of a nanoparticle and the 𝑉
volume of the simulation box, respectively. We conduct MD simulations across a range of 
temperatures  to determine the stability and transferability of the DL-PMF. The (𝑇 ∗ = 1.5 ― 0.2) 
DL-PMF produces stable MD trajectories for all temperatures, and we observe continuous 
aggregations of nanoparticles upon cooling. The potential energy of the system at different 
temperatures during a cooling-heating cycle is shown in SI. The predicted NPs self-assembly based 
on DL-PMF at is shown in Figure 4. We further carry out MD simulations of actual 𝑇 ∗ = 0.2 
GNPs in the same condition to verify the prediction of the deep learning models, which are also 
shown in Figure 4.  For very low volume fraction( ), the DL-PMF predicts spherical 𝜙 = 0.001
aggregates of NPs and it is consistent with the actual single-chain grafted NPs assembly as shown 
in Figure 4a-c. As the NPs’ volume fraction increases, we observe a percolating network-like 
superstructure followed by a bilayer assembly. This is consistent with their actual assembly as 
shown in Figure 4d-i. The DL-PMF predicted radial distribution functions for all three cases are 
in close agreement with the actual RDFs of the NPs. Therefore, we infer that the DL-PMF captures 
the anisotropic interactions in a polymer grafted NPs system very accurately and yields structural 
properties of the system, which are comparable with the actual superstructures.  

In summary, we propose a new approach to compute the potential of mean force between a 
pair of polymer-grafted nanoparticles using deep learning. We conduct molecular dynamics 
simulations based on the prediction of the deep learning model and demonstrate that the deep 
learning potential of mean force yields very accurate self-assembled superstructures of a large 
number of polymer-grafted nanoparticles. We find this deep learning approach very efficient and 
accurate in capturing anisotropic interactions, and it predicts long-range anisotropic aggregates of 
polymer-grafted nanoparticles. In the present study, we use a very generic phenomenological 
model of polymer and nanoparticle to construct the deep learning framework that predicts the 
potential of mean force between single-chain grafted nanoparticles. This framework can be further 
expanded to study effective interaction in several other nanocomposite systems, including 
multiple-chain grafted nanoparticles, polymer-grafted nanoparticles in a polymer matrix and bare 
nanoparticles in a polymer matrix. Also,  the potential of mean force for systems with atomistic 
details can be modeled using this deep learning framework. For a multiple-chain grafted 
nanoparticle, each point of grafting can be represented by a DNN as the chemical/interaction 
environments of the points of grafting are identical. Moreover, one can expect that the extent of 
anisotropy will reduce as the number of grafting increases. For a homogeneous and uniformly 
grafted nanoparticle, it is possible to construct the potential energy surface using only one DNN 
representing the  nanoparticle’s centroid, without the requirement of the second type of DNN for 
the point of grafting. The number of symmetry functions to represent such a potential energy 
surface will be lower than that of the current study. Furthermore, the current study focus on the 
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self-assembly of grafted NPs in a low concentration range. It would be of future interest to test this 
model for highly dense systems. Therefore, the current DL-PMF lays the groundwork for future 
efforts to generalize and optimize this framework to capture other phases of polymer-grafted 
nanoparticles and composites. Future work will focus on hyperparameter optimization, reducing 
the number of training data points, identifying the optimal number of symmetry functions, and 
generalizing this framework for multiple-chain grafted nanoparticles and non-spherical 
nanoparticles. 
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