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Jamming on convex deformable surfaces†

Zhaoyu Xie,a and Timothy J. Athertona,b

Jamming is a fundamental transition that governs the behavior of particulate media, including sand,
foams and dense suspensions. Upon compression, such media change from freely flowing to a
disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process
is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft
materials and deformable substrates, including emulsions and biological matter, remains unknown.
Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that
has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete
mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties
continuously tunable between those of classically jammed and conventional elastic media. The
compact and curved geometry significantly alters the vibrational spectra of the structures relative to
jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational
mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework
that unifies our understanding of solidification processes that take place on deformable media and
lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly
processes.

1 Introduction
Jamming is a transition to rigidity that occurs as bulk samples of
particulate media are compressed from a freely flowing state to
a solid state1,2. A system is jammed if it is globally rigid with
respect to motions of the constituent particles. Jamming can be
induced by varying thermodynamic variables such as temperature
and density, as well as mechanical variables such as applied stress:
Colloidal suspensions become colloidal glasses as the density is
increased, flowing foams become static as the shear stress is de-
creased below yield stress, liquids become glasses as the tempera-
ture is lowered below the glass transition3,4. Moreover, in biolog-
ical systems, confluent tissues also exhibit a transition to rigidity
controlled by single-cell properties such as shape and motility5–8.

In prior work, jamming has been conceived of a bulk phe-
nomenon that takes place in a fixed geometry. There is, however,
considerable recent interest in systems that involve solidification
processes of particulate media embedded on deformable or mov-
ing interfaces: arrested coalescence9 and electrically induced de-
fromation10 of Pickering emulsion droplets, nanoparticles driven
by a moving phase boundary that form solid shells and other
morphologies11, bacteria on the interface of emulsion droplets
that they gradually consume12, and the production of jammed
emulsion gels (bijels) from bicontinuous precursor mixtures13,14.
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These situations do not neatly fit into the scenarios previously en-
visioned, or the jamming categories proposed in prior theoretical
work, because they take place on a curved and deformable sur-
face rather than in the bulk. Here, the rigidification takes place
not only with respect to particle degrees of freedom, but also with
respect to the shape of the interface on which they are embedded.
Further, the non-Euclidean geometry of the interface means that
particles in different locations may experience location dependent
states of stress depending on the local shape of the interface.

Here, we will therefore propose a new jamming class, which we
refer to as metric jamming, that refers to structures that are rigid
both with respect to particle degrees of freedom and degrees of
freedom associated with the surface on which they are embed-
ded. The purpose of this paper is to construct a model metric
jamming process, explicitly test the resulting structures for rigid-
ity and hence distinguish similarities and differences from other
jammed media.

The classically jammed state is of great interest because it has
unique properties compared to normal crystalline solids and new
physics emerges near the jamming transition1,4. In contrast to
crystalline solids, jammed materials generally lack translational
order and are fragile, offering little or no resistance to shear de-
formation, and exhibit other unusual elastic properties if the par-
ticles themselves are deformable. The fragility arises from the
packing’s isostaticity, i.e. they possess only the minimal number
of contacts per particle required for mechanical stability. Under-
standing jamming of disordered systems enables the fabrication
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of new functional amorphous materials15–17.

Jamming theory has been previously extended to consider non-
spherical18,19 and deformable20,21 particles as well as to con-
sider the role of friction22. In such extensions, both hypostatic
and hyperstatic configurations—those with an apparent deficit or
surplus of contacts relative to the isostatic value—can emerge re-
quiring sophisticated approaches to constraint counting23,24 and
new universality classes25.

Two distinct theoretical approaches to jamming have been pro-
posed: One approach considers configurations of rigid, mutually
impenetrable particles under confinement26. Particles in a can-
didate structure are subjected to set of random forces ξ to find
a protoypical unjamming motion δx identified by extremization
of the virtual work ξ · δx, a linear programming problem, sub-
ject to (linearized) interpenetrability constraints27,28. Analysis of
the prototypical unjamming motion leads to a hierarchical clas-
sification of jammed structures29: A packing is locally jammed,
the least stringent category, if no particles are able to move while
the others remain fixed; it is collectively jammed if no subset of
particles is movable with the remainder held in place; it is strictly
jammed if no collective subset of the particles can be moved at
the same time as a volume conserving deformation of the con-
tainer. Our proposed metric jammed state extends this hierarchy
by incorporating a flexible geometry and not simply a boundary.

An alternative approach is to consider jammed states of soft
particles that interact via a short range interparticle potential
V (r)4. The energy of the system is expanded as a quadratic form
U ∼ δx ·H ·δx about a candidate jammed state of interest, where
H is the Hessian matrix of the energy, also known as dynamical
matrix30–32, and δx is the displacement vector. Eigenanalysis of
H is used to test the overall stability of the structure, and hence if
it is truly jammed, identify particles (known as rattlers) that are
superfluous to the rigidity. The spectrum of H also provides the
density of vibrational states and therefore determines the elas-
tic response. Jammed structures are found to possess an excess
of low-frequency modes that are a signature of the fragility of
the state4,30–40. Here, we will consider soft particles of variable
rigidity, enabling us to deploy and extend the Hessian analysis to
incorporate both particle and shape degrees of freedom.

2 Simulation of metric jammed structures

We consider the following scenario: suppose N soft spherical fric-
tionless particles with different radii ri are positioned with their
centroids at coordinates Xi on a closed compact surface ∂C that
bounds a region C of fixed volume representing, for example, an
emulsion droplet. To facilitate comparisons with studies of jam-
ming in flat space4,36,41–46, we will use 50−50 mixtures of bidis-
persed particles with radius ratio 1 : 1.4 to suppress crystallization.
For simplicity, we assume that the particles are rigidly confined to
the surface and that their presence does not significantly deform
the interface locally by forming mensici. The particles interact
with one another through a potential of finite range V (di j) where
di j is the separation of particles i and j.

The total energy of the system includes both surface tension
and particle-particle interactions,
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Fig. 1 Metric jammed configurations. A Initially arrested configurations
on ellipsoids of varying aspect ratio (left) are relaxed into metric jammed
structures (right); particles are colored by coordination number. B Metric
jammed configurations as a function of K = σA/k, a dimensionless ratio
of surface and elastic energy. C Packing fraction as a function of K. D
Mean contact number per particle as a function of K.

E = σ

∫
dA+ k ∑

i̸= j
V (di j), (1)

where σ is the surface tension and k is the rigidity of the particles.
A dimensionless ratio K = σA/k characterizes the relative impor-
tance of these terms where A is the surface area. The choice of
surface energy here is specific to the Pickering emulsion scenario
described above: The integral in (1) is over the exposed fluid-fluid
interface of the emulsion droplet which might be locally deformed
due to capillary effects. For simplicity, we will here assume that
the particles each occupy a fixed interfacial area and instead inte-
grate over the area of the whole surface, supplementing (1) with
a constant −∑i πr2

i that does not enter into our later calculations
where ri is the radius of a single particle. Other surface energies
might be applicable in different scenarios, e.g. the Helfrich en-
ergy for jamming on a vesicle47, for example, or an elastic energy
for a membrane.

The surface is parameterized by a map X(x) = xR(x) from
points x that lie on the unit sphere to 3D Euclidean space where
the radial function R(x) is decomposed into tesseral harmonics,

R(clm,x) = ∑
lm

clmZlm(x). (2)

The configuration of the system may be fully specified by the set
of parameters ξ = {xi,clm} including N particle positions xi on the
unit sphere and M surface coefficients clm for a total of 2N +M
degrees of freedom. Fixing the volume enclosed by the surface
imposes a nonlinear constraint on the surface coefficients {clm}
and removes one degree of freedom. The physical position Xi of
the ith particle may be calculated from the map X and depends
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on xi and {clm}.

For particle-particle interactions we use a compact repulsive
pairwise potential4,31,32,35,41–46,48,49,

V (di j) =
1
2

(
1−

di j

si j

)2
Θ

(
di j

si j
−1
)
, (3)

where the separation di j = ∥Xi −X j∥, si j = ri + r j and Θ is the
Heaviside step function enforcing interaction only for overlapping
particles.

We construct metric jammed configurations by the following
procedure: we first create rigid packings on surfaces of fixed
shape, specifically ellipsoids of varying aspect ratio. These will be
used to help distinguish the physical consequences of the curved
geometry from those associated with the surface modes. Using
the ellipsoidal packings as a starting point, we then minimize the
total energy (1) of the configuration with respect to both particle
and surface parameters ξ , producing a metric jammed structure.
Further details are provided in the Methods section below. Fig.
1A displays initial and final states for several different aspect ra-
tios.

For each configuration, the stability is assessed by calculating
and diagonalizing the bordered Hessian of the energy functional
(1) with respect to the parameter set ξ incorporating both par-
ticle and surface degrees of freedom and including the volume
constraint. Particle coordinates are parametrized in spherical po-
lar form xi = R(sinθi cosφi,sinθi sinφi,cosθi). Rattlers, particles
that do not contribute to the rigidity of the structure, are identi-
fied from zero modes of the Hessian associated with eigenvectors
that are localized to a single particle; these particles are then re-
moved from the structure. There also exist zero modes associated
with residual degrees of freedom; for ellipsoids there is one such
mode associated with cylindrical symmetry about the long axis;
for spherical packings there are three. In practice, the zero modes
arising from numerical calculations mix combinations of rattler
and trivial motions which must be separated by Gram-Schmidt
orthogonalization of the associated eigenvectors.

3 Computational Methods

Jammed configurations on fixed surfaces

We adapt the protocol for the generation of jammed configura-
tions in 2D and 3D space4 to packings on curved surface using
the interparticle potential shown in Eq. (3). The simulation starts
by randomly placing N particles of potentially different radii ri

with their centroids fixed on a curved surface that is scaled such
that the area A≫Nπr2 and hence the packing fraction φ ≪ 1. The
simulation proceeds by iteratively reducing the size of the surface
at fixed shape to slowly increase the packing fraction. Conjugate
gradient descent is applied at each iteration to bring the particle
interaction energy to the minimum; the sequence is terminated
if the total potential energy per particle V/N < 10−16 or V/N for
successive iterations deviates by less than 10−15. As the size of the
surface decreases and the particles move closer to each other, in-
evitable overlaps appear and increase the energy minimum. The
algorithm is halted if the minimized total potential energy per
particle falls into 10−16 <V/N < 2×10−16. This procedure brings

the system extremely close to temperature T = 0, with a very
small pressure p < 10−10 as calculated below. These thresholds
give a clear separation between jammed and unjammed state43

and a similar approach has been utilized in other research about
packings41,42,48,50,51. Packings are explicitly tested for rigidity by
eigenanalysis as described in the main text.

Production of metric jammed configurations

We begin with a jammed packing on a fixed surface produces as
described in the preceding section. Given such a configuration,
described by parameters ξ , generalized forces are evaluated by
taking the gradient of the energy functional (1), including the sur-
face energy, with respect to the surface coefficients fclm =−∇clm E.
The surface is deformed along the descent direction with vol-
ume conservation by a stepsize δ and then the conjugate gradient
method is employed to bring the particle system back to an en-
ergy minimum, as discussed above. The deformation is accepted
if the total energy of the system afterwards is reduced, otherwise
the deformation is rejected and the stepsize reduced δ → δ/2.
Further surface deformation steps are taken and the algorithm is
stopped if δ < 10−16 or energy E for successive iterations deviates
by less than 10−12.

Calculation of mechanical properties

We calculate the stress tensor at each particle by constructing
a local frame with tangent vectors tθ and tφ aligned in the po-
lar and azimuthal directions respectively. The stress tensor in
2D4,45,46,51–53 is then written as,

Σαβ =
1
A ∑

i> j
(ri jα fi jβ + r jiα f jiβ )/2, (4)

where A is the surface energy and ri jα , fi jβ represent the projec-
tions of center-to-center distance and force along surface tangent
vectors tθ and tφ . The average is computed over pairs of parti-
cles. From this, we can compute the pressure p = (Σθθ +Σψψ )/2,
bulk modulus B = ψd p/dψ after slightly compressing the system
at packing fraction φ and shear modulus G =−dΣθψ/dγ after ap-
plying a small shear strain γ 4,45. These variables are measured
in units of k/r2 where r is the radius of the larger particle. The
shear is applied by twisting the configuration around the ellipsoid
symmetry axis,

ψi =

{
ψi +2θiγ 0 ≤ θi < π/2

ψi +2(θi −π)γ π/2 < θi ≤ π
. (5)

after which we apply the conjugate gradient descent method to
minimize the energy while fixing the position of several particles
near the poles; these fixed particles and the area they cover are
excluded from the stress tensor calculation.

4 Results

Metric jammed structures range from iso- to hyperstatic

Metric jammed structures for different values of K are shown in
Fig. 1B with the local coordination number indicated. For large
K, where the surface tension is large, the final shape tends to-
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wards spherical, and hence achieves a globally minimal surface;
particles tend to higher coordination numbers. For smaller K, or
larger inter-particle interaction energies, the shape instead tends
toward spherocylindrical and the average coordination number
tends to 4. Inspecting the spatially resolved distribution of coor-
dination numbers along the structure, we do not see significant
variation. This is in contrast to the situation with monodisperse
particles on a fixed surface where variations in the distribution of
defects can be predicted from the curvature54, but could be due
to the limited size of our dataset.

From the structures we can compute two structural measures,
an estimate of the packing fraction,

φ =

(
Nπ ∑

i
r2
i

)
/A. (6)

where A is the area of the surface at the jamming point, and the
mean number of contacts per particle Z. Both φ and Z are signa-
tures of jamming in flat space. Fig. 1C displays φ as a function
of K: As K → 0, φ approaches the value of 0.84 characteristic of
random close packing in 2D space4,55. Note that because the par-
ticles remain confined to the surface, and are not packed in three
dimensions, the two dimensional value is to be expected. As K
increases further, the particles are increasingly compressed and
the exposed surface gradually eliminated. Because our estimate
of φ in Eq. (6) does not account for overlap between particles,
the value of φ exceeds 1 for sufficiently large K; the true packing
fraction tends φ → 1 for large K. We use this simple estimate here
because we are primarily interested in the behavior near the jam-
ming point, and a more careful calculation requires us to project
the particles onto the surface accounting for the local curvature.

The mean contact number Z is plotted with respect to K in Fig.
1D and tends towards 4 as K → 0 which for K → 10 the number
of contacts is significantly greater, reaching values as high as 5.5.

We now compare these results with the situation in flat space. A
linear constraint counting argument due to Maxwell56 and devel-
oped by Calladine57,58 predicts the minimal number of contacts:
the number of degrees of freedom for N particles is dN where d
is the dimensionality and ξ is the number of residual degrees of
freedom in the space (ξ = d in d-dimensional space and ξ = 1 for
cylindrically symmetric surfaces as discussed above). These must
be balanced by NZiso/2 constraints, i.e. dN = NZiso/2+ ξ . The
isostatic contact number in 2D is therefore Ziso = 4− 4/N. Previ-
ous literature demonstrates that an additional degree of freedom
is required to maintain positive pressure and bulk modulus in flat
space, such that dN +1 = NZc +ξ 44,59.

The contact number at jamming is Zc = 4−2/N on 2D flat sur-
faces and Zc = 4 on cylindrically symmetric surfaces. Hence, the
metric jammed structures displayed in Fig. 1 appear hyperstatic
relative to the Maxwell value and tend towards the isostaticity
observed in flat space only as K ≪ 1, i.e. where the rigidity of the
particles is significantly greater than the surface tension. In that
limit, the packing fraction approaches the random close packing
value.

The Maxwell argument does not, however, account for the cur-
vature of the surface on which the particles are embedded, or
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Fig. 2 Mechanical properties of metric jammed configurations. A change
in contact number as a function of pressure. Elastic moduli as a function
of pressure for different K: B bulk modulus and C shear modulus. D The
shear modulus is also shown versus contact number.

stresses induced by the surface tension term. Recent work on
granular media in flat space but with internal stresses has shown
that under compression the system becomes rigid at contact num-
bers larger than the Maxwell value60, which could explain the
abundance of large contact values at large K. More generally,
criteria for rigidity remain a problem of interest beyond jamming.
Some have attempted to incorporate energetic arguments into the
Maxwell argument61; others have proposed alternative criteria
based on energetic rigidity62.

Shear modulus strongly depends on particle rigidity
Jammed structures in 2D flat space also exhibit a unique elas-
tic response: they possess vanishing shear modulus, and exhibit
characteristic scalings of the pressure p∼ (φ −φ0)

1, excess contact
number ∆Z ≡ Z−Ziso ∼ (φ −φ0)

1/2, bulk and shear elastic moduli
B ∼ (φ −φ0)

0, G ∼ (φ −φ0)
1/2 as the system is compressed beyond

the jamming point φ0
2,4,44,59,63. To test this, we deform metric

jammed configurations in two ways: the structure is compressed
slightly to measure the bulk modulus B and a twist deformation
is imposed about the symmetry axis to measure the shear mod-
ulus G. The elastic moduli are computed from derivatives of the
stress tensor during the deformation as described in Methods and
results for packings with different K are displayed in Fig. 2.

We established that the excess pressure ∆p = p− p0 is linearly
proportional to the excess packing fraction φ −φ0 and is therefore
a good measure of the deformed system’s proximity to the jam-
ming point. The excess contact number, bulk modulus and shear
modulus are therefore displayed as a function of ∆p in Fig. 2(a)-
(c). The excess coordination number displays an initial plateau
but then increases at a critical pressure that increases with K. Far
from the jamming point, we find that the excess contact num-
ber scales as ∆Z ∼ (∆p)0.5. The bulk modulus possesses a similar
plateau for all K at low ∆p.

The shear modulus G is several orders of magnitude smaller
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than the bulk modulus, and strongly depends on the value of K.
For large K, G is finite and constant as ∆p → 0 and scales approx-
imately like (∆p)0.5 at larger ∆p. For small K the trend is more
complex, tending to zero at small ∆p but exhibiting a shoulder.
To understand this in more detail, we plot G as a function of the
excess contact number ∆Z in Fig. 2(d). As discussed in37, if G
scales like ∆Z then the elasticity is nonaffine, while if G ∝ Z the
elasticity is affine. While the trend at low K is complicated, the re-
sults are more consistent with non-affine elasticity. In54 we saw
significant evidence of non-affine deformation in the kinetics of
particulate media on a bisphere, and hence it is quite possible we
might be able to resolve these effects in future work.

Overall, these results reproduce the behavior of jammed pack-
ings in flat space at low K reasonably well. As K ≫ 1, the struc-
tures begin to resemble normal solids where G ∼ (φ −φc)

0 2,4,44,59

even though G remains small.

Vibrational analysis reveals new mode types

A third signature of the jammed state is an excess of low fre-
quency vibrational modes4,30–32,34–36,38,40,64–66, in contrast to
the Debye theory of elastic solids67,68. Eigenanalysis of the Hes-
sian matrix provides the vibrational frequencies, which are the
square roots of the eigenvalues measured in units of

√
k/r where

r is the radius of the larger particle, and associated vibrational
modes from the eigenvectors. We display the density of states
D(ω) for different values of K in Fig. 3A at several values of
∆φ = φ −φ0. Two key features are apparent: first, D(ω) possesses
a low frequency plateau characteristic of jamming for low K and
at low ∆φ . As the system is compressed, or as K increases, the
plateau vanishes leading to Debye-like behavior.

A second feature is that D(ω) falls abruptly above a critical
value of ω. The transition is very sharp as K → 0 and smoothed
out for larger K. In Fig. 3B, we display the component of the
eigenvectors in the polar direction as a function of ω, close to the
metric jammed configuration. At low frequency, particles tend
to vibrate along the azimuthal φ direction while high-frequency
localized vibrations are along the polar θ direction. The crossover
of D(ω) coincides with the transition of particle motions. For
packings on spherical surfaces the high frequencies have motions
both along θ and φ directions due to the symmetric nature. Hence
spatially inhomogeneous curvature can cause the localization of
vibrational modes.

The participation ratio P(ω) is calculated to characterize the
vibrational modes32,34,40,48,65. It is a measure of the fraction
of particles that are participating in the motion governed by the
mode of frequency ω. Given the eigenvectors {−→u i(ω)} at fre-
quency ω for every particle,

P(ω) =
1
N
(∑i ∥ui(ω)∥2)2

∑i ∥ui(ω)∥4 , (7)

where N is the number of particles after removing ratters. On the
curved surfaces considered here, we use the arclength to repre-
sent ∥ui(ω)∥2.

The corresponding participation ratios P(ω) are also displayed
in Fig. 3C together with illustrations of typical vibrational modes

in Fig. 3D for configurations close to the metric jamming point
with K = 40, revealing the consequences of anisotropic curva-
ture. In the low-frequency region far from the jamming point,
plane-wave like phonon modes (Fig. 3D ii) and quasi-localized
modes (Fig. 3D iii) where localized excitations are visible on a
small plane-wave background. In the mid-frequency region, we
have extended modes where random excitations spread through-
out the entire system along the azimuthal φ direction (Fig. 3D
iv), and along the polar θ direction (Fig. 3D v) for larger frequen-
cies. The high-frequency region contains localized modes where
only a few particles vibrate along the polar θ direction(Fig. 3D
vi). These vibrational modes also exists for jammed structures
on flat surfaces1,2,36,40,65,69. The spatially inhomogeneous cur-
vature, however, causes the extended modes along the polar θ or
azimuthal φ direction. Additionally for metric jammed configura-
tions at very low frequency where the component of eigenvectors
along θ direction and participation ratio are almost 1, there ap-
pears a vibrational mode where all particles move along the θ

direction, showed in Fig. 3i.
Our inclusion of shape as well as particulate degrees of free-

dom allows for the possibility of new modes with mixed charac-
ter. To examine this, we display in Fig. 4A and B the projection
of each normalized eigenvector that lies in the shape sector, c(ω),
as a function of the angular frequency. We see that modes as-
sociate with significant shape deformation tend to lie in the high
frequency regime, relatively independently of K. Two such modes
are depicted in Fig. 4C and D.

5 Conclusion
These results collectively show that particulate media on de-
formable surfaces can form structures that share structural and
mechanical properties with conventional jammed media in Eu-
clidean space, but are rigid with respect to surface as well as par-
ticle degrees of freedom. Experimentally produced structures are
likely to initially be arrested, i.e. only locally jammed, but by suc-
cessive unjamming and relaxation events proceed toward a new
metric jammed state that is rigid with respect to surface as well
as particle degrees of freedom. The presence of a surface energy
tends to compress the particles somewhat in the metric jammed
state, and hence metric jammed structures resemble those in flat
space only in the limit of high particle rigidity. By adjusting the
relative influence of surface and particle energies characterized
by a single dimensionless parameter K = σA/k, metric jammed
structures can continuously be tuned from isostatic with vanish-
ing shear modulus, i.e. similar to jammed states in flat space, to
states that resemble conventional elastic solids. A simple struc-
tural metric, the coordination number, serves as an indicator of
where in this range a particular candidate structure lies. The
vibrational spectrum may similarly be tuned from similar to a
jammed solid, possessing an excess of low frequency modes, to
Debye-like. In either case, the curved space leaves a significant
imprint on the spectrum, leading to localized and oriented modes
due to the anisotropic curvature.

Our work provides a theoretical framework that unifies our
understanding of solidification processes that take place on de-
formable media and extends the applicability of the jamming con-
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Fig. 3 Vibrational properties of metric jammed configurations. A Vibrational density of states D(ω), B vibrational component along polar axis for
φ −φ0 = 10−6 and C participation ratio P(ω) for metric jammed configuraion with K = 0, K = 0.44 and K = 40 at φ −φ0 = 10−6. D Selected vibrational
modes for K = 40: i translation along polar direction, ii phonon mode, iii quasi-localized mode, iv extended mode along polar direction, v extended
mode along azimuthal direction, vi localized mode.
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particles K = 40 and B K = 0.44. C and D Representative eigenvectors
with significant shape and particle deformation; the local rate of change
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cept. In the Pickering emulsion platform considered here, parti-
cles are used to control the stability and, ultimately, the droplet
size as metric jamming protects droplets from coalescence9. In
these materials, a deeper understanding of the mechanisms un-
derpinning stability could facilitate sculpting of new shapes be-
yond those already demonstrated using micromanipulation, flow
or coalescence70. Applications of Pickering emulsions abound
in food science71, biomimetic synthesis72 and inkjet printing of
morphology73 which could all benefit from such understanding.

Beyond emulsions, the results may provide fresh insight into
other materials such as bijels13,14 that rely on such processes. A
particularly exciting potential class of applications lies in biolog-
ical matter, given the remarkable success in applying ideas from
jamming to tissues and particularly tumor progression5–8.

Future work should aim to integrate other developments from
the jamming community, such as nonspherical particles and de-
formability7,18,20,25, to elucidate possible connections between
the shape of the confining surface and particle shape. Even in
the absence of curvature, these complicates the jamming sce-
nario: ellipsoidal particles, for example, pack at higher densities
and introduce rotational degrees of freedom74,75. Nonspherical
deformable particles exhibit very different vibrational properties
depending on whether they cost energy to bend21. In the metric
jamming scenario, these effects could depend on the local curva-
ture and be influenced by the shape degrees of freedom. Here we
have restricted our attention solely to convex geometries but non-
convex morphologies could also be readily created; these must
necessarily include regions of negative gaussian curvature that
tend to promote higher local coordination number. In previous
work on the arrest of bispherical droplets, we showed that such

regions tended to localize defects and were responsible for kinetic
effects on the local order54.

While the configurations observed here appeared to be hy-
perstatic, the nontrivial coupling of surface and particle degrees
of freedom, and the new kinds of deformation mode that can
emerge, connect with the recently identified need for more so-
phisticated approaches to characterizing rigidity62. The presence
of curvature causes different parts of a metric jammed structure
to be under different degrees of compression, which may lead to
variation in the local criterion for isostaticity60. A much larger
numerical study of a suitable ensemble of structures should be
performed to resolve this and other spatial variations in order-
ing, including non-affine deformations37. Generalizing our ap-
proach to more complicated geometries, including those that are
non-convex as we did in54 is also of considerable interest. Ad-
ditionally, alternative representations of parameterizations of the
shape should be studied with more degrees of freedom included;
we are presently working on generalizing our results to jamming
on simplicial complexes for example.

Experimentally, the interplay of order and shape that emerges
in metric jamming suggests the possibility of assembly processes
that sculpt particulate media into a desired configuration by ex-
ploiting deformable interfaces; our framework provides a unified
understanding to facilitate their design.
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