ChemComm

Introducing proton/electron mediators enhances catalytic ability of iron porphyrin complex for photochemical CO2 reduction

Journal:	ChemComm
Manuscript ID	CC-COM-04-2023-001862.R1
Article Type:	Communication

COMMUNICATION

Introducing proton/electron mediators enhances catalytic ability of iron porphyrin complex for photochemical CO₂ reduction

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Maho Imai,^{a‡} Kento Kosugi,^{a‡} Yutaka Saga,^a Mio Kondo ^{*abc} and Shigeyuki Masaoka ^{*ab}

A novel iron porphyrin complex with hydroquinone moieties as proton/electron mediators at *meso* positions was designed and synthesised. The complex serves as an efficient catalyst for photochemical CO₂ reduction, and its turnover frequency (TOF = 1.3×10^4 h⁻¹) was the highest among those of comparable systems with sufficient durability.

The catalytic reduction of CO₂ is attractive as a solution for energy and environmental issues since this reaction (i.e. CO₂ + $2H^+ + 2e^- \rightarrow CO + H_2O$) converts the greenhouse gas CO_2 into valuable chemical resources.¹ Thus far, many molecule-based catalysts for CO₂ reduction have been developed.^{2–17} Among them, iron porphyrin complexes are fascinating candidates because of their high activity, selectivity, and robustness (Fig. 1a).^{3–16} Another important feature of porphyrin scaffolds is that a variety of functional groups can be installed at meso positions. To date, various efforts have been devoted to enhancing the activity of iron porphyrin complexes by modifying the meso position functional groups.^{4–16} Of particular interest is the introduction of proton mediators (local proton sources) close to the catalytic centre⁵⁻¹² because CO₂ reduction occurs via multiproton transfer processes. A representative example of such a catalyst is an iron porphyrin complex bearing hydroxyphenyl groups at meso positions, 5,10,15,20-tetrakis(2,6dihydroxyphenyl)porphyrinato iron(III) chloride (CAT, Fig. 1b).⁵ This complex exhibits the highest catalytic activity for photochemical CO₂ reduction among previously reported iron porphyrin complexes.¹² This finding clearly demonstrates that

 \ddagger These authors contributed equally.

Fig. 1 Characteristics of (a) iron porphyrin complexes, and the iron porphyrin complexes prepared in (b) previous work, and (c) this study.

the introduction of functional groups that facilitate elemental reactions of CO_2 reduction is a strategy that has excellent potential for catalytic activity enhancement. Given that CO_2 reduction involves electron transfer as well as proton transfer, the introduction of proton/electron mediators should lead to further improvements in catalytic activity. However, there are no reports of porphyrin-based catalysts with proton/electron mediator functional groups for photochemical CO_2 reduction.

Herein, we report a novel iron porphyrin complex bearing proton/electron mediators at the *meso* positions. Using this complex as a catalyst, a catalytic system for photochemical CO_2 reduction was constructed. The activity of our system was demonstrated to be superior to that of a system based on the iron porphyrin complex bearing only proton mediators, **CAT**, which exhibits the highest catalytic activity for photochemical CO_2 reduction among previously reported iron porphyrin complexes. Moreover, the turnover frequency (TOF) of our CO production system is the highest among relevant similar systems.

The key to our success was the introduction of hydroquinone moieties at the *meso* positions of the iron

^a Division of Applied Chemistry, Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871, Japan. E-mail: mio@chem.eng.osakau.ac.jp, masaoka@chem.eng.osaka-u.ac.jp.

^{b.} Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.

^c PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama 332-0012, Japan.

⁺Electronic Supplementary Information (ESI) available: Experimental details, UV–vis absorption spectroscopy, Electrochemical measurements, Photocatalytic activity for CO₂ reduction, Quantum chemical calculation, Emission quenching experiments, Comparison of catalytic ability. See DOI: 10.1039/x0xx00000x

COMMUNICATION

porphyrin complex. Hydroquinone is known to act as both a proton-responsive and electron-responsive site.¹⁸ Therefore, the hydroquinone moieties introduced in the vicinity of the active centre are expected to act as proton/electron mediators in CO₂ reduction reactions.

Based on the aforementioned considerations, we designed а new iron complex, 5,10,15,20-tetrakis(2,5dihydroxyphenyl)porphyrinato iron(III) chloride (Fe1) (Fig. 1c). It should be noted that Fe1 is a structural isomer of the benchmark iron porphyrin catalyst, CAT. Fe1 was synthesised according to the procedure shown in Scheme S1 (Electronic Supplementary Information). First, a free base porphyrin, 5,10,15,20-tetrakis(2,5-dihydroxyphenyl)porphyrin (1), was synthesised,^{5,19} and Fe was inserted into **1** via a slightly modified previously reported method.⁵ The synthesised Fe1 was characterised by elemental analysis, UV-vis absorption spectroscopy, and MALDI spiral-TOFMS. In the UV-vis absorption spectrum of Fe1, bands attributed to the hydroquinone moieties at 220 and 299 nm, as well as a Soret band associated with the porphyrin scaffold at 415 nm, were observed (Fig. S23a,b). In addition, Q-bands, which are also characteristic of porphyrin derivatives,²⁰ appeared at maximum wavelengths, λ_{max} of 506, 584, and 664 nm in the spectrum of Fe1. Notably, there were fewer Q-bands in the spectrum of Fe1 than in the spectrum of 1 (λ_{max} = 511, 545, 585, and 646 nm; Fig. S23c), suggesting that the former had greater porphyrin ring symmetry.²⁰ This result, together with the elemental analysis results, confirmed that an iron ion had been inserted into the porphyrin ring of 1.

To investigate the electrochemical properties of Fe1, cyclic voltammetry (CV) measurements were performed in a 0.10 M tetra-n-butylammonium perchlorate (TBAP)/N,Ndimethylformamide (DMF) solution. Under an Ar atmosphere, Fe1 exhibited three redox waves, at -0.72, -1.60, and -2.11 V [vs. ferrocene/ferrocenium (Fc/Fc⁺)] (Fig. 2a). For comparison, the cyclic voltammogram of the iron porphyrin complex without hydroquinone moieties, 5,10,15,20tetrakis(phenyl)porphyrinato iron(III) chloride (FeTPP-CI), was measured (Fig. S24). By comparing the voltammogram with that of FeTPP-Cl, three redox waves in the voltammogram of Fe1, observed at -0.72, -1.60, and -2.11 V, were assigned to Fe^{III}/Fe^{II}, Fe^{II}/Fe^I, and Fe^I/Fe⁰ redox couples, respectively (Table S1).^{3d} Previous work suggested that the irreversible reduction wave at -1.1 V was due to the interaction between the iron porphyrin complex and hydroquinone moieties.²¹

Subsequently, we obtained cyclic voltammograms of Fe1 in a CO₂ atmosphere. An increase in the irreversible current was observed approximately at -2.03 V, indicating that Fe1 and CO₂ interacted at this potential (Fig. 2b, yellow line). Moreover, the intensity of the irreversible current increased in the presence of 0.10 M trifluoroethanol (TFE) as a proton source (Fig. 2b, red line). These results suggest that Fe1 exhibits catalytic activity for CO₂ reduction.

Encouraged by these electrochemical measurement results, we investigated the catalytic activity of Fe1 for photochemical CO2 reduction using our custom-made photoreactor (Fig. S25). The photochemical reaction was

2 | J. Name., 2012, 00, 1-3

Fig. 2 (a) Cyclic voltammogram of Fe1 (0.20 mM) in DMF with TBAP (0.10 M) under Ar. (b) Cyclic voltammograms of Fe1 (0.20 mM) in DMF with TBAP (0.10 M) under Ar (blue line), CO2 (yellow line), and CO2 in the presence of TFE (0.10 M) (red line). [Working electrode: glassy carbon: counter electrode: Pt wire: scan rate: 100 mV s⁻¹.]

Potential/V vs. Fc/Fc⁴

-2.4

conducted under visible-light irradiation (400 $\leq \lambda \leq$ 750 nm) in a CO₂-saturated acetonitrile (MeCN) solution containing Fe1 (2.0 μ M) as the catalyst, Ir(ppy)₃ (Hppy = 2-phenylpyridine, 20 μ M) as a photosensitiser, 1,3-dimethyl-2-phenyl-2,3-dihydro-1Hbenzo[d]-imidazole (BIH, 0.10 M) as a sacrificial electron donor, and TFE (0.10 M) as a proton source. After 1 h of photoirradiation, the product was quantified using gas chromatography, and the formation of CO (51.8 µmol) was confirmed. The turnover number (TON) for CO production was 1.3×10^4 (Table 1, Entry 1 and Fig. S26). In this photocatalytic reaction, it was confirmed that H₂ was not formed, indicating the excellent selectivity of Fe1.

To verify the role of each component in the photoreaction, a series of control experiments was conducted. CO was not detected when the reaction was performed without Fe1, without Ir(ppy)₃, without BIH, under Ar, or in the dark (Table 1, Entries 2-6). These results confirm that Fe1 is the catalyst, Ir(ppy)₃ functions as a photosensitiser, BIH acts as a sacrificial electron donor, and CO₂ is the substrate. An isotopic labelling experiment under a ¹³CO₂ atmosphere was also conducted, and ¹³CO was generated, demonstrating that the detected CO was a product of CO₂ reduction (Fig. 3).

Subsequently, we investigated the effects of the proton/electron mediators introduced close to the active centre. In this study, we compared the catalytic activity of Fe1 with that of a benchmark catalyst, CAT, which is a structural isomer of Fe1 but contains only proton mediators. The TON of

This journal is C The Royal Society of Chemistry 20xx

-0.4

0

Journal Name

Entry	Catalyst ^a	Photosensitiser ^b	Electron donor ^c	Gas	Light ^d /nm	Medium	TON	
							CO	H2
1	Fe1	Ir(ppy)₃	BIH	CO ₂	$400 \leq \lambda \leq 750$	0.10 M TFE/MeCN	1.3×10^{4}	0
2	-	lr(ppy)₃	BIH	CO ₂	$400 \leq \lambda \leq 750$	0.10 M TFE/MeCN	0	0
3	Fe1	-	BIH	CO ₂	$400 \leq \lambda \leq 750$	0.10 M TFE/MeCN	0	0
4	Fe1	lr(ppy)₃	-	CO ₂	$400 \leq \lambda \leq 750$	0.10 M TFE/MeCN	0	0
5	Fe1	Ir(ppy)₃	BIH	Ar	$400 \leq \lambda \leq 750$	0.10 M TFE/MeCN	0	4
6	Fe1	lr(ppy)₃	BIH	CO ₂	dark	0.10 M TFE/MeCN	0	0

^a2.0 μM **Fe1**. ^b20 μM Ir(ppy)₃. ^c0.10 M BIH ^dXe lamp (150 W) with long pass filter.

CAT for CO production was found to be 1.0×10^3 for 1 h (TOF = 1.0×10^3 h⁻¹) under identical experimental conditions, and a significant difference in the catalytic activities of the **Fe1** and **CAT** iron porphyrin complexes was observed (Fig. 4 and Table S2). This result indicates that the catalytic activity was enhanced by introducing proton/electron mediators in the vicinity of catalytic centre without changing constituent elements.

For further investigation of the effect of hydroquinone moieties, several attempts were made. Our experimental results clearly demonstrate that our new catalyst with hydroquinone moieties, Fe1, exhibits superior catalytic activity compared to its positional isomer, CAT. We have hypothesized there are mainly three possibilities to explain the improved performance of our catalyst; (a) shift in redox potentials of the catalytic centre (i.e., change in the reactivity of catalytic centre) by the introduction of hydroquinone moieties, (b) the effect of proton relay ability, and (c) the effect of electron relay ability by the hydroquinone moieties. First, the redox potential of Fe1 to produce catalytically active species was the same as that of CAT (Table S1),¹⁰ indicating that the introduction of hydroquinone moieties does not affect the reactivity of the catalytic centre. Second, quantum chemical calculation was performed to optimize the structure of the CO₂ adduct of the Fe⁰ state of Fe1. The result revealed that the hydroguinone moieties can interact with CO₂ through hydrogen bonding (Fig. S27). Similar interaction that stabilizes CO2 adduct has also been reported for CAT.⁶ This suggested that there should be no significant

difference in proton relay ability between **Fe1** and **CAT**. Third, we conducted emission quenching experiments to investigate the effect of hydroquinone moieties on electron transfer processes. As a result, emission quenching of the photosensitiser, Ir(ppy)₃, was observed in the presence of hydroquinone and one equivalent of 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) as a base (Fig. S28). On the other hand, emission quenching was hardly observed in the presence of hydroquinone or DBU (Fig. S29). These results imply that the hydroquinone moieties of **Fe1** were involved in the electron transfer process after deprotonation, indicating the effect of the electron relay ability of the hydroquinone moieties on the catalysis.

Finally, we compared the catalytic ability of **Fe1** with those of relevant similar systems. In terms of catalytic activity, the TOF for photochemical CO₂ reduction of **Fe1** (1.3×10^4 h⁻¹) is higher than those of all other iron porphyrin complexes reported in the literature (Table S3 and Fig. S30).^{3c,11–16} Moreover, the TON of **Fe1** is the highest class among previously reported ironcomplex-based catalysts, indicating the durability of **Fe1** during photocatalysis (Table S4).^{3c,11–17} These results clearly demonstrate that the introduction of proton/electron mediators in the vicinity of the active centre is an effective strategy for developing highly efficient catalysts for CO₂ reduction.

In summary, we report a novel iron porphyrin complex bearing hydroquinone moieties at *meso* positions as

Fig. 4 Photochemical CO₂ reduction activities for CO production using a CO₂-saturated MeCN solution containing 2.0 μ M Fe1 (blue) or 2.0 μ M CAT (red), 20 μ M Ir(ppy)₃, 0.10 M BIH, and 0.10 M TFE at 20 °C with Xe lamp (400 $\leq \lambda \leq$ 750 nm) irradiation.

Fig. 3 Mass spectra of CO generated using MeCN solution containing 2.0 μM Fe1,
20 μM Ir(ppy)3, 0.10 M BIH, and 0.10 M TFE at 20 °C during irradiation with a Xe
lamp (400 \leq λ \leq 750 nm) over a period of 75 min in (a) $^{12}CO_2$ and (b) $^{13}CO_2$
atmospheres.

COMMUNICATION

Page 4 of 4

Journal Name

proton/electron mediators (**Fe1**). **Fe1** exhibits high activity for CO₂ reduction under visible light irradiation. The TOF of **Fe1** for CO production was 1.3×10^4 h⁻¹, which is significantly higher than that of the iron porphyrin complex bearing only proton mediators, **CAT**, which is a structural isomer of **Fe1**. It is worth noting that **Fe1** exhibited a TOF that was higher than that of any other iron porphyrin complex reported in the literature. Moreover, the TON of **Fe1** was the highest class among iron-complex-based catalysts of photochemical CO₂ reduction. Thus, collectively, these results indicate the effectiveness of our novel strategy for the development of highly efficient CO₂ reduction catalysts.

This work was supported by KAKENHI grants [Grant No. 20K21209, 22K19048, and 23H04903 (S.M.); 19H05777, 20H02754, 22K19086, and 23H04628 (M.K.); and 20K15955 and 22K06525 (Y.S.)] from the Japan Society for the Promotion of Science. This work was also supported by Japan Science and Technology Agency (JST) PRESTO [Grant No. JPMJPR20A4 (M.K.)] and JST CREST [Grant No. JPMJCR20B6 (S.M.)] grants. Funding was also received from the Izumi Science and Technology Foundation (M.K.), the Mazda Foundation (M.K.), and the Yazaki Memorial Foundation for Science and Technology (M.K.). K. K. is grateful for a Research Fellowship from the Japan Society for the Promotion of Science for Young Scientists (Grant No. 21J11068). The calculations were performed at the Research Center for Computational Science, Okazaki, Japan (23-IMS-C235).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, *Chem. Rev.*, 2013, **113**, 6621.
- (a) H. Takeda, C. Cometto, O. Ishitani and M. Robert, ACS Catal., 2017, 7, 70. (b) R. Francke, B. Schille and M. Roemelt, Chem. Rev., 2018, 118, 4631. (c) E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang, J. Bonin, E. Anxolabéhère-Mallart and M. Robert, Chem. Soc. Rev., 2020, 49, 5772.
- 3 (a) M. Hammouche, D. Lexa, J. M. Savéant and M. Momenteau, J. Electronal. Chem. Interfacial Electrochem., 1988, 249, 347.
 (b) I. Bhugun, D. Lexa and J. M. Savéant, J. Am. Chem. Soc., 1994, 116, 5015. (c) T. Dhanasekaran, J. Grodkowski, P. Neta, P. Hambright and E. Fujita, J. Phys. Chem. A, 1999, 103, 7742.
 (d) C. Costentin, S. Drouet, G. Passard, M. Robert and J. M. Savéant, J. Am. Chem. Soc., 2013, 135, 9023. (e) J. Bonin, M. Chaussemier, M. Robert and M. Routier, ChemCatChem, 2014, 6, 3200. (f) K. Kosugi, M. Kondo and S. Masaoka, Angew. Chem. Int. Ed., 2021, 60, 22070.
- 4 (a) P. Gotico, Z. Halime and A. Aukauloo, *Dalton Trans.*, 2020,
 49, 2381. (b) P. Saha, S. Amanullah and A. Dey, *Acc. Chem. Res.*,
 2022, 55, 134. (c) I. Azcarate, C. Costentin, M. Robert and J. M. Savéant, *J. Am. Chem. Soc.*, 2016, 138, 16639. (d) A. Khadhraoui, P. Gotico, B. Boitrel, W. Leibl, Z. Halime and A. Aukauloo, *Chem. Commun.*, 2018, 54, 11630. (e) E. M. Nichols,

J. S. Derrick, S. K. Nistanaki, P. T. Smith and C. J. Chang, *Chem. Sci.*, 2018, **9**, 2952.

- 5 C. Costentin, S. Drouet, M. Robert and J. M. Savéant, *Science*, 2012, **338**, 90.
- 6 C. Costentin, G. Passard, M. Robert and J. M. Savéant, J. Am. Chem. Soc., 2014, **136**, 11821.
- 7 C. Costentin, G. Passard, M. Robert and J. M. Savéant, Proc. Natl. Acad. Sci. USA, 2014, 111, 14990.
- 8 S. Sinha and J. J. Warren, Inorg. Chem., 2018, 57, 12650.
- 9 C. G. Margarit, C. Schnedermann, N. G. Asimow and D. G. Nocera, *Organometallics*, 2019, **38**, 1219.
- 10 A. Sonea, K. L. Branch and J. J. Warren, ACS Catal., 2023, 13, 3902.
- 11 J. Bonin, M. Robert and M. Routier, J. Am. Chem. Soc., 2014, 136, 16768.
- 12 H. Yuan, B. Cheng, J. Lei, L. Jiang and Z. Han, *Nat. Commun.*, 2021, **12**, 1835.
- 13 J. Grodkowski and P. Neta, J. Phys. Chem. A, 2000, 104, 4475.
- 14 H. Rao, L. C. Schmidt, J. Bonin and M. Robert, *Nature*, 2017, **548**, 74.
- E. Pugliese, P. Gotico, I. Wehrung, B. Boitrel, A. Quaranta, M.-H. Ha-Thi, T. Pino, M. Sircoglou, W. Leibl, Z Halime and A. Aukauloo, Angew. Chem. Int. Ed., 2022, 61, e202117530.
- A. Stoumpidi, A. Trapali, M. Poisson, A. Barrozo, S. Bertaina, M. Orio, G. Charalambidis and A. G. Coutsolelos, *ChemCatChem*, 2023, **15**, e202200856.
- 17 (a) J. Grodkowski, P. Neta, E. Fujita, A. Mahammed, L. Simkhovich, and Z. Gross, J. Phys. Chem. A, 2002, 106, 4772. (b) H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2016, 138, 4354. (c) A. Rosas-Hernández, P. G. Alsabeh, E. Barsch, H. Junge, R. Ludwigab and M. Beller, Chem. Commun., 2016, 52, 8393. (d) Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-Mallart, S.-M. Ng, C.-C. Ko, G. Liu, L. Chen, M. Robert and T.-C. Lau, J. Am. Chem. Soc., 2016, 138, 9413. (e) A. Rosas-Hernández, C. Steinlechner, H. Junge and M. Beller, Green Chem., 2017, 19, 2356. (f) Y. Sakaguchi, A. Call, M. Cibian, K. Yamauchi and K. Sakai, Chem. Commun., 2019, 55, 8552. (g) L. Chen, Y. Qin, G. Chen, M. Li, L. Cai, Y. Qiu, H. Fan, M. Robert and T.-C. Lau, Dalton Trans., 2019, 48, 9596. (h) P. A. Forero-Cortés, M. Marx, N. G. Moustakas, F. Brunner, C. E. Housecroft, E. C. Constable, H. Junge, M. Beller and J. Strunk, Green Chem., 2020, 22, 4541. (i) Y. Qin, L. Chen, G. Chen, Z. Guo, L. Wang, H. Fan, M. Robert and T.-C. Lau, Chem. Commun., 2020, 56, 6249. (j) Y. Wang, X.-W. Gao, J. Li and D. Chao, Chem. Commun., 2020, 56, 12170. (k) Y. Wang, L. Chen, T. Liu and D. Chao, Dalton Trans., 2021, 50, 6273. (I) H. Takeda, Y. Monma and O. Ishitani, ACS Catal., 2021, 11, 11973. (m) Y. Wang, T. Liu, L. Chen and D. Chao, Inorg. Chem., 2021, 60, 5590. (n) P. De La Torre, J. S. Derrick, A. Snider, P. T. Smith, M. Loipersberger, M. Head-Gordon and C. J. Chang, ACS Catal., 2022, 12, 8484. (o) J.-W. Wang, F. Ma, T. Jin, P. He, Z.-M. Luo, S. Kupfer, M. Karnahl, F. Zhao, Z. Xu, T. Jin, T. Lian, Y.-L. Huang, L. Jiang, L.-Z. Fu, G. Ouyang and X.-Y. Yi, J. Am. Chem. Soc., 2023, 145, 676. (p) L. An, P. De La Torre, P. T. Smith, M. R. Narouz and C. J. Chang, Angew. Chem. Int. Ed., 2023, 62, e202209396.
- 18 J. J. Warren, T. A. Tronic and J. M. Mayer, *Chem. Rev.*, 2010, 110, 6961.
- 19 P. Bhyrappa, S. R. Wilson and K. S. Suslick, J. Am. Chem. Soc., 1997, **119**, 8492.
- 20 M. Gouterman, J. Mol. Spectrosc., 1961, 6, 138.
- 21 K. Kosugi, M. Imai, M. Kondo and S. Masaoka, *Chem. Lett.*, 2022, **51**, 224.