ChemComm

Storing electrons from H2 for transfer to CO2, all at room temperature

Journal:	ChemComm
Manuscript ID	CC-COM-10-2023-005285.R1
Article Type:	Communication

COMMUNICATION

Storing electrons from H₂ for transfer to CO₂, all at room temperature[†]

Received 00th January 20xx, Accepted 00th January 20xx Daiki Shimauchi, ^{a,b} Takeshi Yatabe, ^{a,b,c} Yuka Ikesue, ^{a,b} Yuu Kajiwara, ^{a,b} Taro Koide, ^{a,b} Tatsuya Ando, ^{a,b,c} Ki-Seok Yoon, ^{a,b,c} Hidetaka Nakai ^d and Seiji Ogo ^{a,b,c*}

DOI: 10.1039/x0xx00000x

We present an Ir complex that extracts electrons from H_2 at room temperature and stores them as H_2 -derived energy carrier (H_2EC) at room temperature. Further, we demonstrate that this complex reduces CO_2 to a metal- CO_2^{2-} species at room temperature, and present the first electrospray ionisation mass spectrum such a compound.

Much attention is focused on the development of hydrogen energy carriers that meet all the requirements of not requiring much energy for their synthesis, storage and utilisation.¹⁻⁴ Metal hydrides,⁵ liquid organic hydrides,⁶ complex hydrides,⁷ ammonia⁸ and formic acid⁹ have been widely studied as potential hydrogen energy carriers, but no energy carrier has yet met all requirements.

These requirements are directly relevant to our model study of [NiFe]hydrogenase (H₂ase). H₂ase is an enzyme which activates H₂ as an energy source at room temperature,^{10,11} and we have made a series of model compounds that mimic such behavior.¹²⁻¹⁹ This has led us to produce potential H₂-derived energy carriers (H₂ECs) with all the requirements.

In this paper, we report an H₂EC that is capable of removing electrons from H₂ at room temperature, storing them at room temperature and transferring them to CO_2 at room temperature. Furthermore, we report the first example of direct observation by electrospray ionisation mass spectrometry (ESI-MS) of a metal- $CO_2^{2^2}$ species in which CO_2 is reduced by H₂ via reaction with the H₂EC at room temperature. We also present the X-ray structure of a metal alkoxycarbonyl complex isolated from the reaction of the metal- $CO_2^{2^2}$ species with an alcohol, also at room temperature. We expect this

I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. ^c Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. complex to point the way to stably storing electrons and energy from $\mathsf{H}_2.$

We begin with the synthesis of the H₂EC (2) from Ir^{II} dinuclear complex (1) with H₂ (0.1–0.8 MPa) at room temperature. Then, we report the ESI-MS observation of an Ir^{III}- $CO_2^{2^-}$ species (3), generated by reaction of the H₂EC with CO_2 (0.5 MPa) at room temperature. We then reveal the X-ray structure of an Ir^{III} methoxycarbonyl complex (4), prepared by reaction of the Ir- $CO_2^{2^-}$ species with methyl alcohol at room temperature. Finally, we discuss the requirements necessary for the H₂EC to both store electrons from H₂ and have them available for CO_2 reduction.

The starting Iridium dinuclear complex $[Ir_{2}^{(1)}(tpy)_{2}(CH_{3}CN)_{2}(CI)_{2}]CI_{2} {[1]CI_{2}, tpy = 2,2':6',2''-terpyridine}$ was synthesised by the reaction of [Ir^I(COD)(CI)]₂ (COD = 1,5cyclooctadiene) with tpy in CH₃CN at room temperature followed by the addition of HCl. Complex 1 was characterised by X-ray analysis (Fig. 1), NMR spectroscopy (Fig. S1), ESI-MS (Fig. S2), X-ray photoelectron spectroscopy (XPS, Figs. S3a and S3c) and elemental analysis. An ORTEP drawing of 1 is shown in Fig. 1. The Ir metal centres both adopt a distorted octahedral geometry and are linked by metal-metal bond. The Ir-Ir distance of 1 {2.7389(7) Å} is comparable to that of previously reported Ir^{II} dimer complexes {2.6584(5)-2.8703(8) Å}.²⁰

^{a.} Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: ogo.seiji.872@m.kyushu-u.ac.jp

^{b.} International Institute for Carbon-Neutral Energy Research (WPI Academy

^{d.} Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Journal Name

Fig. 1 ORTEP drawing of **1** with the ellipsoids at 50% probability. Hydrogen atoms, solvent and counteranion (PF₆) are omitted for clarity. Selected interatomic distances (*I*/Å): Ir1–Ir1* = 2.7389(7), Ir1–N1 = 2.045(7), Ir1–N2 = 1.953(6), Ir1–N3 = 2.050(6), Ir1–N4 = 2.015(6).

Sharp signals in the diamagnetic region of the ¹H NMR spectrum of **1** also suggest the presence of a metal-metal bond between the two Ir^{II} centres (Fig. S1). A positive-ion ESI mass spectrum shows a prominent signal of m/z 461.0 {relative intensity (I) = 100 % in the range of m/z 100–2000}, which has a characteristic isotopic distribution that matched well with the calculated isotopic distribution for half of [**1**–2CH₃CN]⁺ (Fig. S2). An XPS spectrum of **1** shows the peaks at 61.5 and 64.5 eV assigned for Ir $4f_{7/2}$ and Ir $4f_{5/2}$ (Fig. S3a).

Complex **1** reacts with H₂ (0.1–0.8 MPa) in CH₃OH in the presence of CH₃COONa at room temperature to give a low-valent Ir^I complex [Ir^I(tpy)(CI)] (**2**), H₂EC (Eq. 1), which can be stored as a powder at room temperature under N₂ (in a glove box with O₂ below 100 ppm) for at least 3 months.

Complex **2** was characterised by UV-vis-NIR absorption spectroscopy (Fig. S4), ESI-MS (Fig. 2), XPS (Figs. S3b and S3d) and elemental analysis. A broad absorption band at 400–1200 nm was observed (Fig. S4), in a similar manner to those also observed in the absorption spectra of previously reported Ir¹ polypyridyl complexes.²¹ A positive-ion ESI mass spectrum shows a prominent signal at m/z 454.1 (I = 100 % in the range of m/z 100–2000) that corresponds to [**2**–Cl+N₂]⁺ and has a characteristic isotopic distribution that matched well with the calculated isotopic distribution (Fig. 2). An XPS spectrum of **2** shows the peaks at 61.0 and 63.9 eV, assigned for Ir $4f_{7/2}$ and Ir $4f_{5/2}$ (Fig. S3b). These peaks are lower energy than those of **1** but similar to other Ir¹ complexes (Fig. S3).²² These results indicate complex **2** stores two electrons from H₂ on Ir metal centre as a H₂EC at room temperature.

Fig. 2 (a) Positive-ion ESI mass spectrum of **2** in CH_3OH . The signal at m/z 454.1 corresponds to $[2-CI+N_2]^+$. (b) The signal at m/z 454.1 for $[2-CI+N_2]^+$. (c) The calculated isotopic distribution for $[2-CI+N_2]^+$. N₂ is from nebuliser gas of ESI-MS.

Complex	2	reacts		with	CO ₂	(0.5	MPa)	in
CH ₃ CN/acetone	e/CH	$_2Cl_2$	at	room	tempe	erature	to	yield

[Ir^{III}(tpy)(COO)(CH₃CN)(CI)] (a thermodynamically transient species, **3**) (Eq. 2), which was detected by ESI-MS (Figs. 3 and S5). A positive-ion ESI mass spectrum of **3** shows a signal at m/z 547.0 that has a characteristic distribution that matched well with the calculated isotope distribution for [**3**+H]⁺ (Figs. 3a, 3b and 3c). The reaction of **2** with CO₂ was carried out in acetonitrile- d_3 (CD₃CN)/acetone/CH₂Cl₂ gave a D₃-labelled **3** [Ir^{III}(tpy)(COO)(CD₃CN)(CI)] as detected by ESI-MS (Fig. 3d).

Fig. 3 (a) Positive-ion ESI mass spectrum of a thermodynamically transient **3** in CH₃CN/acetone/CH₂Cl₂. The signal at *m/z* 547.0 corresponds to $[3+H]^*$. \dagger^* : The signal at *m/z* 537.0 was assigned as $[Ir^{III}(tpy)(CI)_2(CH_3CN)]^*$, based on the isotope-labelling experiments performed in CD₃CN/acetone/CH₂Cl₂. (b) The signal at *m/z* 547.0 for $[3+H]^*$. (c) The calculated isotopic distribution for $[3+H]^*$. (d) Positive-ion ESI mass spectrum of the reaction solution of **2** with CO₂ in CD₃CN/acetone/CH₂Cl₂. The signal at *m/z* 550.0 corresponds to $[D_3$ -labelled **3**+H]^*.

This is the first example of the direct observation of metal- CO_2^{2-} species derived from CO_2 and electrons from H₂. The extraction of the electron from H_2 has been performed at room temperature by using hydrogenase model complexes (Table S2).^{12-14,16,18,19,23-26} Although the extracted electrons have been used for the reduction of ferrocenium ion, Cu^{II}, O₂ or organic halides at room temperature, there was no example of the reduction of CO₂ at room temperature (Table S2). To date, there have been no low-valent metal complexes synthesised from H₂ that reduce CO₂. In contrast, there are CO₂-complexes synthesized from low-valent metal complexes and CO₂ without H₂ (Table S3).^{27–32} For example, Herskovitz et al. reported an Ir-CO₂ complex synthesized from an Ir^I complex.^{27,33} Although we tried to perform a ¹³C-labelling experiment to confirm the source of CO₂ ligand, ¹³C-labelled complex **3** was not detected due to the inertness of 2 towards ${}^{13}CO_2$ at only 0.1 MPa. Increasing the pressure of ¹³CO₂ gas to suitable levels proved beyond our practical means.

Journal Name

We proceeded to investigate the formation of a metal alkoxycarbonyl complex by the reaction of the in situ-formed **3** and CH₃OH at room temperature. This appeared to be a good target since a similar metal alkoxycarbonyl complex has synthesised from the reaction of Pt-COOH complex with alcohols.³⁴ The reaction of **2** with CO₂ (0.5 MPa) in CH₃OH/CH₃CN at room temperature gave Ir^{III} methoxycarbonyl complex [Ir^{III}(tpy)(COOCH₃)(NHCOCH₃)(CI)] (**4**) (Eq. 3). The reaction of **2** with CO₂ and CH₃OH was monitored by UV-vis-NIR absorption spectroscopy (Fig. S6). The absorption band at long wavelength over 400 nm, assigned to **2**, decreased over the course of the reaction.

Complex **4** was characterised by NMR (Figs. S7–9) and IR spectroscopy (Fig. S10), X-ray analysis (Fig. 4), ESI-MS (Fig. S11) and elemental analysis. A ¹H NMR spectrum of **4** shows the peaks at 2.40, 3.21 and 7.86–8.81 ppm originating from methoxycarbonyl ligand, acetamido and tpy, respectively (Fig. S7). A ¹³C NMR spectrum shows a peak at 147.0 ppm derived from C1 atom of methoxycarbonyl ligand, which is similar to those of the reported Ir methoxycarbonyl complexes (Figs. S8 and S9).³⁵ An IR spectrum of **4** in the solid state shows bands around 1602 cm⁻¹, which are assigned to the C=O stretching vibrations (Fig. S10).^{33,35–38}

The structural determination of **4** was conducted by X-ray analysis using a single crystal obtained by diffusion of diethyl ether into the reaction solution. The Ir metal centre adopts a distorted octahedral geometry with tpy, methoxycarbonyl ligand and acetamido (Fig. 4). The bond distances of Ir1–C1 {2.000(4) Å}, C1=O1 {1.209(5) Å} and C1–O2 {1.367(5) Å} and the bond angle of O1=C1–O2 {121.5(4)°} are similar to other alkoxycarbonyl complexes.^{33,35,37–38}

Fig. 4 ORTEP drawing of **4** with the ellipsoids at 50% probability. Hydrogen atoms (except for the NH group) are omitted for clarity. Selected interatomic distances (//Å): Ir1–C1 = 2.000(4), C1–O1 = 1.209(5), C1–O2 = 1.367(5), Ir1–N1 = 2.053(3), Ir1–N2 = 1.963(3), Ir1–N3 = 2.039(3), Ir1–N4 = 2.044(3), Ir1–C1= 2.4817(10).

Isotope-labelling experiments using methanol- d_4 (CD₃OD) or CD₃CN at room temperature were carried out to investigate the origin of methoxycarbonyl and acetamido ligands (Figs. S11d and S11e). A positive-ion ESI mass spectrum of 4 shows a prominent signal of m/z 543.1 that has isotopic distribution corresponds to the calculated isotopic distribution of [4-Cl]+ (Fig. S11a). The reaction of ${\bf 2}$ with CO_2 was conducted in CH₃OH/CD₃CN or CD₃OD/CH₃CN gave a D₃-labelled 4 [Ir^{III}(tpy)(COOCH₃)(NHCOCD₃)(CI)] (Fig. S11d) or a D₄-labelled 4 [Ir^{III}(tpy)(COOCD₃)(NDCOCH₃)(Cl)] (Fig. S11e), respectively, as confirmed by ESI-MS. To establish the origin of the oxygen atom of acetamido ligand of 4, an isotope-labelling experiment using H₂¹⁸O was also conducted. A positive-ion ESI mass spectrum of the reaction of 2 with CO₂ in CH₃OH/CH₃CN in the presence of $H_2^{18}O$ shows a prominent signal at m/z 543.1 which has a characteristic isotopic distribution that matches well with the calculated isotopic distribution for [4–Cl]+ (Fig. S11f). This means the acetamido ligand is not formed by the hydration of acetonitrile. These isotope-labelling experiments indicate that the coordinated methoxycarbonyl ligands of complex 4 are derived from CO₂ and CH₃OH, and the acetamido ligands are derived from CH₃CN, CH₃OH, and CO₂ (Fig. S12).

We have elucidated the following design requirements for: 1) synthesising the H_2EC , and 2) using it in the reduction of CO_2 . In the first step, an electron-withdrawing ligand is required to stabilise the low-valent, electron-carrying H₂EC. This step requires acetate ions as a Lewis base that abstracts the protons from H₂. In the next step, however, an electron-donating ligand is required to stabilise the resulting metal-CO₂²⁻ species. Meanwhile, each step requires the H_2EC to have a reaction site to activate H₂ or CO₂. Thus, H₂ oxidation (synthesis of the H₂EC) and CO₂ reduction (utilisation of the H₂EC) require ligands with opposite electronic properties. In order to perform these antagonistic processes using a single molecule, some sacrifice in ligand design for either H₂ oxidation or CO₂ reduction is required. After trial and error with this strategy, we chose tpy, a weakly electron-withdrawing ligand. As a result, we succeeded in accelerating the H₂ oxidation to synthesise the H₂EC at room temperature and slowing down the CO₂ reduction to observe the metal- CO_2^{2-} species. This balance results in a H₂EC that can perform both functions at room temperature.

Based on the above results, we propose the following reaction mechanism (Fig. 5). The dinuclear Ir^{II} complex (1) extracts electrons from one equivalent of H_2 to form two equivalents of Ir^I complex (2, H_2EC) at room temperature, which is stable for at least three months at room temperature under N_2 atmosphere. This H_2EC is able to use the electrons from H_2 to reduce CO_2 to $CO_2^{2^2}$ as part of complex 3 at room temperature. The $CO_2^{2^2}$ moiety of 3 then reacts with CH_3OH to form the methoxycarbonyl complex 4 at room temperature. All three reactions are performed at room temperature.

7

COMMUNICATION

Fig. 5 An Ir^{II} dinuclear complex (**1**) reacts with H₂ (0.1–0.8 MPa) to give a low-valent Ir^I complex (**2**, H₂EC) at room temperature. The H₂EC reacts with CO₂ (0.5 MPa) to give an Ir^{III}-CO₂²⁻ species (**3**) at room temperature. The Ir^{III}-CO₂²⁻ species reacts with CH₃OH to give an Ir^{III} methoxycarbonyl complex (**4**) at room temperature.

In conclusion, this study points to a number of specific advantages of an H₂EC, which has so much promise. First, this H₂EC is produced directly from H₂ at room temperature. Second, this H₂EC stores electrons from H₂ at room temperature. Finally, this H₂EC uses H₂ to directly reduce CO₂ at room temperature to a potential chemical feedstock. As such, we intend to use the lessons learned in this study to drive forward this exciting area of chemistry, filled as it is with so much promise.

This work was supported by JST CREST Grant Number JPMJCR18R2, Japan, JSPS KAKENHI Grant Numbers JP26000008 (Specially Promoted Research), JP23K17847, JP22K05130, JP21K05103 and JP19K05503 and JST SPRING Grant Number JPMJSP2136.

Conflicts of interest

There are no conflicts to declare.

References

- 1 A. Kovač, M. Paranos and D. Marciuš, *Int. J. Hydrogen Energy*, 2021, **46**, 10016–10035.
- M. D. Allendorf, V. Stavila, J. L. Sinder, M. Witman, M. E. Bowden, K. Brooks, B. L. Tran and T. Autrey, *Nat. Chem.*, 2022, 14, 1214–1223.
- 3 M. R. Usman, *Renew. Sustain. Energy Rev.*, 2022, **167**, 112743.
- 4 J. Yang, A. Sudik, C. Wolverton and D. J. Siegel, *Chem. Soc. Rev.*, 2010, **39**, 656–675.
- A. Schneemann, J. L. White, S. Y. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf and V. Stavila, *Chem. Rev.*, 2018, **118**, 10775–10839.
- 6 P. Preuster, C. Papp and P. Wasserscheid, Acc. Chem. Res., 2017, **50**, 74–85.

- T. He, H. Cao and P. Chen, Adv. Mater., 2019, **31**, 1902757.
- 8 K. E. Lamb, M. D. Dolan and D. F. Kennedy, Int. J. Hydrogen Energy, 2019, 44, 3580–3593.
- 9 N. Onishi, G. Laurenczy, M. Beller and Y. Himeda, *Coord. Chem. Rev.*, 2018, **373**, 317–332.
- 10 W. Lubitz, H. Ogata, O. Rüdiger and E. Reijerse, *Chem. Rev.*, 2014, **114**, 4081–4148.
- 11 H. Ogata, K. Nishikawa and W. Lubitz, Nature, 2015, 520, 571– 574.
- 12 T. Matsumoto, B. Kure and S. Ogo, Chem. Lett., 2008, 37, 970– 971.
- D. Inoki, T. Matsumoto, H. Hayashi, K. Takashita, H. Nakai and S. Ogo, *Dalton Trans.*, 2012, 41, 4328–4334.
- 14 D. Inoki, T. Matsumoto, H. Nakai and S. Ogo, *Eur. J. Inorg. Chem.*, 2013, 3978–3986.
- 15 S. Ogo, L. T. T. Minh, T. Kikunaga, T. Ando, T. Matsumoto, T. Yatabe and K. Kato, *Organometallics*, 2020, **39**, 3731–3741.
- 16 T. Yatabe, K. Kamitakahara, K. Higashijima, T. Ando, T. Matsumoto, K.-S. Yoon, T. Enomoto and S. Ogo, *Chem. Commun.*, 2021, **57**, 4772–4774.
- 17 T. Yatabe, S. Futakuchi, K. Miyazawa, D. Shimauchi, Y. Takahashi, K.-S. Yoon, H. Nakai and S. Ogo, *RSC Adv.*, 2021, **11**, 39450–39454.
- 18 T. Yatabe, T. Tome, Y. Takahashi, T. Matsumoto, K.-S. Yoon, H. Nakai and S. Ogo, *Chem.–Eur. J.*, 2021, **27**, 17326–17330.
- 19 S. Ogo, T. Yatabe, T. Tome, R. Takenaka Y. Shiota and K. Kato, J. Am. Chem. Soc., 2023, 145, 4384–4388.
- 20 J. F. Berry, *Metal-Metal Bonded Compounds of the Group IX Elements*. In *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering*, Elsevier, 2021, pp 4–42.
- 21 K. Garg, Y. Matsubara, M. Z. Ertem, A. Lewandowska-Andralojc, S. Sato, D. J. Szalda, J. T. Muckerman and E. Fujita, *Angew. Chem. Int. Ed.*, 2015, **54**, 14128–14132.
- 22 M. Y. Smirnov, A. V. Kalinkin, L. M. Kovtunova and V. I. Bukhtiyarov, *Surf. Interfaces*, 2021, **25**, 101176.
- Z3 J. Y. Yang, S. E. Smith, T. Liu, W. G. Dougherty, W. A. Hoffert,
 W. S. Kassel, M. R. DuBois, D. L. DuBois and R. M. Bullock, J.
 Am. Chem. Soc., 2013, 135, 9700–9712.
- 24 H. Nakai, K. Jeong, T. Matsumoto and S. Ogo, *Organometallics*, 2014, **33**, 4349–4352.
- 25 Y. Zhang, T. J. Woods and T. B. Rauchfuss, J. Am. Chem. Soc., 2021, 143, 10065–10069.
- 26 C. Takahashi, T. Yatabe, H. Nakai and S. Ogo, *Chem.–Eur. J.*, 2023, DOI: 10.1002/chem.202302297
- 27 T. Herskovitz, J. Am. Chem. Soc., 1977, 99, 2391–2392.
- 28 G. S. Bristow, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1981, 1145–1146.
- 29 J. C. Calabrese, T. Herskovitz and J. B. Kinney, J. Am. Chem. Soc., 1983, 105, 5914–5915.
- 30 H. G. Alt, K.–H. Schwind and M. D. Rausch, J. Organomet. Chem., 1987, 321, C9–C12.
- 31 D. W. Lee, C. M. Jensen and D. Morales-Morales, Organometallics, 2003, 22, 4774–4749.
- 32 I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold and K. Meyer, *Science*, 2004, **305**, 1757–1759.
- 33 R. L. Harlow, J. B. Kinney, T. Herskovitz, J. Chem. Soc., Chem. Commun., 1980, 813–814.
- 34 M. A. Bennett, G. B. Robertson, A. Rokicki and W. A. Wickramasinghe, J. Am. Chem. Soc., 1988, **110**, 7098–7105.
- 35 L. Dahlenburg and K. Herbst, J. Chem. Soc., Dalton Trans., 1999, 3935–3939.
- 36 M. A. Esteruelas, L. A. Oro, R. M. Claramunt, C. López, J. L. Lavandera and J. Elguero, J. Organomet. Chem., 1989, 366, 245–255.
- 37 P. K. Chan and W. K. Leong, Organometallics, 2008, 27, 1247– 1253.
- 38 W. I. Dzik, J. M. M. Smits, J. N. H. Reek and B. Bruin, Organometallics, 2009, **28**, 1631–1643.

Journal Name