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ABSTRACT

Discovering novel magnetic materials is essential for advancing the spintronic technology with
significant applications in data communication, data storage, quantum computing, and etc. While
Density functional theory (DFT) has been widely used for designing materials, its high computational
demand for estimating the magnetic ground states of even a single material limits its ability to explore
the vast chemical design space for finding the right materials for spintronic applications. In this
work, we developed a computational framework combining generative adversarial networks (GAN),
machine learning (ML) classifiers, and DFT for de novo magnetic material discovery. We used
the CubicGAN generative crystal structure design model for creating new ternary cubic structures.
Machine learning classifiers were developed with around 90% accuracy to screen candidate ternary
magnetic materials, which are then subject to DFT based stability validation. Our calculations
discovered and confirmed that Na6TcO6, K6TcO6, and BaCuF6 are stable ferromagnetic compounds,
while Rb6IrO6 is a stable antiferromagnetic material. All those materials have zero energy above hull.
Moreover, Na6TcO6 and BaCuF6 are found to be half metals that are highly favorable for spintronic
applications. Due to the structural differences, A6MO6 materials have a higher thermal capacity (Cv)
compared to BaCuF6. At 300 K temperature, Cv of A6MO6 materials is around 1100 JK−1mol−1

and that of BaCuF6 is about 176 JK−1mol−1. This work demonstrates the promising potential of
deep generative design for discovering novel functional materials.

Keywords Generative design · Deep learning · DFT · Magnetic materials · Material discovery · Spintronics

1 Introduction

Spintronic (spin-based electronics) technology has recently emerged by incorporating the spin degree of freedom into
conventional charge-based electronics, as spintronic devices offer low power consumption and limited current leakage.
Spintronics is considered for a vast amount of applications like energy harvesting, spin photovoltaics, and data storage
[1]. In magnetic materials, the spin-polarized current is readily available due to different populations of spin-up and
spin-down electrons [2, 3]. Therefore, magnetic materials are highly favorable for spintronic devices since their spin
orientation can be efficiently manipulated using an external magnetic field. Spintronic devices like magnetic field
sensors and hard-disk read-heads use giant-magneto resistance (GMR) to control the electron conductivity by aligning
the spin direction of two ferromagnetic materials parallel or antiparallel to each other. GMR technology is widely
used in the automotive industry, mobile phones, and the medical field [4, 5]. Lately, antiferromagnetic materials have

Page 1 of 17 CrystEngComm



A PREPRINT - SEPTEMBER 15, 2023

become attractive candidates for magnetic memories due to their benefits over ferromagnetic compounds, like their
good stability under external magnetic fields, their capability of generating large magnetotransport effects, and the
absence of stray fields [6, 7]. Therefore, both ferromagnetic and antiferromagnetic materials are vital for developing
next-generation spintronic applications.

Designing computational methods for discovering novel ferromagnetic and antiferromagnetic materials is beneficial
for the evolution of spintronic technology. Density functional theory (DFT) is widely utilized to discover novel
materials and compounds [8, 9, 10, 11, 12, 13, 14]. DFT can be used to identify the potential magnetic materials
[15, 16, 17, 18, 19, 20]. It is required to compare the DFT energies of nonmagnetic (NM), ferromagnetic (FM), and
antiferromagnetic (AFM) states of a structure to locate the true magnetic ground state. One of the challenges of using
DFT for the above purpose is the availability of multiple AFM configurations for a single compound. Thus, analyzing a
large number of materials using DFT to find suitable candidates for spintronic applications is challenging. To reduce
the computational burden, we are interested in informatics-guided approaches along with DFT for designing novel
spintronic materials. Xia et al. predicted Fe3CoB2 magnetic compound employing machine learning (ML)–guided
adaptive feedback method with DFT, and also they synthesized it using a conventional arc-melting process [21]. ML
models were also developed by Long et al. [22] for intermetallic compounds to classify the AFM and FM materials and
predict their Curie temperatures. Lu et al. developed an adaptive ML framework to search the chemical space with over
2× 105 candidates to realize new 2-dimensional magnetic compositions [23]. However, it should be noted that most
of those available machine learning techniques predict only the magnetic properties and compositions. They are not
capable of predicting the compositions along with their structures.

The lack of ML models for discovering stable spintronic material structures motivated us to propose a new framework.
In the computational material science field, structure prediction is one of the key problems. Recent studies [24] have
shown that deep learning based generative models can be used to generate new stable crystal structures. In materials
informatics, two types of generative models can be trained to generate crystal structures: Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs). A VAE model contains an encoder and a decoder: the encoder
learns to represent materials with latent vectors and the decoder reconstructs the materials via latent vectors. After
training, the decoder can be used to sample new materials. iMatGen [25] is the first work that uses VAEs to generate
metastable VxOy materials. Later works [26, 27] use VAEs generate different types of materials with variations of
VAEs’ architectures. Like iMatGen, they have difficulty in generating high-symmetry materials because the VAEs
do not have symmetry information in their training. On the other hand, A GAN also has two parts: a generator and
a discriminator. The generator takes random noise as input to generate fake samples and the discriminator tells fake
samples from real ones. CubicGAN [24] and PGCGM [28] are two typical crystal generative models using GANs. Both
are provided with the space group in the training and physical losses are added in PGCGM to improve the performance.
With symmetry information and physical losses, both can generate stable materials.

In this research, our design strategies for stable spintronic materials can be divided into four primary sections.

• Chemical space: Most probable combinations of elements for transition metal elements-based spintronics
materials; Feature Importance of nonmagnetic-magnetic classifiers.

• Structure: Material generation using generative adversarial networks (GAN)
• Magnetic Ground State: Nonmagnetic-magnetic classifier development; the magnetic ground state verifica-

tion using DFT.
• Stability and Properties: The thermodynamic, mechanical, and dynamical stability and the property investi-

gation using DFT

First, we filter out the potential magnetic materials using information-guided approaches to lower the time consumption
of the DFT calculations. Our chemical space analysis shows that the ternary transition metal element-based oxides
and fluorides exhibit a higher probability of having a magnetic ground state. Furthermore, we developed a highly
accurate deep neural network (DNN) and random forest classifier (RFC) to scan magnetic materials from the ternary
cubic structures generated by the CubicGAN model. Feature Importance of the RFC model shows that a number of
unfilled orbitals, availability of unfilled D and F orbitals, and the ground state magnetic moments of the elements play a
significant role in classifying the nonmagnetic or magnetic compounds. From the predicted magnetic compounds, the
DFT calculations encountered three stable transition metal elements-based oxides (Na6TcO6, K6TcO6, and Rb6IrO6)
and one stable transition metal elements-based fluoride (BaCuF6 ) with magnetic ground states. Thus, those three
oxides have a common chemical formula type A6MO6. Here, Na6TcO6, K6TcO6, and BaCuF6 exhibit ferromagnetic
ground state while Rb6IrO6 has an antiferromagnetic ground state. Moreover, we found that BaCuF6 and Na6TcO6

ferromagnetic materials are half-metals where only the spin-up bands can conduct. Due to the distinct structures in
A6MO6 and BaCuF6 materials, they contain considerably different physical properties. Our results show that A6MO6

materials (Y > 50 GPa and G > 20 GPa) have higher Young’s (Y ) and Shear (G) moduli compared to BaCuF6
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(Y < 13 GPa and G < 5 GPa). On the contrary, BaCuF6 has a higher Poisson’s ratio (≈ 0.44) than that of the
other three materials (< 0.25). The specific thermal capacity (Cv) of A6MO6 is much higher relative to BaCuF6. At
300 K temperature, Cv of A6MO6 materials is approximately 1100 JK−1mol−1 and that of BaCuF6 is around 176
JK−1mol−1.

2 Method

2.1 Generative design based on Generative Adversarial Network (GAN)

Generating crystal structures using generative models is a much harder task than generating images or text. Several
unique challenges still remain that prevent generative models to generate materials under full spectrum of the periodic
table: 1) The extreme variability, such as various number of elements/atoms in the crystal structure; 2) The generation
of precise fractional coordinates and lattice parameters; 3) The extreme biased distribution of materials in 230 space
groups; 4) The generation of materials with high symmetry.

The materials data used to discover potential stable magnetic materials is generated by our CubicGAN [24], which is a
crystal generative model that can generate crystal structures for three cubic space groups at a large scale. CubicGAN
tackles the crystal generative design challenges one by one via: 1) Nonequivalent atom positions are used to represent
atoms’ arrangement in unit cell. We chose ternary materials that have only nonequivalent atom positions (a.k.a, one
element has one nonequivalent atom positions). In this way, the size of input data to the generative model can be same
if we train a generator to generate only ternary materials. To obtain all atom positions in the unit cell, affine matrix is
used to convert nonequivalent atom positions. Affine matrix is determined by space groups and it contains rotation
and translation matrices. 2) Only cubic ternary materials are used to grain the generator. In this way, we only need
to generate the length of cubic lattice. The angles are all 90◦. Then we discretize fractional coordinates by using
fractional coordinate values in the set of {0.0, 0.25, 0.5, 0.75}. 3) We are not trying to generate crystal structures in
230 space groups like what VAE models claim [26, 29]. Instead, VAE models always generate crystal structures with
very low symmetry [28]. On the other hand, we only use materials falling in three space groups of Fm3̄m, F4̄3m, and
Pm3̄m because these three space groups are with greatest number of materials in OQMD [30] using selection criteria in
CubicGAN.

Figure 1: The framework of CubicGAN. It has two main learning components: generator and discriminator.

The main framework of CubicGAN is illustrated in Figure 1. The framework primarily contains two learning parts:
generator and discriminator. The generator takes elements, space groups, and random noise as input and then
generate three non-equivalent fractional coordinates Bfake and lattice parameters Pfake (only lengths since cubic
structures have constant angles). With random chosen space group Sfake and Elements Efake, we can assemble
Mfake = (Bfake, Pfake, Sfake, Efake) as the fake samples and the real samples Mreal = (Breal, Preal, Sreal, Ereal)
are collected through real crystal structures. Then discriminator learns to tell fake samples from real samples via two
losses of Ladv and Ldis which are define below [31, 32]:

M̂ = ϵMreal + (1− ϵ)Mfake , ϵ ∼ U(0, 1),

Ldis = D(Mfake)−D(Mreal) + λd(
∥∥∥∇M̂D(M̂)

∥∥∥
2
− 1)2 ,

Ladv = −D(Mfake),

(1)

where M̂ is linearly interpolated between real samples Mreal and fake samples Mfake and ϵ is uniformly sampled
from 0 and 1. Ladv and Ldis are losses for training the generator and the discriminator. In Ldis, the penalty term
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(
∥∥∥∇M̂D(M̂)

∥∥∥
2
− 1)2 is used to help original Generative Adversarial Networks (GANs) stabilize and prevent GANs

from collapsing to fixed mode because it enforces the norm of gradients to be close to 1. λd is set to 10 and D(.) scores
real and fake samples in the discriminator, respectively. The detailed architectures of generator and discriminator can be
found in supplementary materials in CubicGAN [24].

After training, the generator generates (Bgen, Pgen) conditioning on (Sgen, Egen) and then we assemble them into
crystal structures. When 10 millions materials are generated, we find that most of the cubic materials in Materials
Project and ICSD can be rediscovered. Then we filter down 10 millions by pymatgen CIFs readability, charge neutrality,
and predicted negative formation energy for DFT relaxation. In final, 506 dynamically and mechanically stable ternary
and quaternary new-prototyped materials are confirmed via phonon dispersion and mechanical property calculations.

2.2 Nonmagnetic-magnetic material Classifier

As we use the CubicGAN-generated ternary materials, we collected only the data of cubic ternary compositions from
the material project (MP) database to develop nonmagnetic-magnetic classifiers. There were 10,285 materials in the
above dataset, where 7,526 instances were nonmagnetic materials, while there were 2,759 magnetic compounds.

To develop the DNN and RFC models to classify the nonmagnetic and magnetic materials, we used 56 elemental and
electronic structure attributes, such as total number of unfilled orbitals, atomic number, atomic weight, number of
valence electrons, and number of unfilled s, p and d orbitals, to develop the feature set (see Supporting Information).
Then, we computed the weighted average (Avg.) and the maximum difference of those properties for each chemical
formula. The weighted Avg. of a property M of a ternary compound AαBβCγ was calculated based on the following
expression,

MAvg
AαBβCγ

=
1

α+ β + γ
(αMA + βMB + γMC), (2)

where MA, MB and MC are the property M of A, B, amd C elements, respectively. Thus, we had 112 total number of
features for the two classifiers.

Our deep neural networks (DNN) model was developed using Keras [33] on top of TensorFlow [34]. This model
consists of two hidden layers where the first and second hidden layers include 56, and 28 neurons, respectively. The
rectified linear unit (ReLu) activation function was included for each hidden layer of neurons to shift the summed
weighted inputs. As the model is a classifier, the output layer was connected with the sigmoid activation function. We
observed that randomly dropping out 50% of the units of the hidden layers helps to reduce the overfitting significantly.
To reduce the overfitting further, we used Ridge (L2) regularization method for adding penalties during updating
weights. As the optimizer, we employed the adaptive moment estimation (Adam) optimizer with a 0.0001 learning
rate. The loss function and the metric of the DNN model were the binary cross-entropy for the training. Moreover, 500
epochs and 1500 batch sizes were included.

Our next machine learning model is a random forest classifier (RFC). An RFC is an ensemble classifier that builds
multiple decision trees using a randomly chosen subset of the training dataset. Finally, unweighted voting from each
decision tree is used to make predictions. The SearchCV algorithm in Scikit-learn program [35] was used to optimize
the hyperparameters. The optimized number of decision trees, minimum samples split, minimum samples leaf, and
maximum depth are 1000, 2, 1, and 80, respectively.

2.3 Density Functional Theory

We utilized the Vienna ab simulation package (VASP) code to perform the DFT calculations with the plane wave basis
set where the cut-off energy was set as 500 eV [36, 37, 38, 39]. For the exchange-correlation potential, we considered
the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) formulation [40, 41]. The
energy convergence criterion and the force convergence criterion were set to 10−8 eV and 10−2 eV/Å, respectively.
The Brillouin zone integrations were carried out using a dense K-point mesh within the Monkhorst-Pack scheme. A
5× 5× 5 K-mesh was used for the A6MO6 unit cells, while a 2× 5× 5 K-mesh was used for their 2× 1× 1 supercells.
A 6×6×6 K-mesh was used for the BaCuF6 unit cells, while a 3×6×6 K-mesh was used for their 2×1×1 supercells.
Since the considered cubic structures contain extensive lattice constants (a > 8Å) above K-meshes are sufficiently large.
The density functional perturbation theory (DFPT) implemented in the VASP [42] program was used to determine
the elastic constants. The bulk modulus (K), Shear modulus (G), Young’s modulus (Y), and Poisson’s ratio (ν) of the
materials were calculated based on the Hill method using the VASPKIT code [43]. The phonon dissipation curves of
the materials were obtained using Phonopy code [44]. We also carried out GGA+U [45, 46] calculations to determine
whether the Hubbard parameter (U ) affects the results. Those results are reported in the Supporting Information.
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3 Results and Discussion

3.1 Probability of Discovering Transition Metal-based Spintronic Materials

One of the main objectives of this research is to find the most probable combinations of elements with transition metal
elements for discovering spintronic materials. We first collected the composition, crystal system, and magnetic type of
the ternary materials from the material project (MP) database. We considered the ternary materials with transition metal
elements (M) and the common anions (X): O, F, N, S, Cl, Br, I, and H. We disregarded the rare-earth materials since we
wanted the transition metal elements to be the source of the magnetism in the compounds. Only one of the above anions
will appear in a single composition (i.e., if O is in a composition, then F, N, S, Cl, Br, I, or H is not present). Therefore,
the chemical formulas take AαMβXγ form, where A can be any element type other than rare-earth or above anions.

In the MP database, we found 6,814 ferromagnetic, 872 antiferromagnetic, 2,382 ferrimagnetic, and 9,164 nonmagnetic
ternary materials, which satisfy the above conditions. We regard all the ferromagnetic, antiferromagnetic, and
ferrimagnetic compounds as magnetic/spintronics materials. Thus, altogether we have 10,068 magnetic and 9,164
nonmagnetic materials in the dataset. Next, we computed the probability of finding an AαMβXγ material for each X
element as shown in Fig. 2. Since we specifically use CubicGAN to discover potential stable materials, cubic materials
were also studied for the above anions. It is clear that O- and F-based AαMβXγ materials have a higher probability of
being spintronic materials. When X=O or X=F, the probability of finding a magnetic material from all crystal systems
is around 60 %, and it is less than 35 % for other anions. The dataset of cubic systems also shows that the AαMβOγ
and AαMβFγ materials have a high probability of having a magnetic ground state. The probability of finding a cubic
spintronics material is greater than 50 %, whereas that from other materials is less than 43 %. This indicates that one
can focus on transition metal oxides and fluorides for discovering potential spintronics materials.

Figure 2: Probability of finding a ternary magnetic (m) and nonmagnetic (nm) material with transition metal elements
and an anion (X).

5
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3.2 Feature Importance

Figure 3: Feature Importance as a percentage (> 1.8%) from the RFC model. Labels on the x-axis: Number of unfilled
orbitals (Unfilled Orbs), magnetic moment of BCC structure of elements (BCC Magmom), availability of unfilled F
orbitals (Avail Unfilled F), availability of unfilled D orbitals (Avail Unfilled D), and magnetic moment of ground state of
elements (GS Magmom). MaxDiff, Avg and Avail, stand for the maximum difference of the feature, weighted average
of the feature and availability, respectively.

Figure 4: Number of ternary cubic magnetic (m) and nonmagnetic (nm) materials as a function of maximum difference
of unfilled orbitals.

Feature Importance (FI) is a procedure that estimates a score for all the features of a given machine-learning model.
The scores indicate the significance of each feature. A higher score means the specific feature will greatly impact the
model used to predict a specific target. Figure 3 shows the RFC computed FI as percentages. Here, we show only the
feature FI greater than 1.8 %. It is clear that the number of unfilled orbitals, availability of unfilled D and F orbitals,
and the magnetic moments of the elements are the main influencing features of the RFC model to determine whether a
material is magnetic or not. The number of unfilled orbitals is considerably higher in transition metal and rare earth
elements. The magnetic moments of the ground state and BCC structure are nonzero for most of the materials formed
with those elements (i.e., pure Fe, Co, and so on). The availability of unfilled D and F orbitals indicates the presence of
partially filled D and F orbitals. Figure 4 shows the number of ternary cubic materials as a function of the maximum
difference of unfilled orbitals for both nonmagnetic and magnetic classes. Based on our data, the nm: m ratio is 3.4:1
when the maximum difference of unfilled orbitals (MaxDiff Unfilled Orbs) is less than 11. If that quantity is greater

6
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than 11, the nm:m ratio becomes 1:3.4. Thus, there is a higher probability of finding a magnetic material compared to
nonmagnetic materials if MaxDiff Unfilled Orbs is greater than 11.

3.3 Predicting Potential Spintronics Materials

0.67 0.05

0.06 0.23m

nm

mnm

0.65 0.07

0.07 0.22m

nm

mnm

DNN RFC

Figure 5: Confusion matrices of the DNN and RFC models for ternary cubic nonmagnetic (nm) and magnetic (m)
material classification. The normalized values for true nm, true m, false nm and false m are mentioned.

Table 1: The classification report of the test set of nonmagnetic (nm) - magnetic (m) material classifiers.

DNN RFC
Precision Recall F1-score Precision Recall F1-score Support

nm 0.93 0.93 0.93 0.92 0.95 0.94 754
m 0.82 0.81 0.81 0.84 0.74 0.79 275
Accuracy 0.90 0.91 1029
Macro average 0.87 0.87 0.87 0.88 0.87 0.87 1029
Weighted average 0.90 0.90 0.90 0.90 0.90 0.90 1029

To train the DNN and RFC models, we randomly split the ternary cubic transition metal-based dataset into train and
test subsets. The training subset contains 90 % of the 10,285 compositions, whereas the test subset has 10 %. The
k-fold cross-validation is a technique utilized to assess the predicting ability of the model on new data. We used 3-fold
cross-validation, which provides 0.885, 0.884, and 0.885 accuracies for each training step of DNN, while that of RFC
are 0.915, 0.898, and 0.900. Thus, we got 0.88± 0.0005 and 0.90± 0.01 mean accuracy for the DNN and RFC models,
respectively. Figure 5 shows the normalized confusion matrices of the two machine learning models. After classifying
the materials, 67 (65) % were identified as nonmagnetic materials, and 23 (22) % were predicted as magnetic materials
by the DNN (RFC) models correctly. The false nonmagnetic and false magnetic materials are less than 8 % from
both models. In the test dataset, ≈ 28 % of the data were magnetic materials, and ≈ 72 % of them were nonmagnetic
materials. Therefore, the true nonmagnetic and true magnetic data have a good agreement with the percentages in the
test dataset.

The classification reports of the two machine learning models are given in Table 1. Precision indicates the quality of a
positive prediction made by the model. Precision is given by the number of true positives divided by the total number
of positive predictions. The DNN and RFC models exhibit 0.93 (0.82) and 0.92 (0.84) precision for the nonmagnetic
(magnetic) materials, respectively. The recall is computed as the ratio between the number of positive samples accurately
categorized as positive to the total number of Positive instances in the test dataset. The recall from the DNN model is
0.93 (0.81), and that from the RFC model is 0.93 (0.81) for the nonmagnetic (magnetic) compositions. The weighted
average of precision and recall is given the F1-score, which is 0.93 (0.81) from the DNN model and 0.95 (0.74) from
the RFC model for the nonmagnetic (magnetic) compositions. Finally, the accuracy of the models was calculated as the
total number of correctly predicted samples over the total number of samples. It was found that the accuracy of the
DNN model for the test set is 0.90 and that for the training set is 0.93. However, the accuracy of the RFC model is 0.91
for the test set and ≈ 1 for the train set. As a result of having an accuracy ≈ 1 for the training set, the RFC model can
show poor performance on the new data samples. Therefore, we used the DNN model for predicting the new spintronic
materials.

The CubicGAN model generated 183 mechanically and dynamically stable ternary cubic materials. However, only
141 compositions contain transition metal elements. Our DNN predicts that 45 of them are magnetic materials (See
Supporting Information). Nevertheless, only four comply with all thermodynamic (negative formation energy and zero

7

Page 7 of 17 CrystEngComm



A PREPRINT - SEPTEMBER 15, 2023

energy-above hull), dynamical (no negative phonon frequencies), and mechanical stability criteria. Those materials are
BaCuF6, Na6TcO6, K6TcO6 and Rb6IrO6. Thus, three of them have the common chemical formula type, i.e., A6MO6.

3.4 Structure and Magnetic Properties

Figure 6: (a) Side views and (b) polyhedra of BaCuF6 and A6MO6 materials.

BaCuF6 material was found with the space group F4̄3m (216), while that of A6MO6 materials is Fm3̄m (225). Thus,
both materials are face-centered cubic structures. The conventional unit cell of A6MO6 materials contains 52 atoms
where 24 atoms are A, 4 atoms are M elements, and 24 atoms are O. However, the conventional unit cell of BaCuF6

material contains only 32 atoms with 4 Ba atoms, 4 Cu atoms, and 24 F atoms. The side views of both unit cells are
shown in Fig 6 (a). In Table 2, we label all alkaline earth atoms and alkali elements as A, transition metal as M, and
O and F elements as X. It contains the A-M, M-X and A-X bond lengths in Å. It is clear that both M and A atoms
have relatively stronger interactions with X atoms due to lower bond lengths compared to the M-A bonds. The M-X
distances are considerably shorter than the other two bond types. Figure 6 (b) shows the polyhedra in the materials. In a
BaCuF6 unit cell, each Ba atom bonds with 12 F atoms to form BaF12 cuboctahedra, while each Cu atom makes CuF6

octahedra by making bonds with 12 F atoms. A single BaF12 cuboctahedron shares faces with four CuF6 octahedra. In
A6MO6, M atoms form MO6 octahedra by bonding with 6 O atoms. However, each A element with 4 neighboring
O atoms constructs an AO4 rectangle where O atoms are at the corners and M atom is at the center. A single AO4

rectangle shares its two short edges with two MO6 octahedra. The lattice constant (a) of BaCuF6 (a = 8.1253 Å) is the
shortest, while Rb6IrO6 (a = 9.2751 Å) has the longest (see Table 2). It is clear that a of A6MO6 materials increases as
a[Na6TcO6] < a[K6TcO6] < a[Rb6IrO6]. This can be mainly because atomic radius (R) of Alkali elements increases
as R[Na] < R[K] < R[Rb].

To find the magnetic ground state structure of the materials, We performed DFT-based structure optimization for
ferromagnetic (FM), anti-ferromagnetic (AFM), and non-magnetic (NM) states. As shown in Fig. 7, we considered
five AFM configurations, where AFM1, AFM2, and AFM3 are collinear configurations, and AFM4 and AFM5 are
non-collinear configurations. Those collinear AFM configurations were considered for FCC structures by previous
research works [18, 19, 20]. Figure 7 shows only the M atoms, as it allows us to show the directions of the spins
conveniently. The atoms with spin-up and spin-down are indicated by red and blue, respectively. In the AFM1
configuration, all the spins at the middle M layer are arranged in the spin-down direction, while the bottom M layer has
spin-up electrons. To create the AFM2 and AFM3 configurations, we used 2× 1× 1 super-cell structures. Only the
middle atoms get the opposite spin directions compared to the rest of the atoms in the same M layer in the 2× 1× 1
structure for the AFM2 configuration. In the AFM3 configuration, two consecutive layers in a-direction have M atoms
with spin-up while the other two have M atoms with spin-down. All the spins point toward the center in the AFM4
non-colinear configuration, whereas spin directions lie on the ab-plane in the AFM5 non-colinear configuration.

Table 3 contains the energy values for each FM, AFM, and NM state relative to the FM state. The NM state of all
the materials poses high relative energy confirming those materials are magnetic. It is clear that the non-collinear

8
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AFM configurations exhibit the highest energy compared to the FM state. This indicated that the non-collinear spin
arrangements are not energetically favorable. BaCuF6, Na6TcO6 and K6TcO6 materials have FM ground state, while
Rb6IrO6 has AFM1 ground state. BaCuF6 and Na6TcO6 retain a total magnetic moment of 1 µB per unit cell, whereas
K6TcO6 provides 0.71 µB per unit cell.

The formation energy (Eform) of the magnetic ground state of the materials was calculated based on the following
formula.

Eform =
1

N
(Etot −

∑
i

xiEi) (3)

Here, the total energy of a unit formula is indicated by Etot. Moreover, xi is the number of atoms and Ei is the energy
of the ith element. The sum of xi provides the number of atoms in a unit formula, which is 8 for BaCuF6 and 13 for
A6MO6. To calculate Ei for each species, we used the Pymatgen code to collect the most stable structure of each
element. Eform indicates the thermodynamic stability of a material against its elements. The negative Eform in Table 3
reflects that all four materials are stable. It is also clear that Eform increases as Eform[Na6TcO6] < Eform[K6TcO6] <
Eform[Rb6IrO6]. Moreover, the lowest Eform is found at BaCuF6 material.

Table 2: The structural properties of the spintronics Materials. The bond lengths between A, M and X atoms and lattice
constant (a) are mentioned in Å.

Material A-M M-X A-X a Space Group
BaCuF6 3.5184 1.8589 2.8779 8.1253 216

Na6TcO6 3.2793 1.9553 2.3471 9.2751 225
K6TcO6 3.6541 1.9600 2.6580 10.3352 225
Rb6IrO6 3.8064 1.9957 2.7800 10.7662 225

Figure 7: FM and AFM configurations. Here, only the transition metal atoms are shown.

9
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Table 3: The energy (E) relative to FM state for NM state and each configuration of AFM phase in eV, the total magnetic
moment per unit formula (magmom) in µB and the formation energy in eV/atom for the magnetic ground state structure
based on DFT calculations. Here, negative energy of AFM state means it is stable compared to the FM state.

Material EFM ENM EAFM1 EAFM2 EAFM3 EAFM4 EAFM5 magmom (µB) Eform

BaCuF6 0.00 78.97 17.64 18.02 26.59 414.35 1157.72 1 -2.18
Na6TcO6 0.00 72.79 53.78 72.90 19.41 408.15 945.88 1 -1.62
K6TcO6 0.00 28.59 19.09 20.71 9.55 381.87 930.07 0.71 -1.57
Rb6IrO6 0.00 299.26 -78.63 -71.73 -63.97 221.31 407.41 0 -1.28

3.5 Mechanical Properties and Stability

Table 4: The mechanical properties of the spintronics materials. The C11, C13 and C44 elastic constants, Bulk modulus
(K), Shear modulus (G) and Young’s modulus (Y ) are mentioned in GPa. Moreover, Poisson’s ratio ν is also calculated.

Material C11 C12 C44 K G Y ν
BaCuF6 36.107 35.252 12.227 35.537 4.261 12.292 0.442
Na6TcO6 89.134 26.645 27.420 47.474 28.891 72.056 0.247
K6TcO6 65.887 16.337 20.483 32.854 22.104 54.164 0.225
Rb6IrO6 67.104 16.342 18.462 33.045 21.023 52.035 0.238

Next, we computed the elastic constants Cij (i, j = 1, 2, 3, 4, 5, 6) to study the mechanical stability and properties
of the materials as shown in Table 4. In crystals with cubic symmetry, C11 = C22 = C33, C12 = C13 = C23, and
C44 = C55 = C66. Therefore, there are only three independent elastic constants which are C11, C12, and C44. The
higher C11 constants of A6MO6 materials compared to that of BaCuF6 reveal that those materials are relatively stiffer
than BaCuF6 in a, b, and c directions. Furthermore, the shear elastic constants C44, C55 and C66 of A6MO6 materials
are significantly higher than that of BaCuF6. M, O, and F atoms are arranged in the materials such that M-O-M and
M-F-M chains are parallel to a, b, and c directions in A6MO6 materials. M-O bonds may be stronger than M-F bonds
since O atoms can contribute 2 electrons to form bonds with M atoms. In contrast, only an F atom can offer only a
single electron. And also A-O-A atomic chains are also almost parallel to the a, b, and c directions, while A-F-A bonds
make around 45◦ angle. Therefore, there is an extra strength from A-O bonds in those directions for A6MO6. This
can be the main reason for having higher C11 constants in A6MO6 than in BaCuF6.The Born stability criteria for the
crystals with cubic unit cells are C11 − C12 > 0, C11 + 2C12 > 0 and C44 > 0. The Cij constants in Table 4 proves
that BaCuF6 and A6MO6 spintronic materials are mechanically stable.

Table 4 also includes the average Bulk modulus (K), Shear modulus (G), Young’s modulus (Y ) and Poisson ratio
(ν) which were calculated using the Hill approximation [47]. The mechanical properties were computed using the
VASPKIT code [43]. It shows that the above considerable elastic constant differences affect the average mechanical
properties like G and Y . Among the spintronics materials studied in this research, the highest Y can be expected from
Na6TcO6. In contrast, the lowest Y can be expected from BaCuF6. Y of BaCuF6 is around 83 % lower than that of
Na6TcO6. ν is defined as the negative ratio of the resulting transverse strain over the applied longitudinal strain in the
direction of the applied force [48]. Generally, this value lies in the range of 0-0.5. Natural rubber exhibits ν = 0.5
[49] and steels has ν = 0.3 [50]. Rubber has a high expansion to a small axial stretching, while steel has a relatively
weak expansion. Table 4 illustrates that BaCuF6 value is around 0.4 while that of A6MO6 compounds is between
0.22− 0.24. This indicates that BaCuF6 is more deformable elastically at a small strain. A6MO6 materials show lateral
expansion/compression under strain is smaller than steel.
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3.6 Electronic Properties
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Figure 8: (a) The electronic band structures and (b) the partial density of states (PDOS) and total density of states
(DOS) of the spintronics materials. Fermi energy marks zero energy. Only transition metal (M)-d and alkaline/alkali
metal (A)-p orbitals contribute significantly.

Figure 8 shows the electronic band structures of the spintronics materials. Here, the spin-down bands are represented
by blue lines, while red lines denote the spin-up bands. As Table 3 illustrated, only Rb6IrO6 is an antiferromagnetic
material. All the ferromagnetic materials show spin splitting. This is more significant in BaCuF6 and Na6TcO6 where
spin-down conduction bands exist much away from the Fermi level compared to the spin-up conduction bands. As
a result, those two materials exhibit half-metallic characteristics indicating only the spin-up bands can conduct. The
band gap of the spin-down bands of BaCuF6 is 0.94 eV. The spin-down valence bands of Na6TcO6 form a 1.83 eV
direct band gap. In both half metals, valence band maxima and conduction band minima locate at the Γ point indicating
spin-down bands act as direct band gap semiconductors. Since metallic and insulating properties depend on the spin
direction, half-metals are promising materials for spin-controlled electronics and magnetism in spintronics applications.
It is already used in computer memory units, and processors [51, 52].

The partial density of states (PDOS) calculations in Fig. 8 reveal that hybridization of the d-orbitals of transition
metal atoms and p-orbitals of alkaline/alkali-metal atoms occurs near the Fermi level. In BaCuF6, K6TcO6 and
Na6TcO6 ferromagnetic materials, spin-up electrons dominate around the Fermi level. On the contrary, both spin-up
and spin-down electrons contribute approximately equally in Rb6IrO6 antiferromagnetic material. It is also found that
the contributions from p-orbitals of transition metal atoms and s-orbitals of alkaline/alkali metal atoms for PDOS near
the Fermi level are negligible. The total density of states (DOS) in Fig. 8 also reveals that BaCuF6 and Na6TcO6 are
half-metals, whereas the other two materials are metals. The DOS of the spin-up energy bands of the two half-metals
crosses the Fermi level, represented by the horizontal line. In contrast, the spin-down bands of these materials appear
away from the Fermi level.
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Table 5: The charge transfer (∆q) in electrons from Bader, Muliken, and Loewdin methods.

Material Bader Mulliken Loewdin
∆qA ∆qM ∆qx ∆qA ∆qM ∆qx ∆qA ∆qM ∆qx

BaCuF6 1.75 1.66 -0.57 1.91 1.73 -0.61 1.81 1.62 -0.57
Na6TcO6 0.83 2.32 -1.22 0.73 1.81 -1.03 0.70 1.72 -0.98
K6TcO6 0.76 2.07 -1.11 0.76 1.80 -1.06 0.76 1.70 -1.04
Rb6IrO6 0.79 2.34 -1.18 0.81 1.97 -1.13 0.81 1.88 -1.12

Table 5 shows the charge transfer (∆q) of each atomic species of the spintronics materials calculated using Bader,
Mulliken, and Loewdin techniques. The Bader charge analysis was performed using the algorithm developed by Tang
et. al [53], Sanville et. al [54] and Henkelman et. al [55], while Mulliken and Loewdin population analysis were carried
out by employing the LOBSTER code [56]. There are small differences in the charge transfers calculated from different
methods. However, based on all three techniques in Table 5, the A and M atoms lose electrons, although O and F atoms
gain electrons. Therefore, A-X and M-X bond lengths have ionic character. The O atoms draw more than one electron
as they can acquire up to two. In contrast, the F atoms acquire less than one electron. It evidences that the alkali metal
elements are in their usual oxidization state, +1. At the same time, the Ba has its common oxidization state (+2) as Ba
is an alkaline earth metal. The transition metal element Tc of Na6TcO6 material have an oxidization state between +2
and +3, whereas that of K6TcO6 is +2. The oxidization state of Ir in Rb6IrO6 is also between +2 and +3. Cu atoms
of BaCuF6 have an oxidization state between +1 and +2. As described before, MO6 octahedra and AO4 rectangles are
in A6MO6, and CuF6 octahedra and BaF12 cuboctahedra are in BaCuF6. Based on the data in Table 5, it can be shown
that A6MO6 materials contain MO5−

6 and AO4−
4 complexes, while BaCuF6 has CuF2−

6 and BaF5−
12 complexes.

3.7 Thermodynamic Properties and Dynamical Stability

Next, we investigated the thermodynamic properties of the spintronics materials based on the following expressions.

θD =
h

kB

(
3N

4πV0

) 1
3

νD (4)

νD =

[
1

3

(
2

ν3l
+

1

ν3t

)]− 1
3

(5)

νl =

(
3K + 4G

3ρ

) 1
2

and νt =

(
G

ρ

) 1
2

(6)

Here, θD is the Debye temperature which can be computed using Debye sound velocity (νD) as shown in Eq. 4. In
this expression, N , V0, and ρ are the number of atoms, volume, and density of the unitcell, respectively. Moreover, h
represents Plank’s constant, and kB indicates Boltzmann’s constant. νD depends on the longitudinal (νl) and transverse
(νt) sound velocities as explained by Eq.5[57]. νl and νt velocity components can be determined based on the K and G
mechanical properties mentioned in Table 4. According to Eq. 4, 5 and 6 illustrate that θD increases if the K and G
mechanical properties increase.

We studied Cv against temperature T employing the Phonopy code [44]. In this code, Cv is calculated based on the
following formula,

Cv =
∑
qj

kB

(
ℏωqj

kBT

)2
exp(ℏωqj/kBT )

[exp(ℏωqj/kBT )− 1]2
, (7)

where each phonon frequency of q wave vector at jth phonon band index is indicated by ωqj and ℏ is the reduced
Plank’s constant [44]. Table 6 The G values of A6MO6 materials are significantly higher than that of BaCuF6. Thus,
this can be the main reason for having considerably lower θD in BaCuF6 compared to the other three materials. It
is clear from Fig. 9 that the Cv of BaCuF6 is much smaller than that of the A6MO6 materials. The Cv of BaCuF6 is
176.15 JK−1mol−1, whereas Cv > 1100 JK−1mol−1 for A6MO6 materials at 300 K temperature. We also investigated
the phonon dispersion of the spintronic materials as shown in Fig. 10. It evidences that those materials are dynamically
stable at 0 K temperature as there are no imaginary frequencies in the plots.
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Table 6: The thermodynamic properties of the Spintronic materials. The density (ρ), longitudinal (vl), transverse
(vt) and average (vD) sound velocities, Debye temperature (θD) and the specific heat capacity at 300 K (C300K

v ) are
mentioned.

Material ρ (gcm−3) vl (ms−1) vt (ms−1) vD (ms−1) θD (K) C300K
v (JK−1mol−1)

BaCuF6 0.97 6,503.12 2,090.90 2,951.59 216.30 176.15
Na6TcO6 0.69 11,157.54 6,467.14 8,358.68 630.87 1110.31
K6TcO6 0.64 9,832.71 5,855.63 7,509.42 508.64 1147.89
Rb6IrO6 0.45 11,627.59 6,821.87 8,786.82 571.34 1152.78
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Figure 9: The specific heat capacity (Cv) of the spintronic materials as a function of temperature (T ).
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Figure 10: Phonon dispersion of the spintronic materials. Absence of negative frequencies implies that the materials are
dynamically stable.

4 Conclusion

DFT based screening approaches for discovering materials have been widely used in materials science, which, however,
is not suitable for finding new magnetic materials as it consumes too much computational resources: finding the
magnetic ground state of a single magnetic material is much more computationally demanding due to it has multiple
antiferromagnetic configurations. Here, we developed a computational framework to de novo design novel spintronic
materials by combining GAN, machine learning classifiers, and DFT. We first studied the chemical space to find the
most probable combination of elements for transition metal elements-based magnetic materials. We found that ternary
transition metal-based oxides and fluorides are most likely to have a magnetic ground state. Next, we developed
the deep neural network(DNN) and Random forest classifier models to screen candidate magnetic materials out of
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the CubicGAN-generated ternary structures. Both models achieve accuracies around 90%, while DNN shows less
over-training. Thus, the DNN model can work well for screening new magnetic materials. Out of 141 ternary materials
generated by CubicGAN, 45 were classified by our DNN model as magnetic materials. Our DFT studies discovered that
three transition metal-based oxides and one fluoride were stable magnetic compounds. Furthermore, we considered NM,
FM, three AFM collinear (AFM1, AFM2, and AFM3), and two AFM noncollinear (AFM4 and AFM5) configurations
to find the minimum energy states. We found that Na6TcO6, K6TcO6, and BaCuF6 are ferromagnetic compounds while
Rb6IrO6 is an antiferromagnetic material with AFM1 configuration. Na6TcO6 and BaCuF6 are half metals where only
spin-up bands contribute to electron conduction. Moreover, A6MO6 materials hold higher thermal capacity (Cv) than
that in BaCuF6. At 300 K temperature, Cv ≈ 1100 JK−1 mol−1 for A6MO6 materials, whereas Cv ≈ 176 JK−1 mol−1

for BaCuF6. Our work demonstrates the significant potential of the new generation of deep learning and machine
learning-based generative design frameworks in discovering novel functional materials. As for future work, GAN
models can be developed to generate potential spintronic materials with all types of space group symmetries. Focusing
on fluoride and oxide ternary materials can enhance efficiency, as they have a high probability of being magnetic
materials. In the future, binary and quaternary materials can also be studied to generate new spintronic materials.

5 Data Availability

The structures of the materials generated from CubicGAN model can be downloaded from Carolina Materials Database
at http://www.carolinamatdb.org/. The crystallographic information files (CIF) of the stable structures are included in
the Supporting Information.

6 Code Availability

The source code of the classifier can be obtained from github at https://github.com/dilangaem/SpinAI.
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