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Expanded ensemble predictions of absolute binding free
energies in the SAMPL9 host–guest challenge

Matthew F. D. Hurley,‡a Robert M. Raddi,‡a Jason G. Pattis,a and Vincent A. Voelza

As part of the SAMPL9 community-wide blind host–guest challenge, we implemented an expanded
ensemble workflow to predict absolute binding free energies for 13 small molecules against pil-
lar[6]arene. Notable features of our protocol include consideration of a variety of protonation and
enantiomeric states for both host and guests, optimization of alchemical intermediates, and analysis
of free energy estimates and their uncertainty using large numbers of simulation replicates performed
using distributed computing. Our predictions of absolute binding free energies resulted in a mean
absolute error of 2.29 kcal mol−1 and an R2 of 0.54. Overall, results show that expanded ensemble
calculations using all-atom molecular dynamics simulations are a valuable and efficient computational
tool in predicting absolute binding free energies.

1 Introduction
The Statistical Assessment of Modeling of Proteins and Ligands
(SAMPL) host–guest challenges provides a unique opportunity
to benchmark the accuracy and performance of computational
methods for binding free energy prediction.1–6 Like other blind
challenges,7–9 the SAMPL host–guest challenges ensure unbiased
assessment of various methods by curating experimental mea-
surements to be released only after predictions are made.

1.1 Molecular simulation approaches in previous host–guest
challenges

In the most recent SAMPL host–guest challenges, molecular sim-
ulation approaches using classical fixed-charge molecule mechan-
ics (MM) force fields were the most widely used, although polar-
izable force field models, MM/PBSA, quantum mechanical (QM),
and empirical machine learning approaches have seen increasing
use.6 Of the MM-based methods, alchemical free energy calcula-
tions10,11 using double-decoupling schemes remain popular, with
a variety of sampling strategies employed, ranging from Hamilto-
nian replica exchange (HRE),12 non-equilibrium switching,13,14

and expanded ensemble methods.15,16 Other methods have in-
cluded SILCS,17 attach-pull-release (APR),18, weighted ensem-
ble approaches,19 umbrella sampling with HRE,20 and Gaussian
accelerated MD (LiGaMD).21

The SAMPL6 host guest challenge focused on three hosts: two
octa-acid, and one cucurbit[8]uril. An evaluation of the results,4

and careful comparison of reliability and efficiency of various
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methods,22 identified several problems in simulation methodolo-
gies that continue to pose a challenge in predicting absolute bind-
ing free energies by molecular simulation, including: sensitivity
to simulation parameters and preparation protocols, proper es-
timation of prediction uncertainties, and long correlation times
that may need to overcome due the rearrangements of water
molecules in the binding cavity. Nevertheless, alchemical meth-
ods for absolute binding free energy calculations were found
to give reasonably accurate estimates, with enhanced-sampling
strategies generally leading to increased convergence.

The SAMPL7 host–guest challenge focused on the binding affin-
ity of several small molecules to cucurbituril derivatives CB[n],
CB-Clip and TrimerTrip, as well as octa-acid (OA) and exo-
octa-acid.5 The results showed that polarizable force fields like
AMOEBA23 can outperform non-polarizable force fields in these
systems. SAMPL8 examined the host cucurbit[8]uril with guests
that can be categorized as “drugs of abuse”: methamphetamine,
fentanyl, morphine, hydromorphone, ketamine, phencyclidine,
and cocaine.24 SAMPL8 also examined tetramethyl octa-acid
(TEMOA) and tetraethyl octa-acid as host molecules.25

The latest challenge, SAMPL9, is focused on a water-soluble pil-
lar[n]arene host called WP6 and 13 guest molecules (Figure 1).
Because WP6 is highly carboxylated and expected to be anionic
in solution neutral pH, and most of the guests are highly cationic
salts, a careful treatment of electrostatics needs to be considered
for accurate prediction of binding affinity. WP6 has many applica-
tions: it can been used as a chiral switch or for chiral sensing due
to its planar chirality.26 When WP6 is combined with a organic
pyridinium salt guest, a change in pH can induce organization
into nanotubes and vesicles.27
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Fig. 1 Molecular structures of the pillar[6]arene host (WP6) and guests (G1–G13).

1.2 A test of expanded ensemble methods for absolute bind-
ing free energy

1.2.1 The expanded ensemble approach

Here, we use the SAMPL9 challenge to test an expanded ensemble
(EE) approach to calculating absolute binding free energies. In
the EE approach, double-decoupling alchemical free energy cal-
culations are performed in which non-bonded interactions with
the guest are turned off, in both host-bound and host-unbound
states. Each of these calculations is performed by defining a se-
ries of N alchemical intermediates, parameterized by a coupling
parameter λ = 0→ 1, and performing Markov chain Monte Carlo
(MCMC) to periodically accept or reject proposed transitions from
one intermediate thermodynamic ensemble parameterized by λk

to another parameterized by λl , in the presence of constant bias
potentials gi applied to each thermodynamic ensemble i. If the gi

are equal to the negative free energies − f̃i of each ensemble, then
the probabilities of forward (k→ l) and backward (l→ k) transi-
tions will be equal.15 Therefore, the EE approach can be thought
of as a procedure to adaptively learn the values of the biases that
will lead to a uniform random walk in λ -space. (In this sense,
EE is similar in spirit to sampling methods like Metadynamics,28

which seeks to adaptively learn a bias potential along a collective
variable (CV) surface to achieve uniform sampling. Indeed, re-
cent work by Hsu et al. uses PLUMED to perform joint sampling
over both CVs and alchemical λ -space.29)

In our EE approach, we use the Wang-Landau flat-histogram
method30 to adaptively learn the (reduced) free energy surface
− f̃ (λ ). This method (which has long been available in GRO-
MACS31) works by storing a histogram of counts hi tracking the
number of visits to each thermodynamic ensemble i. At each it-
eration t of the MCMC algorithm, the histogram for the current
ensemble i is incremented, and the bias potential gi = − f̃i is up-

dated, according to
h(t+1)

i ← h(t)i +1

f̃ (t+1)
i ← f̃ (t)i −δ

(1)

where δ is positive value called the Wang-Landau (WL) incre-
ment. This has the effect of penalizing repeated visits to the ther-
modynamic state i, and making it more likely for MCMC moves to
other thermodynamic states to be accepted. Once the histogram
of visited states is sufficiently “flat”, then the WL increment is
scaled by a factor α < 1 (in this study, α = 0.8), the histogram
counts are reset to zero, and the process continues. The histogram
is deemed sufficiently flat when the ratio of all histogram counts
hi to the mean h̄ = (∑i hi)/N satisfy the criterion η < hi/h̄ < η−1,
where η is called the Wang-Landau (WL) ratio (in this study,
η = 0.7).

In a typical EE simulation, this process continues until the WL
increment dips below a preset tolerance (in this study, δ < 10−5);
after this point, the biases f̃i are held constant, while the simu-
lation can continue. In practice, however, this stopping criterion
may not be reached within a reasonable simulation time. In our
approach, we collect samples of f̃i after some convergence cri-
terion is reached (δ < 0.01, for example) and estimate the (re-
duced) free energy of the alchemical transformation as the aver-
age value of ∆ f̃ = f̃N− f̃1 for samples taken after this convergence
criterion is reached. Since free energies are only defined up to
some additive constant, throughout the EE simulation the value
of f̃1 is subtracted from all f̃i as an offset, making ∆ f̃ = f̃N .

A distinct advantage EE approaches have over alternative meth-
ods is the ability to sample all alchemical intermediates in a
single simulation. Other methods such as λ -dynamics32,33 also
have this ability, but EE is conceptually simpler to implement
(EE is essentially an MCMC wrapper outside of the molecular
dynamics integration, whereas λ -dynamics requires a special-
ized integrator). Given this simplicity and self-containment in
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a single simulation, EE approaches are ideal for large-scale vir-
tual screening on distributed computing platforms such as Fold-
ing@home,34 where simulation instances are necessarily asyn-
chronous and only loosely uncoupled to other instances. Indeed,
EE was recently deployed on Folding@home35 to screen potential
inhibitors of the SARS-CoV-2 main protease as part of the COVID
Moonshot initiative.36)

1.2.2 Progress and challenges in expanded ensemble ap-
proaches for binding free energies

Expanded ensemble (EE) methods have been used previously in
SAMPL challenges, mostly through the capabilities coded into
GROMACS by the Shirts group.31 Debuting EE in the SAMPL4
challenge, Monroe et al. found that despite problems in force field
parameterization for host–guest interactions, GROMACS/EE was
able to produce well-converged free energy estimates.16 While
GROMACS/EE methods were not entered in the SAMPL6 blind
challenge, the Shirts group tested the reliability and efficiency of
GROMACS/EE on SAMPL6 targets against comparable methods
and found favorable accuracy and convergence.22

Despite the promise of EE approaches, they remain relatively
underutilized, arguably due to a few technical complications that
have impeded their wider adoption. One problem is that EE meth-
ods are sensitive to the initial choice of the λk; poor choices of
alchemical intermediates lead to poor MCMC acceptance prob-
abilities, and extremely long convergence times. To ameliorate
this problem, here we have developed a simple scheme to opti-
mize the schedule of λk values, by equally spacing ensembles in
thermodynamic length,37,38 similar to the “thermodynamic trail-
blazing” method of Rizzi et al.39 (see Methods).

Another issue with EE is uncertainty due to the run-to-run vari-
ation of the predictions.22 This is a feature of any stochastic sam-
pling algorithm, but exacerbated in EE by the saturation of the er-
ror that is known to occur with Wang-Landau flat-histogram sam-
pling.40 Because the histogram increment scales as a power law
(∼ α−t where t is the simulation time and α is some positive con-
stant), the free energy estimate will converge to a fixed value, but
this value may still contain error. This problem can be alleviated
by scaling the histogram increment as ∼ t−1,41 but this method
is not yet implemented in GROMACS, nor has its performance
and efficiency been thoroughly characterized for alchemical free
energy calculations. In the meantime, we have dealt with this is-
sue by performing many parallel replicates of a given alchemical
transformation using distributed computing, and compute esti-
mates as averages of individual trials, as further described below.
Using this improved strategy, Zhang et al. recently showed that
EE methods can predict relative binding free energies of Tyk2 in-
hibitors to within a mean unsigned error (MUE) of 0.75 ± 0.12
kcal mol−1.42 The current SAMPL9 host–guest challenge repre-
sents the first time these improved protocols have been tested for
predicting absolute binding free energies.

2 Methods
Absolute binding free energies for host–guest interactions were
calculated using a double-decoupling method in which the al-
chemical free energies of decoupling the guest in the presence

and absence of the host were computed using expanded-ensemble
molecular simulations performed on the Folding@home dis-
tributed computing platform34,35. A three-part workflow was im-
plemented to (1) prepare systems, (2) perform expanded ensem-
ble simulations on Folding@home and Temple University high-
performance computing (HPC) clusters, and (3) analyze the re-
sults.

2.1 System preparation

2.1.1 Microstate enumeration

To estimate the ionization state the WP6 host at pH 7.4, we con-
sidered the fluorescence emission spectra vs. pH published in Yu
et al.27 A titration curve fit to this data suggest a pKa of 6.997
and a Hill coefficient of 3.519, for a model where approximately
4 protons cooperatively dissociate upon varying the pH from 2 to
11. Based on this result, and the absence of other information, we
assumed that the most populated microstate of WP6 at pH 7.4 has
a -12 net charge, and that titration to lower pH cooperatively adds
4 protons to form a -8 net charge state. Therefore, we considered
three different protonation states of the WP6 host: -12, -10, -8 net
charge, each with equal numbers of deprotonated groups above
and below the pillarene ring (Supporting Figure S1), as the host
microstates likely contributing most in the binding reaction.

Reference ionization states for each guest molecule were deter-
mined by OpenEye’s Quacpac module43, which selected the most
energetically favorable ionization state at pH 7.4. While the ref-
erence state is likely to have the greatest population, we addition-
ally considered a larger ensemble of enumerated microstates that
may be populated near pH 7.4. This resulted in between 1 and
4 microstates per guest molecule. We also considered each enan-
tiomer of chiral guest molecules as separate microstates (Support-
ing Figure S2).

2.1.2 Simulation preparation

System preparation was performed semi-automatically using a se-
ries of in-house Python scripts. Force field parameters for nearly
all hosts and guests used OpenFF-2.0.0.44,45 The only exception
to this was for the guest G4. This molecule contained a silane
group for which OpenFF parameters were unavailable. We in-
stead used GAFF-2.1146 for G4. Partial charges for all molecules
were assigned using AM1-BCC47.

Initial poses for receptor-ligand systems were prepared by
docking guests to the host via OpenEye’s OEDocking48 module
using the FRED score function49 and saving the minimum-energy
structure. Systems were solvated with TIP3P water and neu-
tralizing counterions at 137 mM NaCl. Ligand-only simulations
used a 3.5 nm cubic box, while receptor-ligand simulations used
a 4.5 nm cubic box. Ligand-only simulations were minimized and
equilibrated at 298.15 K using GPU-accelerated OpenMM version
7.5.050; subsequent production runs were performed in GRO-
MACS (see below). Receptor-ligand were minimized and equili-
brated at 298.15 K in GROMACS version 2020.331 using position
restraints with a force constant of 800 kJ mol−1 nm−2 all heavy
atoms of the host, and all atoms of the guest. Equilibration was
performed in the isobaric-isothermal ensemble.
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2.2 Expanded Ensemble simulation

Absolute binding free energies computed using expanded-
ensemble (EE) methods have been used previously in SAMPL
challenges,16,22 and our methods closely follow these efforts,
with some innovations inspired by recent work42.

The free energy ∆GL of decoupling the guest from solvent in
a ligand-only (L) simulation was calculated using 101 alchemical
intermediates in which Coulomb (coul) interactions are turned
off, and then van der Waals (vdW) interactions. The free energy
∆GRL of decoupling the guest from a receptor-ligand (RL) simula-
tion was calculated using 101 alchemical intermediates in which
a restraint potential is turned on, then Coulomb interactions are
turned off, and then vdW interactions. The restraint potential
was a harmonic distance restraint between the center of mass of
the six benzene rings of the WP6 host (6 rings × 6 carbons = 36
atoms), and all non-hydrogen guest atoms, with a force constant
of 800 kJ mol−1 nm−2, and an equilibrium distance of 0 nm. The
absolute free energy of binding ∆G is estimated as

∆G = ∆Grest +∆GL−∆GRL, (2)

where ∆Grest is the free energy cost of restraining the guest from
standard volume to a restricted volume, determined by the force
constant 800 kJ mol−1 nm−2, which we compute to be ∆Grest =
+6.42 RT . The −∆GRL term includes the free energy of removing
this restraint.

2.2.0.1 Optimization of alchemical intermediates To avoid
sampling bottlenecks in the EE algorithm that would impede
the efficient exploration of all alchemical intermediates, we im-
plemented a custom optimization algorithm called pylambdaopt
(Zhang et al., in preparation). This algorithm works in two steps:

First, a trial EE simulation is performed with initial guesses for
the Coulomb and vdW λi values. From this trial simulation, es-
timates of the thermodynamic length |ℓ(λk+1)− ℓ(λk)| between
each pair of intermediates are made.37,38 The thermodynamic
length is estimated as the variance in the distributions P(∆uk,k+1),
where ∆uk,k+1 = uk+1− uk is the change in (reduced) energy in-
curred by bringing a sample from thermodynamic ensemble k to
thermodynamic ensemble l.39

Second, cubic spline fitting is used to find a continuous and
differentiable function ℓ(λ ) that interpolates the ℓ(λi). Steepest-
descent minimization is then used to find new values λ ∗i that min-
imize the loss function L = ∑k |ℓ(λk+1)− ℓ(λk)|2. This results in
a series of λ ∗i values that are equidistant from each other in ther-
modynamic length. This procedure equalizes the EE acceptance
probabilities, ameliorating MCMC sampling bottlenecks with poor
transitions. The optimized λ ∗i values are then used for production
runs. An example of lambda values before and after optimization
is shown in Figure 2.

For this study, simulations of each guest-only (L) and host-
guest (RL) system (using the -12 charge state of the host) were
run for 24 hours in order to sample ∆ukl distributions over the
course of an EE simulation, using an initial guess for the sched-
ule of λ -values that control the alchemical transformation. From
this information, optimized λ -values were obtained and used for
production-run EE simulations on the Folding@home distributed
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Fig. 2 An example of λ -value optimization using pylambdaopt. The top
panel shows λi values before optimization. The bottom panel shows the
optimized λ ∗i values. Since the vdW decoupling transformation occurs in-
dependently and subsequent to the Coulomb decoupling transformation,
pylambdaopt treats the transformation using a single λ = 0→ 2, where
λ = 0→ 1 represents Coulomb decoupling and λ = 1→ 2 represents vdW
decoupling.

computing platform34,35.

For each set of host–guest microstate pairs, fifty parallel
production-run EE simulations were performed in GROMACS
2020.3. Simulations used a timestep of 2 fs, 0.9 nm cutoffs for
long-range electrostatics, LINCS constraints on H-bonds,51 with
frames were saved every 50 ps. The Wang-Landau method and
Metropolized-Gibbs move set was used for EE simulations. The
initial Wang-Landau (WL) bias increment was set to 10 kBT , and
was scaled by a factor of 0.8 every time the histogram of sampled
intermediates was sufficiently flat.

2.3 Analysis of free energies and uncertainties

The convergence of the EE predictions was monitored by the pro-
gressive decrease of the Wang-Landau (WL) increment. We con-
sidered the EE simulations to be sufficiently converged if the WL
increment went below 0.01 and 0.02 for the L and RL simulations,
respectively. Free energies were computed as the average of all
free energy estimates reported after the convergence threshold
was reached, across all converged trajectories. In the case that
less than five trajectories reached convergence according to our
criteria, the five (or more) trajectories with the smallest WL in-
crements were used to compute the average free energy. These
instances were few, and only included affected calculations for
guests G5 and G8.

Uncertainties in our computed binding free energies ∆G (in
units of RT ) come from the standard deviations from the sample
mean of computed ∆GL and ∆GRL values across multiple parallel
simulations.

2.3.1 Binding free energy predictions consider the full set of
host and guest microstates.

Our final ranked predictions of the absolute binding free energy
∆G for each host–guest interaction (in units RT ) are computed as

∆G =− ln
∑i∈bound e−∆Gi

∑i∈unbound e−∆Gi
, (3)
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where each ∆Gi are either host-bound or host-unbound guest mi-
crostate free energies. Free energy differences relating bound
and unbound microstates are provided by the double decoupling
EE free energy simulations.52,53 Free energy differences relating
protonation states of the WP6 host were given by our model of
cooperative titration of 4 protons at pH 6.997. At pH 7.4, this
model rewards the removal of two protons by -1.856 RT . Free
energy differences between the protonation microstates of the
guests are provided by microstate pKa estimates obtained using
the luoszgroup pKa predictor from Qi Yang et al.54.

Model uncertainties σmodel were calculated as

σmodel =
(

σ
2
∆G +σ

2
sys

)1/2
(4)

where σsys = 0.6857 RT is assumed to be independent systematic
error arising from the reported 1.7 kJ mol−1 accuracy of OpenFF
2.0.044.

2.4 Overview of our SAMPL9 submissions

In addition to our ranked SAMPL9 submission (“Voelz rnkd”),
we also submitted two unranked SAMPL9 submissions of bind-
ing free energies (in units kcal mol−1). One included all samples
of the free energy estimates throughout the simulations, regard-
less of the WL convergence (“Voelz all”). The other used only the
-8 net charge microstate of the host (“Voelz RL8”). Results for
these submissions can be found in Table 1.

One minor complication was that we were unable to fix errors
in our G8 simulations with WP6 in charge states of -8 and -10
before submitted results were due. Therefore, the ∆Gbinding for
G8 is simply our ∆Gbinding prediction for G8 with WP6 in the -12
charge state.

An interactive webpage of all EE simulations (WL incre-
ment over time and estimated free energy over time, for
all alchemical transformations) and our computed binding
free estimates are available at https://vvoelz.github.io/
sampl9-voelzlab/. Below we discuss the results for our ranked
submission.

3 Results and Discussion

3.1 Performance of expanded ensemble approach for abso-
lute binding free energy prediction

Here, we present absolute binding free energies for each mi-
crostate, describe the overall performance statistics for our sub-
missions, and review some of the interesting cases found during
our analysis. Furthermore, we will discuss a pitfall in our restraint
protocol and how corrections were made to counter this mistake.

Absolute binding free energy predictions were calculated for
the full set of host and guest microstates (Figure 3), as described
in Methods. The various charge states of the host and guest are
given in Supporting Table 1). For the majority of guest molecules,
binding free energies calculated for simulations of the host in a
charge state of -8 give lower values of ∆Gbinding than hosts in -10
and -12 charge states. Typically, absolute binding free energies
across microstates are dominated by the -8 host state, with the
exception of G4. Binding free energy predictions for G4 across

microstates span ∼5 kcal mol−1 and yield relatively large uncer-
tainty (∼ 1 kcal mol−1). As mentioned in Methods, G4 was pa-
rameterized using GAFF-2.11, which may be an influencing factor.
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Fig. 3 (a) Predicted free energies of host–guest binding using single mi-
crostates i (∆Gbinding = ∆Grest+∆GL,i−∆GRL,i) between host microstates
and guest microstates. Error bars are colored by guest (see panel b) and
data markers are colored by microstate index (see legend). (b) ∆Gbinding
in kcal mol−1 for each guest to WP6 (colored by guest) calculated ac-
cording to Equation (3)

.

Overall performance of our ranked submission gave an over-
all mean absolute error (MAE) of 2.29 kcal mol−1, root mean
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Table 1 Absolute binding free energy predictions and uncertainties for our three submissions.

Group Exp Exp std Voelz rnkd Voelz rnkd std Voelz RL8 Voelz RL8 std Voelz all Voelz all std
WP6-G1 -6.44 0.01 -1.32 0.43 -2.00 0.53 -1.63 0.53
WP6-G2 -10.44 0.05 -13.76 0.15 -15.40 0.21 -13.74 0.21
WP6-G3 -7.92 0.02 -8.76 0.16 -9.08 0.16 -8.75 0.16
WP6-G4 -6.41 0.01 -10.87 1.11 -11.14 0.26 -10.78 1.10
WP6-G5 -5.39 0.02 -4.10 0.26 -6.27 0.30 -4.00 0.32
WP6-G6 -7.98 0.04 -8.81 0.66 -8.59 0.65 -9.20 0.61
WP6-G7 -6.98 0.02 -9.39 0.29 -9.24 0.22 -9.38 0.33
WP6-G8 -5.96 0.01 -2.85 0.60 -2.85 0.60 -2.25 0.63
WP6-G9 -6.24 0.05 -9.13 0.34 -8.91 0.23 -9.14 0.36
WP6-G10 -9.82 0.03 -9.96 0.24 -11.19 0.21 -9.88 0.29
WP6-G11 -6.17 0.01 -8.32 0.22 -8.08 0.13 -8.32 0.27
WP6-G12 -10.87 0.02 -13.90 0.21 -15.16 0.28 -13.91 0.22
WP6-G13 -8.47 0.04 -8.68 0.18 -10.11 0.14 -8.68 0.18

RL8 submission uses our RL12 prediction for G8 due to the issue mentioned in the methods section.

squared error (RMSE) of 2.74, and an R2 of 0.54 (Figure 4),
which falls just under the median of all SAMPL9 submissions (Ta-
ble 2). As we discuss below, our “Voelz all” predictions were able
to best rank the binding free energies, and our “Voelz RL8” pre-
dictions had the most correlation with experimental observations
across all SAMPL9 submissions.

Table 2 Summary of participant performance in free energy predictions
over all host–guest systems. Statistics include the correlation coefficient
(R2), mean absolute error (MAE), mean standard error (MSE), root-mean
squared error (RMSE). Ponder and Voelz submissions had the highest R2

values, while the U-Barcelona submission had the lowest absolute error.

R2 MAE MSE RMSE
group
Voelz rnkd 0.535 2.292 7.527 2.743
Voelz RL8 0.618 2.618 9.049 3.008
Voelz all 0.541 2.338 7.619 2.760
Ponder 0.582 1.930 7.165 2.677
U-Pittburgh 0.396 1.933 6.176 2.485
U-Barcelona 0.141 1.600 4.159 2.039
Procacci-DSSB 0.162 3.752 19.632 4.431
Procacci-VINARDO 0.003 2.007 8.461 2.909

3.2 Reliability and convergence of EE predictions
In previous SAMPL host–guest challenges, it was noted that seem-
ingly small differences in free energy protocols could non-trivially
affect predictions.22 One sign that our expanded ensemble proto-
col is relatively robust in this aspect is the consistency of predic-
tions across our ranked and unranked submissions (Table 1).

Our approach was able to predict the affinity some guests better
than others (Table 1 and Figure 4) Our most accurate predictions
were made for G10, G13, G6, G3, G5; moderately accurate pre-
dictions were made for G11, G7 and G9, and poor predictions
(greater than 3.0 kcal mol−1 error) for G12, G8, G2, G4, and G1.

Our predictions varied the most from other groups’ for guests
G1 and G13. Our expanded-ensemble approach was able to make
very accurate predictions for G13, where most groups were un-
able to do so (Figure 5). Traces of expanded ensemble free energy
estimates ∆GL for guest-only decoupling display excellent conver-
gence (Figure 6). Traces of free energy estimates ∆GRL for host–

a

b C

Fig. 4 (a) Comparisons of predicted (ranked submission) vs. experimen-
tal binding free energies for all host–guest systems. Annotations report
the correlation coefficient (R2), mean absolute error (MAE), mean stan-
dard error (MSE), root-mean squared error (RMSE). (b) Comparisons
for the “Voelz RL8” submission. (c) Comparisons for the “Voelz all” sub-
mission.

guest decoupling show more variance across parallel expanded
ensemble simulations, but with a robust sample mean (Figure 7).

Our most inaccurate predictions were made for G1, with more
error than all other groups. In our ranked submission, we in-
correctly reported the ∆G of binding for G1 as −0.78± 0.43 kcal
mol−1, due to a error converting from RT to kcal mol−1 (this er-
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Voelz rnkd
Voelz RL8

Voelz all
Ponder

U-Pittburgh
U-Barcelona

Procacci-DSSB

Procacci-VINARDO

WP6-G1
WP6-G2
WP6-G3
WP6-G4
WP6-G5
WP6-G6
WP6-G7
WP6-G8
WP6-G9

WP6-G10
WP6-G11
WP6-G12
WP6-G13

MAE

5.12 4.44 4.81 0.88 3.76 2.03 1.36 1.27

3.32 4.96 3.30 1.13 2.06 0.95 2.56 3.10

0.84 1.16 0.83 1.79 1.58 0.08 3.08 0.83

4.46 4.73 4.37 1.66 1.94 0.21 1.30

1.29 0.88 1.39 0.34 6.11 0.19 1.81 1.02

0.83 0.61 1.22 2.58 1.82 0.99 3.62 0.08

2.41 2.26 2.40 2.05 0.82 0.66 4.52 0.18

3.11 3.11 3.71 4.76 0.94 3.57 5.64 1.25

2.89 2.67 2.90 2.00 0.04 2.57 5.56 2.26

0.14 1.37 0.06 0.35 0.88 0.65 2.88 2.82

2.15 1.91 2.15 0.60 2.53 0.99 2.13 0.86

3.03 4.29 3.04 0.10 0.93 4.49 5.93 2.54

0.21 1.64 0.21 6.86 1.73 1.70 9.47 8.57

2.29 2.62 2.34 1.93 1.93 1.60 3.75 2.01

Abs. Difference in kcal mol 1

2

4

6

8

Fig. 5 Predictions of host–guest binding free energies submitted by all SAMPL9 participants. The color map and numerical values inside the cells
are the absolute difference in predictions against experiment (in kcal mol−1). The last row is the mean absolute error (MAE) over all host–guest
predictions for each group.

a b

1000 200 300
simulation time (ns)

150 250 35050 1000 200 300
simulation time (ns)

150 250 35050

Fig. 6 Convergence of expanded ensemble (EE) estimates of guest-only decoupling free energies ∆GL for G13. Superimposed are (up to) fifty
independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment vs. simulation time, with a dotted line denoting our 0.02
convergence threshold. (b) EE estimates of ∆GL vs. simulation time, with a dotted line denoting the final estimate.

ror was only made for G1). The correct value is -1.32 kcal mol−1,
which we will continue to use in the analysis reported here.

G4 was our next-most inaccurate prediction. One source of er-
ror might be inaccurate force field parameters for the trimethylsi-
lyl group (we were forced to parameterize this molecule using
GAFF due to the absence of silane parameters in OpenFF). An-
other source of error for G4 may arise from poor sampling. We
inspected the simulation trajectories for this guest and found slow
binding events of sodium cations to the WP6 binding pocket while
nonbonded interactions for guest were decoupled, which hin-
dered re-coupling of the guest due to steric clashes with ions in-
side the host. Because of the long timescale needed for coupling
and decoupling, cycling between the two endpoints impeded, ul-
timately hindering convergence and causing additional variance
in the predicted free energies.

While binding free energies for G6 were accurately predicted,

the convergence behavior of the expanded ensemble method for
this guest highlights the importance of adequate conformational
sampling. Inspection of simulated trajectories reveals slow tran-
sitions between two metastable states for G6, corresponding to
boat and chair conformations. The timescale of these transitions
are slow enough that the expanded ensemble approach exhibits
hysteresis as it tries to learn the free energy profile for one con-
formation, then the other. Traces of ∆G over the course of the
expanded ensemble trajectory show large variability (± 10 RT ),
giving rise to a large uncertainty in ∆G. This behavior can be seen
most clearly in the ligand-only (L) trajectories (Figure 8) but can
also be seen in the receptor-ligand (RL) trajectories (Figure 9).
This finding presents a strong argument for the use of multiple
independent trajectories in estimate binding free energies, since
the average between these states over all trajectories allows us to
predict the converged free energy very early into sampling.
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simulation time (ns)
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Fig. 7 Convergence of expanded ensemble (EE) estimates of host–guest decoupling free energies ∆GRL for G13. Superimposed are (up to) fifty
independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment vs. simulation time, with a dotted line denoting our 0.02
convergence threshold. (b) EE estimates of ∆GRL vs. simulation time, with a dotted line denoting the final estimate.

a b

1000 200 300
simulation time (ns)

150 25050 1000 200 300
simulation time (ns)

150 25050

Fig. 8 Convergence of expanded ensemble (EE) estimates of guest-only decoupling free energies ∆GL for G6. Superimposed are (up to) fifty independent
trajectories (distinguished by color). (a) The Wang-Landau (WL) increment vs. simulation time, with a dotted line denoting our 0.02 convergence
threshold. (b) EE estimates of ∆GL vs. simulation time, with a dotted line denoting the final estimate.

a b

1000 200 300
simulation time (ns)

400 500 1000 200 300
simulation time (ns)

400 500

Fig. 9 Convergence of expanded ensemble (EE) estimates of host–guest decoupling free energies ∆GRL for G6. Superimposed are (up to) fifty
independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment vs. simulation time, with a dotted line denoting our 0.02
convergence threshold. (b) EE estimates of ∆GRL vs. simulation time, with a dotted line denoting the final estimate.
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3.3 Correcting for the free energy bias of restrained ligands

In preparing this manuscript, we realized there was an error in the
way harmonic restraints were implemented during the expanded
ensemble simulations. Our computed value of ∆GRL was sup-
posed to include the free energy of adding a harmonic restraint,
but the simulations were performed with the restraint always on.
This means that our submitted estimates contain a systematic pos-
itive bias, as they do not include the favorable reward of turning
off the restraint from −∆GRL. This reward should be small for
well-chosen restraint potentials, but large in situations where the
restraint doesn’t match the equilibrium pose(s) of the guest.

To correct for this bias, we performed two additional simula-
tions for each ligand in which we altered the restraint poten-
tial to 400 kJ mol−1 nm−2, and then 0 kJ mol−1 nm−2. These,
combined with our original simulations with 800 kJ mol−1 nm−2

restraints, allowed us to use the Multi-state Bennett Acceptance
Ratio (MBAR)55 to estimate the (negative) free energy reward of
removing the restraint. The corrected ∆G values (Figure 10) show
a shift in our estimates towards higher binding affinities that are
relatively minor (between -0.45 and -1.80 RT , i.e. between -0.26
and -1.1 kcal mol−1), with two exceptions: G1 and G5.

Fig. 10 Estimated correction terms to our submitted free energy predic-
tions for each guest, to correctly account for restraint biases.

G1 and G5 show restraint bias corrections of 3.76 and 6.86 kcal
mol−1 respectively. In analyzing the updated free energy predic-
tion of G1, we observe that our predicted free energy estimate
is improved considerably, resulting in an absolute error of only
1.36 RT , or 0.8 kcal mol−1. In contrast, the large restraint bias
correction for G5 increases the absolute error in our prediction of
binding free energy from 0.76 to 3.3 kcal mol−1. Further anal-
ysis of the trajectory data for G5 reveals a bimodal distribution
of displacements of the guest from the host center-of-mass, and
time courses showing slow transitions between guest poses near
the top and bottom rims of the host (Figure 11). This suggests
that the harmonic potential used, which restrains the guest at the
center of the host, is a poor choice for this guest. Sampling issues
thus may be a reason for the large prediction error for this guest.

Fig. 11 Transitions between a number of host-bound states are shown
for G5. (a) A trace of the z-axis displacement of the guest center-of-mass
(COM) with respect to the host COM shows free energy minima at both
+/- edges of the host, in addition to those near the center of mass. (b,c,
and d) depict Conformations representative of binding for G5 are shown
for poses near the (b) top, (c) middle, and (d) bottom of the host.

Overall, when our predictions of host–guest binding free en-
ergies are updated with the restraint bias corrections, agreement
with experiment worsens by all metrics (R2 coefficient, RMSE and
MAE, Figure 12). The uncorrected predictions tend to underesti-
mate ∆G (i.e. predict tighter binding), and the correction exacer-
bates this trend.

In our study, we did not attempt Boresch-style restraints.56

While this restraint scheme gives an exact expression for the re-
straint free energy, we deemed it very difficult to choose the an-
chor points a priori, especially given the our imprecise knowledge
of the binding pose (which is likely to be highly dynamic). For
an excellent recent comparison of restraint schemes for absolute
binding free energies, we refer the reader to Clark et al.57

In SAMPL6, which also featured highly carboxylated hosts—
octa-acid (OA) and tetramethyl octa-acid (TEMOA)—participants
using GAFF/AM1-BCC with TIP3P consistently underestimated
∆G (i.e. predicted tighter binding),4 similar to our results. These
results point to the general need for better treatment of electro-
statics. In this particular, perhaps consideration of other host pro-
tonation states (-9, -7, -6, etc.) may have resulted in improved
predictions. Despite having the least amount of net charge, host
protonation states of -8 tended to predict the greatest decoupling
free energies, suggesting subtle preferences of guests for ionic
host sidechains and their arrangements with counterions may be
important.

3.4 Comparison of the convergence of EE biases versus
MBAR free energy estimates

In their initial work exploring the performance of EE in the
SAMPL4 host–guest challenge, Monroe et al.16 waited until
the biases were no longer updated, and then used the subse-
quent “production-run” simulation to collect samples at each
lambda value as input for the Multistate Bennett Acceptance Ra-
tio (MBAR) free energy estimator.55 This method assumes that
EE biases have converged to the true free energies. Only then
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Fig. 12 Changes to our submitted predicted before (red) and after (green)
corrections are applied to correctly account for restraint biases. Left:
“Voelz RL_8” submissions vs. experiment. Right: “Voelz ranked” sub-
missions vs. experiment.

will the MCMC acceptance criteria produce samples that are cor-
rectly drawn from their equilibrium distribution at each lambda
value.

In contrast, the protocol used in this study is to wait until the
Wang-Landau flat-histogram increment reaches a critically small
threshold, and then collect values of the still-updating biases,
which vary about some sample mean. An interesting question
to consider: is it possible to use these nearly-equilibrated sam-
ples as input to the MBAR estimator? Technically, the samples
are out of equilibrium, but perhaps the MBAR estimator might
have some unforeseen advantages. MBAR estimates free energies
using computed values of ∆ukl for every sample in the simula-
tion (the change in the reduced energy for a configuration sam-
pled in ensemble k brought to ensemble l) for all ensembles l.
The multi-ensemble sampling approach of MBAR tends to give
smaller estimated uncertainties than other methods,58 which is
highly desirable considering the large fluctuations in our free en-
ergy estimates that sometimes persist beyond 100 ns (e.g. see
Figs. 7 and 8).

To compare the performance of EE vs. MBAR estimates made
from expanded ensemble sampling, we use as an example the G13
host–guest decoupling EE simulations (see Fig. 7). Note that in
this case, MBAR analysis is possible because we used simulation
settings that periodically saved all values of ∆ukl to the GROMACS
dhdl.xvg file. The EE approach does not strictly require this, but
it is often very useful despite the computational expense.

Just as with our EE protocol, estimates are made for each tra-
jectory, using only samples taken after the WL increment reaches
a value below 0.02 (our criterion for the RL simulations). Once
this threshold is reached, some additional time is needed before
the EE simulations sample all every lambda value. Once this is
achieved, the sampled values of ∆ukl are sorted by ensemble k
and used as input to the MBAR estimator. In this way, an MBAR
estimate of the free energy (∆G)m and its uncertainty (σ∆G)m is
obtained for each independent trajectory m.

To compare EE and MBAR estimates, we compute as a func-
tion of simulation time: the free energy estimate ∆G, its standard
deviation across trajectories σ∆G, and the standard error of the

mean (SEM). If there are M viable trajectories, the free energy
estimate is calculated as

∆G =
1
M

M

∑
m=1

(∆G)m,

For EE, the standard deviation across trajectories is calculated
as the standard deviation from the sample mean:

σ∆G =

√√√√ 1
M

M

∑
m=1

(∆Gm−∆G)2.

For MBAR, we use the uncertainty of each MBAR estimate
(σ∆G)m to calculate the standard deviation across trajectories:

σ∆G =

√√√√ M

∑
m=1

(σ∆G)2
m.

For both EE and MBAR, the standard error of the mean (SEM)
is calculated as

SEM =
σ∆G√

M
.

Note that for both EE and MBAR estimates, we do not cor-
rect for time-correlated samples by subsampling the input data,
as is often recommended to avoid artificially low uncertainty es-
timates. Based on our experience, correlation times would likely
correspond to slow conformational rearrangements that can oc-
cur around the 100-ns timescale, resulting in few samples after
subsampling. Instead, we are using the variation across indepen-
dent simulation trajectories to provide an estimate of this uncer-
tainty.

A comparison of the EE and MBAR estimates as a function of
simulation time are shown for 10 independent trajectories in Fig-
ure 13. Interestingly, while EE estimates for each trajectory con-
tinue to stochastically fluctuate past 200 ns (Figure 13a), MBAR
estimates for each trajectory are smooth and robust once suffi-
cient input data is achieved (Figure 13b). Run-to-run variation of
MBAR estimates, however, still vary considerably across trajecto-
ries. This suggests that regardless of the estimator used to calcu-
late ∆GRL, each trajectory has not reached a global convergence,
likely due to slow conformational motions that limit sampling.

Comparisons of the average ∆GRL across trajectories computed
from the EE biases (Figure 13c) versus the MBAR estimator (Fig-
ure 13d) show no clear advantage of using the MBAR estimator
over the EE biases for free energy estimation. The standard devi-
ation across trajectories σ∆G, and the standard errors in the mean
(SEM) are highly similar over the length of the trajectories (Fig-
ures 13e–f).

Our interpretation of these results is that, despite the favorable
properties of the MBAR estimator, the out-of-equilibrium sam-
pling present in the EE simulations violate the sampling condi-
tions of the estimator, limiting its performance. A related question
we do not address here is how a non-equilibrium work (NEW) es-
timator might perform given input data from from EE trajectories,
that is a subject for future work.
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Fig. 13 Comparison of the convergence of free energies from expanded ensemble simulations, calculated using the EE biases versus the MBAR free
energy estimator. Ten independent EE trajectories for the decoupling of guest G13 from the WP6 (-12) host (see Figure 7) were used for these tests.
(a) Free energies ∆GRL over time for each trajectory estimated from the EE biases. Traces change from transparent to solid lines as each trajectory
reached the δ < 0.02 convergence criterion. (b) Free energies ∆GRL over time for each trajectory estimated from MBAR. The appearance of each trace
over time occurs when both the convergence criterion is met, and there are samples from each thermodynamic ensemble. Mean free energy estimates
averaged over each trajectory, standard deviations σ∆G across trajectories, and standard errors of the mean, shown over time for the EE bias estimator
(c,e) and MBAR estimator (d,f).
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Table 3 Spearman rank correlation coefficients of SAMPL9 host–guest
participant rankings.

Group rs p-value
Voelz rnkd 0.385 0.094
Voelz RL8 -0.335 0.869
Voelz all 0.451 0.059
Ponder 0.418 0.076
U-Pittburgh -0.176 0.717
U-Barcelona 0.236 0.212
Procacci-DSSB 0.247 0.202
Procacci-VINARDO -0.407 0.915

3.5 Comparison of rank ordering with other challenge par-
ticipants

Virtual screening in drug discovery often relies on the ability of
computational models to correctly rank order predicted binding
affinities of ligands. To evaluate the extent to which submit-
ted predictions correctly ranked the binding affinity of guests G1
through G13 compared to experiment, we used the Spearman
rank correlation coefficient,59

rs = 1−
6∑

n
i=1 d2

i
n
(
n2−1

) , (5)

where di are differences in (integer) ranks for each guest, and
n = 13 is the number of ranked items (Figure 14 and Table 3). Ac-
cording to this metric, our “Voelz all” submissions give the most
correctly ranked predictions compared to experiment, with a rs

value of 0.45. To gauge the statistical significance of this result,
we computed one-sided p-values by using 100,000 random rank
perturbations to non-parametrically construct the null distribu-
tion of rs. With a p-value of 0.059, the “Voelz all” ranking is
not quite significant enough to reject the null hypothesis that the
measured value of rs is due to random chance.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
rs, the Spearman rank correlation coefficient
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Fig. 14 Spearman rank correlation coefficients rs for participants in
the SAMPL9 host–guest challenge, in comparison with the null distri-
bution P(rs) constructed from the nonparametric sampling of randomly
permuted ranks.

4 Conclusion
From the results of our participation in the SAMPL9 host–guest
challenge, we conclude that expanded ensemble (EE) simulations

are up to the task of accurately and efficiently predicting absolute
binding free energies, achieving a mean absolute error of 2.29
kcal mol−1 for 13 small molecules against pillar[6]arene. Our im-
proved EE protocol includes pre-optimization of the schedule of
alchemical intermediates, and collecting statistical distributions
of predicted free energies from parallel distributed computing.
We expect further sampling improvements may still be possible,
through more judicious choices of harmonic bias, and better an-
ticipation of configurational transitions that occur on timescales
similar to EE convergence times. Better treatment of electrostat-
ics for acidic hosts, and general force field improvements also
bode well for future implementations of EE methods for absolute
binding free energy estimation.

Code, Data, and Submissions
SAMPL9 host–guest challenge instructions, experimental data,
submissions and analysis are available at https://github.com/
samplchallenges/SAMPL9. An interactive web-page contain-
ing of all the raw data for computed binding free estimates
as well as additional figures for all three submissions is avail-
able at https://vvoelz.github.io/sampl9-voelzlab/. All of
the code involving microstate enumeration, system preparation,
optimization of alchemical intermediates, and analysis can be
found in our GitHub repository: https://github.com/vvoelz/
sampl9-voelzlab.
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