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Perspective on: Coupled-cluster Theory. The Evolution To-
ward Simplicity in Quantum Chemistry

Rodney J Bartlett,∗a

Coupled-cluster theory has revolutionized quantum chemistry. It has provided the framework to
effectively solve the problem of electron correlation, the main focus of the field for over 60 years.
This has enabled ab initio quantum chemistry to provide predictive quality results for most quantities
of interest that are obtainable from first-principle calculations. The best that one can do in a basis
is the ‘full CI,’ the exact solution of the non-relativistic Schrödinger equation. or, if need be, the
relativistic Dirac equation. With due regard to converging the basis set and adequate consideration
of higher clusters and relativity in a calculation, virtually predictive results can be obtained. But
in addition to its numerical performance, coupled-cluster theory also offers a conceptually new,
many-body foundation for the theory that should be appreciated for all practitioners. The latter is
emphasized in this perspective, leading to the ‘Evolution Toward Simplicity’ in the title. The ultimate
theory will benefit from the several features that are uniquely exact in coupled-cluster theory and its
EOM-CC extensions.

Forward.

The following contribution is a perspective on coupled-cluster
theory, not a review. The latter has already been published in
Reviews of Modern Physics1 where most of the theory is sum-
marized including its diagrammatic and algebraic equations with
copious references, and many numerical examples presented to
show the power and limitations of the theory as it appeared in
2007. Other reviews include Paldus on the early days of the the-
ory,2 and another in the same source on its more recent evolu-
tion.3 This perspective instead focuses on the fundamental as-
pects of CC theory and its EOM-CC extensions that should be
appreciated by all quantum or computational chemists— theory
developers or those making applications—- with no diagrams or
even extensive references to detract attention. Instead, most of
the questions addressed are fundamental to the many-body for-
mulation and understanding of modern day quantum chemistry
that leads to the ’evolution toward simplicity’ in the title, and
that helps to point the way for future developments. An attempt
has been made to make all points and derivations herein self-
contained.

The latter parts of this perspective address new developments
in CC/EOM-CC that have emerged since the 2007 review, that
serve to further address the ‘Evolution toward Simplicity’ theme.
These include time-dependent EOM-CC to obtain the electronic
spectra of molecules from core excitations to high-lying Ryd-
berg states, new treatments for doubly excited states that correct
this well-known limitation in EOM-CCSD, some accommodations
for certain multi-refererence issues and their characterization,4

and applications to infinite systems from polymers to crystalline

solids.5 An important future application will be applying unitary
CC (UCC) for quantum computers.6,7

A. Essentials

Quantitative quantum chemistry is a recent phenomenon. It
is ultimately defined by the numerical results of a full CI (FCI)
calculation in a complete basis set that is the solution of the non-
relativistic Schrödinger equation. Though not achievable in prac-
tice, one can come close to this ideal by doing FCI calculations,
subject to basis set extrapolations toward completeness, or per-
haps, using explicit F128,9 methods in the FCI. Of course, this
too is seldom possible for any but small problems because the
FCI itself scales as ~Mn where n is the number of electrons and
M is the dimension of the basis set. But nonetheless, for finite
systems FCI defines an unambiguous objective for a quantitative
prediction of molecular electronic structure, energetics, and spec-
tra, that would provide results in the absence of any experimental
data.

Fundamental to chemistry is the concept of molecular orbital
(MO) theory, whose one-electron spin orbitals are successively
occupied to define the first approximation to the electronic struc-
ture of an atom or molecule. These orbitals can be viewed as the
solutions of a one-particle Schrödinger-like equation,

he f f (1)ϕp(1) = εpϕp(1)∀p, (1)

of which the first n spin-orbitals, i,j,k,l ...n, are considered occu-
pied with orbital energy, εi, while the remainder, M-n, a,b,c,d...
are unoccupied. Unspecified indices are p, q, r, s. The occupied
set defines a single determinant, the simplest possible Fermionic
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wavefunction, while the remaining unoccupied orbitals define
one particle levels that would be partly occupied by n-electrons
in a FCI wavefunction. A common situation is that the occupied
orbitals are doubly occupied with α and β spin, but by using spin
orbitals both open and closed shells are allowed in all equations.
The latter are written in terms of orbital creation operators, p̂†,
and annihilation ones, p̂ , (thêsymbol will be eliminated when
there is no confusion about p and q’s role as operators or in-
dices). The excitation operators are naturally in normal order,
{a†i},{a†ib† j}, ... Thus, for any n-electrons,

Φ0 = A(ϕ1(1)ϕ2(2)...ϕn(n)) = |0⟩ (2)

Φ
a
i = {a†i}|0⟩ (3)

Φ
ab
i j = {a†ib† j}|0⟩ (4)

... (5)

Φ
abcd...m
i jkl...n = {a†ib† j...m†n}|0⟩. (6)

Pictorially, these orbital energy levels are shown in Fig. 1, where
the space of n-occupied orbitals with projector, P, consists of one
determinant and Q represents the space spanned by excitations
into the unoccupied, virtual orbitals.

In each category of excitation all possible electrons from occu-
pied orbitals that can be promoted to all possible unoccupied or-
bitals with the same spin provide the single, Q1, double, Q2, triple,
Q3, up to the n-fold, Qn, excitations of the full CI, that define the
Hilbert space for the problem. In the most general case of open-
shells, the orbitals will be ’spin-polarized’ meaning there will be
separate alpha and beta spin orbitals. In the following all formal
expressions are written in terms of spin-orbitals as the most expe-
dient and general approach to open and closed shells. In actual
programs, these spin orbital equations are always integrated over
spin to provide an αα,ββ , and αβ part of the equations with ob-
vious further simplifications for closed shells. Thus, open-shell
calculations are never more than three times more time consum-
ing than a closed shell calculation.

The FCI wavefunction is then,

ΨFCI =C0Φ0 +∑
i,a

Ca
i Φ

a
i + ∑

i j,ab
Cab

i j Φ
ab
i j + · · ·+

∑
i jk··· ,n,abc,··· ,m

Cabc...m
i jk...n Φ

abc...m
i jk...n

(7)

summed over all distinct determinants, with its coefficients, {Cq},
to be determined variationally. The latter leads to the secular
equation,

HC = CE (8)

and describes all the electronic states of the system. It offers an
upper bound to the experimental ground state energy, and via the
Hylleraas, Unheim, MacDonald theorem, an upper bound to each
excited state in turn, guaranteeing that all states are properly non-
interacting, i.e., ⟨ΨS|H|ΨT ⟩ = ESδST . Of course, though FCI pro-
vides the objective, in practice, ’truncated’ CI methods are used,
meaning the wavefunction is limited to subsets of possible excita-

tions like all single and double exitations, CISD, or those chosen
to provide correct separation of a molecule into its fragments,
or address near-degeneracies, as in MR-CISD. Such a truncation
will be denoted as ‘TCI’ to distinguish it from FCI. Regarding the
bounding property of the FCI or TCI, an upper bound to a total
energy is far from a bound on the energy differences fundamental
to chemistry that provide all observables. Even two states of the
FCI, like the ground state and its first excited state, do not provide
a bound on their excitation energy difference, and this will be the
case for all spectroscopic properties, or heats of reaction, heats
of ionization, formation, etc. So recognize that the variational
principle that has been the cornerstone of the treatment of the
correlation problem since the time of Hylleraas and its realization
in TCI, is not a necessary condition on the theory. In fact, it can
be a handicap. In this perspective, we will see many more rea-
sons why CI methods should be avoided in quantitative electronic
structure calculations.

Whereas TCI uses a linear ansatz for a wavefunction, as in Eqn.
7, but truncated, coupled cluster (CC) theory is based upon an
exponential of excitation operators. The essence is that the CC
wavefunction for an electronic problem is

ΨCC = exp(T̂ )|0⟩= exp(1+ T̂1 + T̂2 + T̂3 + ...)|0⟩ (9)

where the T operator puts in single excitations, T̂1 = ∑ ta
i a†i, dou-

bles T̂2 =
1
4 ∑ tab

i j a†ib† j, triples T̂3 =
1
6 ∑ tabc

i jk a†ib† jc†k, ...etc. In par-
ticular, for the FCI which can be written as

ΨFCI = [C0 +Ca
i a†i+Cab

i j a†ib† j+ ...]|0⟩= [C0 +Ĉ1 +Ĉ2 +Ĉ3 + ...]|0⟩
(10)

with summation over repeated indices, the exponential provides
a cluster representation and decomposition,

Ĉ1 = T̂1 (11)

Ĉ2 = T̂2 + T̂ 2
1 /2 (12)

Ĉ3 = T̂3 + T̂1T̂2 + T̂ 3
1 /3! (13)

Ĉ4 = T̂4 + T̂ 2
2 /2+ T̂1T̂3 + T̂ 2

1 T̂2/2+ T̂ 4
1 /4! (14)

... (15)

In intermediate normalization as chosen here, C0 = 1. The expo-
nential operator immediately provides the result that the wave-
function of N local units, A, B, C,..., such as a cluster of sepa-
rated water molecules or a collection of localized electron pair
bonds is decomposed into N pieces, provided the vacuum |0⟩ =
|0A⟩ |0B⟩ |0C⟩ · · ·

exp(T̂ )|0⟩= exp(T̂A + T̂B + T̂C + ...)|0A0B0C....⟩

= exp(T̂A)|0A⟩exp(T̂b)|0B⟩exp(T̂C)|0C⟩...
(16)

As the exact, or FCI wavefunction , is invariant to any orbital
transformation, the condition of locality is easy to enforce by
orbital transformations.. The product condition on the Fermi
vacuum, |0⟩ = |0A0B0C⟩ · · · could be ensured by a lattice of non-
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Ground state Single

excitation

Double

excitation

Triple

excitation

i

j

k

a

b

Occ. space

Virtual space

n

P Q1 Q2 Q1

......

CID, CISD, CISDT, CISDTQ, ... Full CI

MBPT2, MBPT3, MBPT4, MBPT5, ... Full CI

CCD, CCSD, CCSDT, CCSDTQ... Full CI

Fig. 1 Depiction of selected examples describing the various excitation manifolds. Red arrows represent the excited electrons. Electrons from all
possible occupied orbitals are excited into all possible unoccupied orbitals in the full CI, Qn

interacting units or units represented by localized orbitals.

The above immediately leads to the energy obtained from left
projection of the Schrödinger equation subject to intermediate
normalization, ⟨0|exp(T )|0⟩= 1,

⟨0|H exp(T )|0⟩ = E (17)

= EA +EB +EC + ... (18)

(19)

being decomposed into units to accompany the wavefunction
product,

exp(T )|0⟩= exp(TA)|0A⟩exp(Tb)|0B⟩exp(TC)|0C⟩... (20)

When the local units are identical, one obtains for the lattice,

EL = NEA (21)

ΨL = ∏
A=1,N

exp(TA)|0A⟩= N exp(TA)|0⟩ (22)

showing linear scaling in N. The property of ‘correct’ scaling with
size in electronic systems is termed ‘size-extensivity’,10 as any ‘ex-
tensive’ property like the energy has to scale linearly with the
number of units. There are few elements in electronic structure
theory that are more fundamental than this condition.

Contrast this with TCI for the simple problem of a lattice of N
non-interacting H2 molecules whose energy is NE(H2). For just

two electrons, CID, is the full CI, (assume Brueckner orbitals to
make single excitations vanish). Obviously, the exact wavefunc-
tion for the whole lattice should be the product of the individual
CID for each H2, but because CI wavefunctions consist of only lin-
ear terms, this product is not a CID wavefunction. It would be
possible to get an exact CI solution for two H2 molecules, four
electrons, by adding CI quadruple excitations to CID. For three
molecules (6 electrons) one would need hextuple excitations, and
so forth. But the simplicity of these product terms hardly requires
constructing the FCI. As seen above, this feature is intrinsic to
CC theory, as a CCD wavefucton is the FCI for H2, but CCD is
also the FCI for all products of non-interacting H2 wavefunctions!
As the first approximation to most of chemistry is the concept of
separated electron pair bonds, the relevance is apparent.

In terms of the CC wavefunction, the usual (non-unique) choice
is to obtain the T amplitudes by projection of the Schrödinger
equation onto the space of all necessary excitations. For CCD, this
means all double excitations. While CCSD would mean all single
and double excitations, continuing to CCSDT, CCSDTQ, then P
and H. (Forgive me for mixing Greek and Latin but this provides
a unique description through hextuple excitations.)

The CCD equations are then a set of homogeneous equations,

⟨Φab
i j |(H −E)exp(T2)|0⟩= 0,∀a,b, i, j (23)

or equivalently in the ‘connected’ form, obtained by left multipli-
cation of the Schrödinger equation by exp(-T2) before projection
onto double excitations,
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⟨Φab
i j |exp(−T2)H exp(T2)|0⟩= 0,∀a,b, i, j (24)

The latter tells us that the quantity,

H = exp(−T2)H exp(T2) = H +[H,T2]+
1
2
[[H,T2]T2]

+
1
3!
[[[H,T2]T2]T2]+

1
4!
[[[[H,T2]T2]T2]T2]

= [H exp(T )]C

= H +(HT2)C +(HT 2
2 /2)C +(HT 3

2 /3!)C +(HT 4
2 /4!)C

(25)

consists of only connected terms (those that have indices in com-
mon between H and T’s for second-quantized operators) as all
other terms would not survive the commutators. Note also that
H terminates after four T2 operators because the electrostatic
Hamiltonian only has one and two-particle terms as shown be-
low, meaning only a four-fold commutator can survive regardless
of the rank of Tn.

To evaluate the tab
i j contributions to exp(T2)|0⟩, one solves Eqn.

24, using the normal-ordered H and the generalized Wick’s theo-
rem,

H = ∑
p,q

fpq{p†q}+ 1
4 ∑

p,q,r,s
⟨pq||rs⟩{p†q†sr}+ ⟨H⟩ (26)

W =
1
4 ∑

p,q,r,s
⟨pq||rs⟩{p†q†sr}

⟨pq||rs⟩=
∫

d1
∫

d2ϕ
∗
p(1)ϕ

∗
q (2)(

1−P12

r12
)ϕr(1)ϕs(2)

= ⟨pq|rs⟩−⟨pq|sr⟩

(27)

This provides the non-linear algebraic or diagrammatic expres-
sions for tab

i j ,shown explicitly elsewhere1 that need not be re-
peated here. A useful conceptual form for the CCD equations
is

0 = ⟨Φab
i j |H +HT2 +HT 2

2 /2|0⟩C,∀i. j.a.b (28)

consisting of a linear in T2 and a non-linear term, which becomes

ε
ab
i j tab

i j = ⟨ab||i j⟩+ ⟨Φab
i j |WT2 +WT 2

2 /2|0⟩C,∀i. j.a.b (29)

where
ε

ab
i j = fii + f j j − faa − fbb (30)

For the common case of canonical HF orbitals where fpq =fpqδpq =

fpp = εp and fia = focc,virt = 0, this term reduces to differences of
HF orbital energies. For any other orbitals, the focc,virt = fia ̸= 0,
while fi j and fab have to also be retained or transformed away via
a semi-canonical transformation. The former is pertinent to local-
ized orbitals and easy to incorporate into the iterative solution as
the semi-canonical transformation would undo the localization.
But for other cases the semi-canonical transformation makes all
equations look like the canonical orbital case, except that the fia
remains as part of the perturbation with W, easily adding non-HF

or general orbital corrections to CC calculations.

Because of the natural cluster decomposition of the FCI pro-
vided by the exponential wavefunction, the lead second-order
term that arises from CI quadruple excitations, C4, in CC is
simply, 1

2 T2
2|0⟩. Yet, it depends on the numbers of double exci-

tations instead of the number of quadruple excitations. That
number is ~n2M2 and its contraction with H introduces an
~n2M4computational dependence. Taking a small problem like
n=10, M=100, the ratio of C4 evaluation to 1

2 T2
2 evaluation is

~106. A larger problem like 100 electrons in 1000 basis functions
would give ~1010.

The difference between CCD and CCDQ would measure the
effect of connected T4. In some cases it is significant, but 1

2 T2
2

in CCD accounts for all terms in fourth-order Rayleigh-Schrödinger
perturbation theory (RSPT4) or MBPT4 from CI quadruple excita-
tions. Physically, the correlation effects from such product terms
are really rather simple compared to those that would require T4.
As the exponential ansatz of CC theory is simply a re-statement
of the linked-diagram theorem (LDT) of Brueckner and Gold-
stone,11 all terms are guaranteed to be ‘linked’ in diagrammatic
language, as long as T is connected. But unlinked diagrams re-
main in any TCI approximation but are not in the FCI result and
are responsible for the TCI upper bound. It is true that a full
inclusion of all C4 terms like in CISDTQ, is almost computation-
ally equivalent to including the connected T4 clusters in CCSDTQ,
but not numerically because of the retention of unliked diagrams.
There is no need to be intimidated about ‘many-body-diagrams’
that rigorously define what is meant by ‘linked’ and ‘unlinked’,
and their subsets, ‘connected’ and ‘disconnected’. See Fig. 2 for a
pictorial description.

Anyone who is comfortable with RSPT can easily connect it to
‘many-body perturbation theory’ (MBPT), all of whose terms are
defined to be ‘linked’ for the energy and wavefunction. It sim-
ply means that in any order of RSPT, all possible excitations are
included in the calculations, like in FCI, but now limited to a par-
ticular order; then one has MBPT. This means MBPT2 and MBPT3
consist of only singles and double excitations, and only the lat-
ter for HF orbitals. Once one gets to MBPT4, singles, doubles,
triples, and quadruples are included. But the latter comes solely
from 1

2 T 2
2 , The first appearance of connected T4 occurs in MBPT5.

The defining equations of MBPT are usually written as

ΨMBPT = |0⟩+
∞

∑
k=1

(R0H)k|0⟩L (31)

where the ‘L’ stands for ‘linked’. The resolvent operator, R0 =

(E0 −H0)
−1Q, pre-supposes a separation of the Hamiltonian into

H=H0 +V, so that the full resolvent’s, R=(E-H)−1Q = R0 +R0V R,
expansion (and re-organization of terms to correspond to a spe-
cific order) provides the traditional RSPT expansion.12 But MBPT
is much simpler. Unlike normal RSPT, there are no renormaliza-
tion terms in the linked form. The reason is that all renormaliza-
tion terms correspond to ’unlinked’ diagrams so there are none
allowed by the theorem. The energy is obtained from projection
of the Schrödinger equation,
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Fig. 2 Diagram A is unlinked since it has a ’closed’ disconnected part. Any such closed part comes from the energy, and the LDT (Linked Diagram
Theorem) eliminates all of them from the start. Diagram B is a ’linked’ but ’disconnected’ wavefunction contribution to the LDT, as the two parts are
both open. Such terms arise from the LDT as in 1

2 T 2
2. Diagram C is a linked, connected contribution to a T2 cluster amplitude. The T2 amplitudes

equations depend solely upon such connected terms.

EMBPT = ⟨0|H|0⟩+E(2)+E(3)+E(4)+ .. (32)

E(k+1) = ⟨0|H(R0H)k|0⟩L. (33)

In the simplest case of a canonical HF reference function, E0 =
n
∑

i=1
εi,and H0 = ∑

n
i=1 f̂ (i),where the Fock operator, f̂ ,provides

H 0 = ∑ fpp{p† p} = εp{p† p}. This special case of MBPT is some-
times called Moeller-Plesset PT, but that name hides its far more
significant origin in the linked-diagram theorem of MBPT. To
close the cycle, one sees that the LDT

ΨMBPT = |0⟩+
∞

∑
k=1

(R0H)k|0⟩L = exp(T )|0⟩= ΨCC (34)

EMBPT = ⟨0|H|0⟩+E(2)+E(3)+E(4)+ ... (35)

ECC = ⟨0|H exp(T )|0⟩= ⟨0|exp(−T )H exp(T )|0⟩= ⟨0|H|0⟩ (36)

Hence, it should be apparent that CC theory provides an infinite-
order summation of MBPT, and that both rest upon the LDT that
greatly simplifies solutions of the Schrödinger equation. The in-
terplay between infinite-order CC and finite order MBPT is inte-
gral to mny developments in CC applications like CCSD(T).13

Clearly, in the FCI there are no contributions from ’unlinked’ di-
agrams or, equivalently, RSPT renomalization terms, all of which
are of the form, ∆ES(Ψ), meaning an energy, represented by
closed diagrams is multiplied by some function of the wavefunc-
tion’s overlap, as in Figure 2A. The solutions to an eigenvalue
equation for TCI inevitably has an energy dependence. Hence,
the retention of unlinked diagrams in TCI approximations is why
they offer upper-bounds to the energy and is why TCI approxima-
tions are not size-extensive, a damning failure of CI theory. The
future of quantum chemistry demands the vastly improved ap-
proximations that emerge from the exponential wavefunction of
CC theory, making the LDT the cornerstone of the evolution to
simplicity’ in quantum chemistry.

The distinction between ‘connected’ and ‘linked’ in Fig. 2 is

that in CC theory all T operators are obtained from the commuta-
tor expansion in Eqn. (25), so the CC equations for the T ampli-
tudes have to be connected. But the linked wavefunction of Eqn.
16 that is exp(T)|0⟩ includes both connected and disconnected
terms, and both contribute to CC’s connected, energy indepen-
dent, algebraic equations. To the contrary, any TCI eigenvalue
equation is E dependent, except for the FCI. The reason it is not is
that ΨFCI = exp(T )|0⟩, without any limitation in T through Tn and
since all CC equations are E independent and the FCI corresponds
to the n-electron CC solution, its set of algebraic equations are in-
dependent of E. However, any TCI would be energy dependent,
as RSPT renormalization terms and unlinked diagrams have to be
retained until the FCI is reached.

Another interesting point regarding the H2 lattice problem is
that the four terms that arise from the non-linear term, 1

2 T 2
2 ,

drawn and interpreted in Fig. 3, includes two terms, A and B,
that can be identified as part of the CID wave function that must
be there to enable the method to give the exact CID for two elec-
trons, in the absence of single excitations.

The telltale feature that tells you A and B arise in CID is their
dependence upon occupied orbitals14 while the other two are
new terms that arise in CCD. and do not have this feature. This
is a place where only many-body diagrams provide this simpli-
fying theorem. The first set of terms are called ’Hole-Conjoint’
(HCJ) in our terminology. It means they have ’internal hole lines’
that connect two T vertices, while all other terms do not and are
thus, non-HCJ (NHCJ). This is a rigorous theorem. The first set
guarantees the exact FCI result for n electrons. Thus, if one only
includes A and B in CCSD then this defines 2CC, the exact so-
lution for two electrons now including the singles. Without the
singles, or with Brueckner orbitals, the same approximation has
been called ACP-4,5 by Paldus15,16 and ACCD by Dykstra.17 The
point is that neither full CCD or CCSD is required to guarantee ex-
act results for two electrons. 2CC does that with fewer terms and
adds the effect of T1 discussed below. And because only linked
terms are included in the approximation, 2CC has to be extensive
and exact for all non-interacting products of two electrons. It also
rigorously defines a size-extensive, (non-variational) CISD approx-
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Fig. 3 The interpretation of these diagrams is A=− 1
2 P(i j)⟨kl||cd⟩ tcd

kl tab
l j =− 1

2 P(i j)εlitab
l j ; B= 1

4 ⟨kl||cd⟩ tcd
i j tab

kl ; C =− 1
2 P(ab)⟨kl||cd⟩ tac

lk tdb
i j =− 1

2 P(ab)εdatdb
i j ;

D = 1
2 ⟨kl||cd⟩ tac

ik tbd
jl . All are summed over repeated indices.

imation that had often been a goal of prior work. Furthermore,
2CC is the only, correct, orbitally invariant CEPA18,19 approxima-
tion.

Also, importantly, and unlike CID in this example, 2CC must
separate correctly into non-interacting, closed-shell two-electron,
H2 terms. These are the two sides of the extensivity coin: one
pertains to scaling to NH2 units, while the reverse is the correct
separation of the NH2 cluster into its non-interacting units.

As is well-known, for separation into open-shells, the reference
function must also separate correctly, too. This is the reason one
often chooses UHF based CC results for such problems.

The breakdown into HCJ and NHCJ allows one to retain only
HCJ terms in CCSDT and CCSDTQ and still get the exact answer
for 3 and 4 electrons, i.e., 3CC and 4CC. These are less computa-
tionally demanding than CCSDT and CCSDTQ, as the NHCJ terms
that can be ignored come from non-linear CC terms. In particular,
3CC has been shown to do very well.20,21

The terms A and C have, unfortunately, sometimes been called
‘exclusion principle violating’ (EPV) diagrams that formally cre-
ate a particle in ‘time’, (the fictitious vertical axis of the diagram),
before another is deleted. But, of course, none of these terms vio-
late the exclusion principle. Many-body approaches simply count
terms differently. Unlike CI, where every determinant satisfies
the Pauli principle, many-body methods allow for the inclusion of
determinants that are exactly zero since they contain two iden-
tical orbitals, e.g., leading to the linked diagram structure. This
is why all CC/MBPT expressions written in terms of integrals are
conveniently represented in unrestricted particle and hole sum-
mations, unlike restricted sums like∑ ia̸= jb that can occur in CI.
This fact and its enormous computational simplification has not
always been fully appreciated, but are fundamental to many-body
theory and the ’Evolution Toward Simplicity."

B.The Evolution Toward Simplicity
(I) The first step is the Linked Diagram Theorem. This elim-

inates all unlinked diagrams that would still be in a TCI, even
though they would not be in the FCI. Their removal guarantees
better wavefunction approximations that depend upon higher ex-
citation terms that arise from the CC non-linear equations.

(II) The second step is the elimination of disconnected terms
in the CC amplitudes via the BCH theorem. This provides the

essential subset of amplitudes required in the FCI wavefunction
with no redundancy.

(III) The third simplification is that all approximations for CC
(and MBPT) will be size-extensive, meaning the correct wave-
function and energy for one unit is also the correct wavefunction
and energy for N non-interacting units.

(IV) As a consequence, the correct wavefunction for an infinite
system like a polymer or a crystal is extensive, providing mean-
ingful correlated results unlike those from TCI whose correlation
part has zero overlap with the exact wavefunction.

This follows because the exact solution for the infinite system
has to scale linearly with N. But any TCI has to scale as N2 or
higher because of its unlinked diagrams. Thus, the overlap for
the exact correlated solution compared to the TCI is zero.

C. Role of single excitations, T1.

Adding single excitations T1 to T2 , [T1,T2] = 0, defines ΨCCSD =

exp(T1)exp(T2)|0⟩ causing the CCSD equations to be of the form,

Q1D1T1|0⟩= Q1[ f+WT1 +( f +W )T2 +( f +W )T1T2 +( f +W )T 2
1 /2

+WT 3
1 /3!|0⟩C

(37)

Q2D2T2|0⟩= Q2[W +WT2 +( f +W )T 2
2 /2+WT1 +WT 2

1 /2

+( f +W )T 3
1 /3!+WT 4

1 /4!+( f +W )T1T2

+( f +W )T 2
1 T2/2|0⟩C (38)

The above shows the general structure of the CC equations for
the connected amplitudes, T1 and T2.22 Note, there is a poten-
tial contribution from the f operator as well as the two-electron,
W, operator. The diagonal part of the f operator in H0 = ∑p fpp

has already been taken to the left side of the equation, so that
Q1D1T1|0⟩ = Da

i ta
i means (fii − faa)ta

i and Q2D2T2|0⟩ = ( fii + f j j −
faa − fbb)tab.

i j . All other contributions are from off-diagonal fpq.

The antisymmetrized Goldstone diagrams we always use11 pro-
vide routine, unambiguous generation and uniquely translate
these general equations into precisely what they are in their alge-
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braically connected form, with line directions, all factors of two,
and their sign, and without redundancy! But these kind of details
are left to other sources11 in our attempt to convey what really
matters in CC theory without diagrammatic distractions.

CCSD has two prominent new features: (1) CCSD provides
the correct density through first order in MBPT, and along with
the initial contribution of T2, all second-order terms. (2) CCSD,
2CC, and higher calculations benefit from the theorem that
exp(T1)|0⟩ = |Φ⟩, meaning a new, orbital rotated determinant.
So any set of orbitals that constitutes the |0⟩ determinant can be
rotated to a new set of orbitals that defines a new determinant,
|Φ⟩. So in a sense, CCSD generates the orbitals it wants during the
calculation. (They can be extracted from the T1 amplitudes after
the calculation if of interest.) This makes it and higher variants
like CCSDT, CCSDTQ, etc. ‘insensitive’ to orbital choice, reaching
complete orbital invariance at the FCI limit. This orbital insen-
sitivity pertains to mixing occupied orbitals and virtual ones. Of
course, it is also true that any normal CC wavefunction CCSD,
CCSDT, ... will be invariant to mixing just occ-occ or virt-virt,
but the additional insensitivity of CCSD arises from its built-in
occupied-virtual rotations. CISD, e.g., will have occ-occ and virt-
virt invariance, but will be quite sensitive to occ-virt mixing mak-
ing the choice of orbitals far more important as in MCSCF, e.g.

To illustrate this insensitivity, consider an example from long
ago.23 The objective is to do CCSD for a DZP basis set start-
ing from a ‘back-of-envelope’ set of local minimum basis ‘bond-
orbitals’ for methane. The non-variational occupied orbitals are
composed of sp3 hybrids C(sp3)+H(1s), while the principal ‘anti-
bonding’ ones are C(sp3)-H(1s). From this reference, low-order
perturbation theory is used to get the energy. Hence, the term,
‘perturbed CI with localized orbitals’ (PCILO).24 Using its bond-
orbitals to define a minimum basis (MBS), non-variational ap-
proximation, while the rest of the basis set consists of the full
DZP basis minus the MBS and all functions are orthogonalized;
this MBS variational expectation value gives an energy of -40.080
au compared to its DZP variational SCF value of -40.200 au, a
117.55 kcal/mol difference. But, even starting from the MBS ap-
proximation, the correlated CCSD calculation exploits exp(T1) to
bring in the other basis set terms to converge quickly to a nu-
merical correlated result of -40.3732, a difference at convergence
compared to the DZP basis SCF-CCSD of only -0.66 kcal/mol. This
is the power of exp(T1)!

V. The fifth step in our evolution toward simplicity is flexibility
of orbital choice in correlated calculations.

Including exp(T1) in CC wavefunctions makes most orbital
choices in calculations relatively unimportant, and even less so,
once T3 and higher clusters are added, rapidly converging to the
complete orbital invariance of the FCI.

This numerical flexibility is not to say that choice of orbitals
has no interpretative value in quantum chemistry.25 Ruedenberg
proposes such sets of MCSCF or (FORS) orbitals and uses them
for interpretative value.

In fact, the idea of a ‘correlated orbital theory’26 that is derived
from CC/EOM theory is meant to provide a set of correlated ab
initio orbitals that can, arguably, best describe chemistry, concep-
tually and numerically.

One caveat to the numerical orbital insensitivity in V. is when a
reference determinant is qualitatively different like broken sym-
metry UHF solutions used in bond breaking or lies outside the
domain of the exp(T1) rotation. Then some calculations might
call for a different single determinant function. At the FCI limit,
however, even that would not matter. Some might think that
Kohn-Sham choices might be an improvement because the vir-
tual orbitals and occupied ones share the same potential, unlike
Hartree-Fock electrons where those in virtual orbitals feel a Vn

potential while those in occupied orbitals see a Vn−1 one. But not
in practice in CCSD and beyond since they span the same space
and all of it is used in a CCSD calculation at that level. If for some
reason the MO space is limited to a subset of virtual orbitals, then
there could be important numerical differences between HF and
KS CC, and other choices, particularly, for finite MBPT, where the
infinite-order effect of T1 might not be fully achieved.

This is a failing of the so-called QCISD and QCISD(T) meth-
ods27 where the CCSD exp(T1) exponential dependence on T1 is
truncated. The latter causes the dramatic three-orders of magni-
tude28 error in the IR-intensity of BeO compared to CCSD and
CCSD(T). 2CC like CCSD avoids any such pathological behavior
because all effects of exp(T1) are included, even though only two
of the four terms in the quadratic correction are required.

Another common failing of HF is the so-called ‘HF pathology’,
meaning that for metal systems, HF provides a band-gap (due to
the Vn and Vn−1 potential mentioned above), while KS would not,
so a KS reference might be expected to help for metal containing
molecules. But so far, there is little evidence that this matters
even in the recent near-metal CCSD and EOM-CCSD calculations
done for solids.29 Remember, it is well-known that ground state
RPA is applicable to metals, and it is an approximation to CCD
that consists of the sum of just ring diagrams. The key is that it
is infinite-order as are CC approximations. Finite MBPT will obvi-
ously fail for metals without further generalization that eliminate
any dependence on a band-gap, but infinite-order sums can be
built into MBPT, too, in other ways than CC.30

Related to this orbital insensitivity is the profitable use of what
we call, ‘quasi-restricted HF’, (QRHF) orbitals.31 In many applica-
tions the choice of orbitals from a variational HF source provides
it own pathologies. A good example is something as simple as
using coupled-perturbed HF (CPHF) to build in HF orbital relax-
ation subject to a perturbation like an electric or magnetic field.
In many cases the CPHF (or equivalently TDHF) equations turn
out to be singular for the perturbation giving a negative excitation
energy in TDHF and the lack of variational stability for the HF ap-
proximation. This makes using the CPHF relaxed orbital choice
unusable for CI, e.g. The solution in CCSD is to bypass the vari-
ational, relaxed HF solution by simply using the orbitals in their
unrelaxed form to define a QRHF determinant and allow CCSD to
put in the correct, orbital relaxed, correlation corrections as part
of its calculation without the intermediate step;32 something that
CI cannot do. Some easily generated QRHF choices would be or-
bitals from cations or anions to treat a neutral molecule or vice
versa or orbitals from an adjacent point on a PES.

Another recent example of flexible orbital choice is offered by
the singularities encountered between the five unit arene and six
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unit one.33 As shown in Fig. 4, the variational RHF solution in-
terchanges the occupied orbitals for the reference single deter-
minant and that affects the subsequent CCSD solution causing
it not to converge for the five-mer, while on either side of the
five-unit oligomer there is no convergence difficulty for the CCSD
calculation starting from the RHF reference. But using the QRHF
strategy one can pick a set of orbitals that does not have this vari-
ational artifact to provide a way to fix this discontinuity. If the dis-
continuity is ’real’ it should show up at the CCSD or a higher level.
Otherwise, it is an artifact of the independent particle model that
defines the reference determinant.

The solution here is to switch to a KS-DFT solution (PBE in this
case34) that does not show the orbital interchange, then allow
CCSD to use its power to ‘fix’ the non-variational orbitals as part
of the calculation to yield a correct CCSD result as Fig. 4 shows.
The CCSD energy difference between the RHF reference when
viable and PBE is virtually zero, but the artifactual discontinuities
are removed to provide a smooth dependence upon oligomer size.

Another interesting example is to use what we call ‘template’
orbitals35. That is we take a set of orbitals for some suitably
chosen system like a particular transition metal atom multiplet
and occupy them in various ways to describe the possible atomic
multiplets. Many would say such problems should be done with
MR methods because of the near degeneracy of the orbitals and
the multiplet energies, but the insensitivity of CCSD and beyond
to orbital choice allows such calculations to reliably sort out the
closely lying multiplet energies based upon one set per atom of
template orbitals, usually generated by using fractional occupa-
tion numbers to provide a set of five degenerate orbitals that can
be occupied to define any multiplet. In fact, having the same set
of orbitals facilitates obtaining accurate energy differences among
multiplets.

The flexibility of CCSD and its higher cluster analogs to use
any convenient set of orbitals opens the door to many correlated
applications that would be impossible in an orbital dependent
theory like CI, while moving closer to the ultimate FCI’s orbital
invariance.

In our work we routinely use natural, Brueckner, KS, QRHF,
template, and other choices of orbitals depending upon the objec-
tives of the calculation, but because of CCSD and higher approx-
imations’ orbital insensitivity, except in a few cases, there will be
little difference in the energy or density matrix4 because of the
role of T1. This also pertains to orbital optimized CC that might
show some potentially improved results at the CCD level36 but
seldom at the CCSD one. Of course, once normal CCD is trun-
cated in some manner as in ’pair restricted CCD’ (pCCD) discussed
later, there is no more orbital invariance and orbital optimization
is hoped to allow the truncated pCCD approximation to be better.
But note, such approximations are not extensive.

Before finishing with orbital choice, it should be noted that the
use of Frozen Natural Orbitals, FNOs, meaning the virtual orbitals
normally taken from a MBPT2 response density matrix, subject to
keeping the occupied orbitals fixed37 provides an orbital occu-
pation number that enables a truncation of up to ≈40% of the
virtual space to use in subsequent CCSDTQ... calculations.38 The
results for the CC energy, subject to using the MBPT2 energy in

the untruncated basis and then doing CCSDTQ... for the incre-
ment show very little loss in accuracy. This enables one to ob-
tain high-order CC results at effectively the basis set limit of the
MBPT2 calculation, but now truncated to fixed computational lev-
els like DZP, TZP, etc. to make the higher-order CC calculations
doable.39

The other orbital choice that has been shown to pay great divi-
dends in CC is the use of ‘pair natural orbitals’ PNO, as developed
by Neese and collaborators40. Unlike FNO’s, the non-orthogonal
PNO’s are not simply a natural orbital rotation but have to be
explicitly built into CC programs. But such orbitals enable the
realization of the linear scaling property that is implicit in size-
extensive CC methods as discussed at the start of this perspective,
but still require a computational strategy that achieves numerical
linear scaling.

Some alternative ’domain specific’ attempts at achieving nu-
merical linear scaling in CC have also been pursued41,42.

D. Density matrices and properties in CCSD.
The general treatment of properties in CCSD required new the-

ory, because previous work applied to variational wavefunctions
offered simplifications that do not apply for CC ones, where noth-
ing is variational: not the amplitudes, the orbitals, or the Gaus-
sian atomic basis set. Furthermore, even the concept of an expec-
tation value

⟨Ô⟩= ⟨0|exp(T †)Ôexp(T )|0⟩
⟨0|exp(T †)exp(T )|0⟩

= ⟨0|(exp(T †)Ôexp(T ))C|0⟩

(39)

though formally correct in the limit does not terminate,11 causing
it not to be defined in the traditional way when T is truncated. If
Ô is chosen to be the Hamiltonian, a little algebra and use of the
resolution of the identity shows that

⟨Ĥ⟩ =
⟨0|exp(T †)exp(T )exp(−T )Ĥ exp(T )|0⟩

⟨0|exp(T †)exp(T )|0⟩
(40)

=
⟨0|exp(T †)exp(T )(P+Q)exp(−T )Ĥ exp(T )|0⟩

⟨0|exp(T †)exp(T )|0⟩
(41)

= ⟨0|H|0⟩ (42)

When using the CC amplitude solutions for all possible Q space
excitations in the FCI,

0 = QH|0⟩ (43)

and eliminating the denominator from P=|0⟩⟨0|,

ECC = ⟨0|H|0⟩ (44)

So the equivalence between the expectation value and the closed
form energy is apparent in the untruncated case, but one wants
a general, closed-form for any property at useful truncations like
CCSD.

To define properties other than the energy, consider the deriva-
tives of ECC. In the usual development all properties can be ob-
tained by adding a perturbation of some sort to the Ĥ, that is
Ĥ(λ ) = Ĥ +λ Ô, and using the Hellman-Feynman theorem,
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Fig. 4 A) depicts the inherent discontinuity at the 5mer and 9mer as predicted by HF and that from the PBE KS-DFT functional. B) Illustration of
the CCSD results subject to the different reference functions.choices. Notably, all discontinuities are resolved.

∂ Ĥ(λ )/∂λ = ⟨Ψ|Ô|Ψ⟩+ (45)

⟨∂Ψ

∂λ
|Ĥ −E|Ψ⟩+ ⟨Ψ|Ĥ −E|∂Ψ

∂λ
⟩ (46)

∂E
∂λ

⟨Ψ|Ψ⟩ = ⟨Ψ|Ô|Ψ⟩ (47)

to obtain the expectation value. But this derivation assumes that

⟨∂Ψ

∂λ
|Ĥ −E|Ψ⟩+ ⟨Ψ|Ĥ −E|∂Ψ

∂λ
⟩= 0 (48)

as if ĤΨ = EΨ. But this is not necessarily true for approximate
wavefunctions. In a calculation there are three components in
Ψ : the atomic orbital basis set and its location, χ, the MO basis,
ϕ = χc, and the CI coefficients, Ψ= hC, relative to the determi-
nantal basis set. Then the variation, δΨ, gives

δΨ = (∂Ψ/∂ χ)δ χ +(∂Ψ/∂c)δc+(∂Ψ/∂C)δC (49)

When the energy is used to variationally determine Ψ, δE =

⟨δΨ|H|Ψ⟩+ ⟨Ψ|H|δΨ⟩ = 0, the three components above need to
be considered.

δE = (∂E/∂ χ)δ χ +(∂E/∂c)δc+(∂E/∂C)δC (50)

The advantage of the variational principle in CI is the last term
vanishes. In MCSCF, the last two terms would vanish. But the lo-
cation of the χ functions is not optimum and must be retained for
any wavefunction using Gaussian orbitals located on atoms. Note,
even in a normal CI the MO dependent terms do not vanish but
would contribute to the result. So the simple CI expectation value
for a property does not satisfy such a simple Hellman-Feynman
theorem.

To develop the CC theory for properties, consider the second-
quantized Hamiltonian from Eqn. 26 and its derivative, ∂H/∂Xα .
For analytical gradients, Xα , would be one of the 3N atomic de-
grees of freedom for a molecule, while an electric field prop-
erty would add to this Hamiltonian an external perturbation like
∑p ε · rp,and obtain properties from the components of ∂H/∂ε for
the dipole moment. Second derivatives would provide the Hes-
sian and the dipole polarizability, etc.

H = ∑
p,q

fpq{p†q}+ 1
4 ∑

p,q,r,s
⟨pq||rs⟩{p†q†sr}+ ⟨H⟩ (51)

∂H/∂Xα = ∑
p,q

f α
pq{p†q}+ 1

4 ∑
p,q,r,s

⟨pq||rs⟩α{p†q†sr} (52)

The second quantized version of these operators already takes
care of a lot of information in a compact form.

⟨p| f̂ |q⟩α = ⟨p|ĥ+ Ĵ− K̂|q⟩α (53)

= ⟨p|hα + Jα −Kα |q⟩+ ⟨pα | f |q⟩+ ⟨p| f |qα ⟩ (54)

Notably,
qα = ∑

µ

χ
α
µ cq +∑

µ

χµ cα
q (55)

and inserting this into fα
pq and ⟨pq||rs⟩α provides the detailed

expression43 that in addition to hα = ∂H/∂Xα , —the simple
Hellman-Feynman term—gives a term from the AO basis func-
tions evaluated by integral derivatives, and a second term due to
the derivatives of the MO coefficients evaluated by CPHF theory
when using a HF reference, or its equivalent for other reference
determinants. The third quantity required is the derivative Tα

that arises from differentiation of the ECC expression, Eqn. 38.
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⟨0|∂ECC/∂Xα |0⟩= ⟨0|Hα |0⟩+ ⟨0|HT α |0⟩ (56)

The derivative is separated into two parts, a part that depends
upon Hα after separating out the contribution from T into Tα .

To actually use this as written would require the computation of
~3N Tα quantities, obviously a hopeless proposition. Instead,
one considers the derivative of the CC equations themselves,

QT α P = Q(ECC −H)−1QHα P = RQHα P (57)

which then provides the expression,

Eα P = PHα P+PHQRQHα P (58)

Notice the introduction of the resolvent operator as QT α P cor-
responds to the first-order perturbed wavefunction, QT α P =

QRQHα
.

The α−derivative independent quantity

Λ = PHQRQ (59)

provides a set of Λ de-excitation equations that incorporate the
resolvent operator such that no inverse matrices are directly in-
volved. With Λ, the Generalized Hellman-Feynman expression for
the derivative is

Eα P = P(1+Λ)Hα P (60)

Its integral is the CC functional,

EP = P(1+Λ)HP (61)

that provides the derivative immediately once one observes it is
stationary wrt to Λ and T,

δE/δΛ = QHP = 0 (62)

δE/δT = P(1+Λ)HQ = 0 (63)

The linear Λ equations above, presented in detail elsewhere,11

are decoupled from T but must be obtained along with T in a
typical CC calculation. So henceforth, an expectation value in CC
theory for some operator Ô is

⟨0|Ô|0⟩= ⟨0|(1+Λ)exp(−T )Ôexp(T )|0⟩ (64)

This is obviously a ‘response’ derivation as it derives from an
energy derivative. In particular, it provides the one-particle ‘re-
sponse’ density matrix,

γqp = ⟨0|(1+Λ)exp(−T )p̂†q̂exp(T )|0⟩ (65)

In the particular case of analytical gradients, the MO relaxation
effect has to be present to provide a well-defined critical point on
a PES. That is handled by adding to the response density matrix
orbital relaxation into a “relaxed" variant, Dpq,43 into a new den-
sity matrix. So there are two choices for other properties than
gradients: orbital relaxed or not. The numerical differences are
usually small because of CCSD’s insensitivity to orbital choice dis-

cussed above. Furthermore, even the small numerical effects of
the orbital relaxation can be shown to be naturally incorporated
into the response density matrix obtained subject to the unrelaxed
orbitals once triple excitations are added,44 like in the CCSDT-n
methods discussed below.45,46

Notice, in these derivations there is no neglect of the non-
Hellman-Feynman terms. Consequently, CC expectation values
are more complete than typical expectation values evaluated in
CI where it is assumed that its variational property eliminates the
non-Hellman-Feynman terms. In methods like CI, the variation-
ally determined CI amplitudes simplify the equations compared
to CC theory, but TCI is not fully variational for the MO’s un-
less a MCSCF is done, and thus, retains non-Hellman-Feynman
terms. As long as all methods use AO basis sets attached to atoms,
nothing is variational about the AO dependence unless floated
off their atomic centers to an optimum location for each Gaus-
sian function.47 Plane-wave bases that have no dependence on
atomic centers are used for crystals and polymers and occasion-
ally for molecules do not have this issue, but have other issues
like correctly describing inner shell electrons. The latter usually
requires psuedo-potentials.

VI. For analytical gradients and first-order properties, the ‘Evo-
lution toward Simplicity’ demands that approximate quantum
chemical expressions satisfy an appropriate form of a generalized
Hellman-Feynman theorem as derived above from response the-
ory.

The one-particle, response density matrix itself in Eqn. 65 de-
scribes all other first order properties and is used to generate the
CC natural orbitals. There are many uses for the natural orbitals
in application. One we have studied is to use the natural orbitals
to define a set of indices to identify residual multi-reference char-
acter in single reference (SR) CC calculations4. As this is often
thought to be the remaining error in a SR-CC calculation once
the basis set and level of correlation are good, it is nice to be able
to quantify this effect along with the others in a calculation.

We do this by appealing to the fiction of a wavefunction that
can be represented as a single determinant of just n (number of
electrons) occupied, correlated, spin-orbitals. This determinant,
unlike the first natural determinant, is meant to retain no addi-
tional contribution from the unoccupied orbitals in the basis set.
Hence, it is a virtually exact set of correlated orbitals somewhat
like natural or Brueckner but also like Kohn-Sham, where only
n are required. Using this device, MR character is identified by
how important the M-n virtual natural orbital occupation num-
bers are that remain in the response density matrix of SR-CC. We
call that value the external electron number (EEN), and use it
and its variants, to define four different multi-reference indices
that are shown to correctly identify MR character in molecules
undergoing bond-breaking. This work also shows that the indices
generated normally fall well below the threshold of MR character
once a UHF reference determinant is used instead of an incor-
rectly separating RHF one.

E. Role of connected triple excitations, T3.
Since CCD already includes all T2

2 terms, it benefits from all
fourth-order energy CI quadruples, and implicitly from sixth-
order contributions from hextuples. This makes the contribution
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of connected triple excitations, T3, the most important term not
yet included after T2 and T1. This is very different than CI where
C4 is more important than C3.The figure in Ref.1 shows CI, MBPT,
and CC at different levels plotted against FCI makes this abun-
dantly clear, as does Fig. 5.

For higher cluster operators like T3 and T4, further perturba-
tion corrections from MBPT will be very important. The connec-
tion between CC and MBPT starts with a separation of the normal
ordered Hamiltonian,

H = H0 +V (66)

H0 = ∑
i j

fi j{i† j}+∑
ab

fab{a†b} (67)

V = ∑
ia

fia{i†a+a†i}+W (68)

The occupied-virtual part, fia = fov, is now added to the two-
particle operator, W, to define the perturbation. Since the CC
equations are invariant to occ-occ and virt-virt rotations, one can
use that freedom to rotate the orbitals to a semi-canonical form,
where for the rotated orbitals, f

′
i j = fiiδi j and f

′

ab = faaδab,while

f
′
ia remains as part of the perturbation with W’. A special case of

semi-canonical orbitals are the canonical HF orbitals where fii = εi

and faa = εa, and fia = 0. But we want to have the flexibility to
use any orbitals in CC calculations like ROHF, natural, Brueckner,
GVB, KS, Orbital-Optimized, QRHF, template, etc. and for these
fia ̸= 0.Henceforth, we will assume the semi-canonical orbitals as
a transformation of any non HF set, but suppress the ’ in the ex-
pressions, so H0 = ∑ fpp{p† p}.

To introduce triple excitations into CC theory, we consider the
wavefunction, ΨCCSDT =exp(T1)exp(T2)exp(T3). Following the
usual procedure of projecting this wavefunction onto all single,
double, and triple excitations, one gets a coupled-set of non-linear
equations,

0 = ⟨Φa
i |[H exp(T )]C|0⟩ (69)

0 = ⟨Φab
i j |[H exp(T )]C|0⟩ (70)

0 = ⟨Φabc
i jk |[H exp(T )]C|0⟩ (71)

that define CCSDT, T4,T5 = 0.The correlation energy derives
solely from single and double excitations having the form,

ECC = ⟨0|[HT2 +HT1 +HT 2
1 /2]|0⟩C (72)

= ⟨0|[WT2 + f T1 +WT 2
1 /2]|0⟩C (73)

ECC =
1
4
⟨i j||ab⟩(tab

i j + ta
i tb

j − tb
i ta

j )+ fiata
i (74)

the latter summed over repeated indices. Hence, all triples effects
would be introduced from the contribution of T3 into T2 and T1

and subsequently to the energy. Thus, the CCSDT equations can

be written in the informative way,

Q3D3T3|0⟩= Q3[H exp(T1 +T2)]C +[H exp(T3)]C

+[HT3 exp(T1 +T2)]C

(75)

= Q3[H̃ +([HT3 + H̃T3]C (76)

where we have a separation of contributions from H̃, then from
linear T3 alone, and finally from the cross terms, where the un-
derlying CCSD uses the notation, H̃ = [H exp(T1 +T2)]C. Then,

Q3D3T3|0⟩=Q3[WT2+WT1T2+WT 2
2 /2+ f T 2

2 /2+WT3+(H̃T3)]|0⟩C
(77)

Closer inspection of Eqn. 71 shows that WT3 introduces an
~n3N5 computational step that is excessive on top of CCSD’s
~n2N4 dependence and would require storing T3 with its large,
~n3N3, number of terms to evaluate it. But this term is a third-
order contribution to the wavefunction, as are all the others
shown except WT2 that is second-order. Thus, to obtain the
lowest-order terms in MBPT one takes this term to define the T[2]

3
value

Q3D3T [2]
3 |0⟩= Q3(WT2)C|0⟩ (78)

and insert it into the T2 and the T1 equation ,

Q2D2T [3]
2 |0⟩ = Q2[WT [2]

3 + f T [2]
3 ]|0⟩C (79)

Q1D1T [3]
1 |0⟩ = Q1[WT [2]

3 ]|0⟩C (80)

to provide the fourth-order triples MBPT energy,

E [4]
T = ⟨0|WQ2(WT [2]

3 )C|0⟩+⟨0|WQ2( f T [2]
3 )C|0⟩+⟨0| f Q1(WT [2]

3 )C|0⟩
(81)

All other terms are higher than fourth-order. The first term with
HF orbitals is now called [T]49. It is the only fourth-order cor-
rection for HF. Adding the second term that is due to single exci-
tations which is fifth-order in HF defines (T)50. All three terms
are required for any choice of orbitals and single determinant ref-
erence function. They then constitute all non-HF fourth-order
terms51 in this orbital invariant form and by using semi-canonical
orbitals, remains perturbative. This is the generalized form for
(T).

Either we can leave all expressions in terms of some QWT|0⟩
or QfT|0⟩ form where the QnWT or Qn f T dictates which partic-
ular W or f is needed at each stage, or we can start to distin-
guish among them by specifying which of the W’s are used here
and later in this perspective. There are 9 different W possibili-
ties separated into five terms by how many creation-annihilation
terms are involved. They are W= W−2,W−1,W0,W1,W2. W−2 means
reduce particle-hole number by 2, while W2 would increase it
by 2, and the others are indicated by their subscript, from 0
where no change occurs, or increasing by 1, W1, or decreas-
ing by 1, W−1. This would tell us that the first term would be
⟨0|W−2Q2(W−1T [2]

3 )C|0⟩ = ⟨0|W−2Q2(W−1)(Q3W1T2/D3)|0⟩C, e.g.
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Fig. 5 Comparison of CI, MBPT, and CC results with full CI. Results averaged over the series of small molecules: BH, HF, H2O, SiH2 and CH2 in
DZP basis set at Re, 1.5 Re, 2.0 e and N2 in cc-pVDZ basis set at Re and C2 in cc-pVDZ basis set augmented by diffuse functions at Re.48

This step, of course, takes us closer to the explicit diagrammatic
computational formulae. Similarly, f consists of 3 terms, f−1, f1, f0.
For this perspective, it should be easier to grasp this approxima-
tion in the algebraic form above than getting bogged down with
all the diagrammatic details shown elsewhere11 that provide ex-
plicit computational formulae.

The reason for the [4] notation is that the order designation can
include converged infinite-order values from CCSD for T 2 and T 1

in some expressions like T 2 in Eqn. 78, above, but once inserted
into the expression are counted as generalized first-order terms.
The pure first-order terms require that T(1)

2 =W+2/D2 and T(1)
1 =

f+1/D1 and if those are used to evaluate T(2)
3 , the order would be

pure second-order and E(4)
T would then be the pure triples part of

MBPT(4). Some early applications simply added E(4)
T to the CCSD

energy to provide better results as in the HF case only the first
term survives in fourth-order, since f1 = fov = 0.

But the best way to define the non-iterative (T) part of CCSD
is to start from the viewpoint of the CC generalized expectation
value or functional,

ECC = ⟨0|(1+Λ)H|0⟩C (82)

and isolate just the triples part of this from T3 and Λ3,

E [4]
T =⟨0|Λ3Q3[H0T [2]

3 +(W+1T2)C]+Λ2Q2[(W−1 + f−1)T
[2]

3 )C

+Λ1Q1(W−2T [2]
3 )C|0⟩

=Λ2Q2[(W−1 + f−1)T
[2]

3 )C +Λ1Q1(W−2T [2]
3 )C|0⟩

(83)

since the Lambda3 terms on the right of Eqn. 83 disappear by
virtue of Eqn. 71.. Given a converged Λ1 and Λ2 along with T 1

and T 2 from a prior CCSD calculation, Eqn. 83 provides a (T) to
define ΛCCSD(T) (also called CCSD(T)Λ originally52. This is ob-
viously correct through the fourth-order energy and second-order
wavefunction. It also has the same orbital invariance properties
as an iterative method like CCSDT or CCSDT-3, important to semi-
canonical transformations, analytical gradients, and convergence
to full CI comparisons, e.g. For HF orbitals the Q2 f−1T [2]

3 term
vanishes.

To a first approximation, Λ ≃ T †. Using T † in place of Λ pro-
vides the expedient and widely used CCSD(T) approximation50,
but now generalized to non-HF, semi-canonical orbitals, and it
has well-known perturbation theory shortcomings that ΛCCSD(T)
can remove to a large degree as shown in Fig. 6.

In addition to this non-iterative approximation, one can define
iterative ~m7 ones short of CCSDT that all start by eliminating
the T3−to T3~m8 term. The most complete of these is to al-
low all possible T1 and T2 terms in H̃ to contribute to T3 and
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Fig. 6 Illustration of the limitations of perturbative corrections in CCSD(T) vs, ΛCCSD(T) for F2.53

T3, in turn, to update T1 and T2 until the set of coupled equa-
tions converges. This is termed, CCSDT-3,45 and should be the
most orbitally insensitive approximation short of CCSDT45. Its
predecessor, CCSDT-154, limited the H̃ contribution to T3 to just
the lowest-order T2 terms. Both are correct through the fourth-
order MBPT energy and second-order wavefunction. Any iterative
method even with such approximations will perform much better
than perturbative, non-iterative ones in difficult situations as in
the RHF based bond breaking problems that cause the perturba-
tive CCSD(T) to fail dramatically. But they do not always do as
well as expected. Even CCSDT will typically overshoot the disso-
ciation energy for a molecule when FCI results are available for
comparison, pointing to the need for T4 in calculations.55,56 Infi-
nite order methods are particularly important today as investiga-
tors are pushing CC methods even to metals where no band-gap
exists, while perturbative ones can only be applied carefully and
with caveats.

F. Role of connected T4 excitations.

The characteristic differences between odd-ordered connected
clusters like T3 and even-ordered ones like T4 lead to different
types of approximations that can be made. Assuming T5 and
higher are set to zero, the best that one can do at the level of T4 is
CCSDTQ.52 The quasi-linearized form of higher-order CC equa-
tions can be conveniently written down and numerically evalu-
ated by using H intermediates as shown elsewhere,57 and in de-
tail.11 But for our purposes here, the lead terms are the ones that
matter, analogous to the T3 discussion. Focusing on them,

Q4D4T4|0⟩= Q4H|0⟩=Q4(W0T 2
2 /2+W+1T3 +W−2T 3

2 /3!

+W0T4 +W−1T3T2 +W0T3T1 + ...)|0⟩C

the first two terms are third-order while the next four are fourth-
order. In particular, the fourth term that represents T4 into T4,
will lead to an ~m10 computation. Except for CCSDTQ itself, we

will initially exclude it and the other fourth-order terms. Thus,
we obtain the third–order T[3]

4 contribution,

Q4D4T [3]
4 |0⟩= Q4(W0

T 2
2
2

+W+1T3)|0⟩C (84)

composed of two parts, due to T2 and T3.

Thus, this T[3]
4 connected quadruple quantity can directly con-

tribute to T[4]
2 after operation by W−2 and division by the D2 de-

nominator associated with the T[4]
2 ,

Q2T [4]
2 |0⟩= Q2

W−2

D2

Q4

D4
T [3]

4 |0⟩ (85)

Hence, the fifth-order energy arising from T[3]
4 becomes,

E [5]
Q = ⟨0|

W ′
−2

D′
2

T [4]
2 )|0⟩C = ⟨0|

W ′
−2

D′
2

Q2
W−2

D2
Q4

T [3]
4

D4
)|0⟩C (86)

after applying the W ′
−2

D′
2

term to T [4]
2 .

This is a place where a diagrammatic understanding of this ex-
pression is extremely valuable. Since W2

D2
and W ′

2
D′

2
are equivalent

second-quantized operations, they can be applied in either or-
der in the above algebra. That means the diagram equivalent
of Eqn. 86 can be drawn in two equivalent ways depending on
the sequence (i.e., ’time-order’) of the last two interactions. In
one, D2 = ( fii + f j j − faa − fbb). In the other, it is replaced by
D′

2 = ( fkk + fll − fcc − fdd). Since, D4 = fii + f j j + fkk + fll − faa −
fbb− fcc− fdd ,by writing these two equivalent algebraic terms pre-
ceded by 1

2 , one can invoke the factorization theorem of MBPT11

Journal Name, [year], [vol.], 1–26 | 13

Page 13 of 26 Physical Chemistry Chemical Physics



and put all over a common denominator,

1
2
[(

W2

D2

W ′
2

D′
2

T [3]
4

D4
)+(

W
′

2W2

D′
2D2

T [3]
4

D4
)]C =

1
2
[W2W ′

2T [3]
4 (D2 +D′

2)]

D2D′
2D4

(87)

E [5]
Q (T2 +T3) =

1
2
[
W2W ′

2(T
[3]

4 )

D2D′
2

] (88)

and magically, the D4 denominator disappears! The critical quan-
tity in CC computations is the denominator, D4, as its eight terms
necessitate an ~m9 computational procedure unless it can be rig-
orously removed as done here. In this way, the E [5]

Q (T2+T3) quan-
tity that is the full fifth-order contribution due to connected T4

can now be evaluated with only a non-iterative ~m7 computa-
tion. That is the same level as (T) or the iterative CCSDT-3. The
evidence that this is a very good approximation for T4 on top of
CCSDT and CCSDT-3 compared to FCI is shown elsewhere.58 The
combined CCSD(TQ) ~m7 approximation where this approxima-
tion for fifth-order E [5]

Q (T2 +T3) is added to the prior fourth-order
(T) approximation in CCSD(T) is less accurate, likely because of
mixing different orders.

Once one has T[3]
4 ,one can follow its indirect contribution to

T3,that arises from T [5]
2 ,

Q3D3T [4]
3 |0⟩ = Q3(W−1T [3]

4 + f−1T [3]
4 )|0⟩C (89)

Q2D2T [5]
2 |0⟩ = Q2(W−1T [4]

3 + f−1T [4]
3 )C (90)

Q1D1T [5]
1 |0⟩ = Q1(W−2T [4]

3 )C (91)

It will contribute to sixth- and higher-order energies.

The above development but limited to just the T2 part of T[3]
4 is

the cornerstone for what we call the ‘ultimate T2 model’. The ori-
gin of electron correlation arises from double excitations, making
such an ultimate T2 method a reference that deserves attention.

This fact is also pertinent to the recent interest in pCCD,59–65

which is a limitation of CCD to just its spin-paired diagonal terms
like tAA

I,I for closed shells, where the orbitals I and A are meant
to be variationally optimum. Such an approximation is not or-
bitally invariant, nor ’insensitive’ as in CCSD and this freedom
is exploited to improve the approximation. The original deriva-
tion of Cullen59 used CCD theory to derive GVB wavefunctions
by restricting the T2 amplitudes to just the pair form and fol-
low with an orbital optimization. As is well-known, such ’gemi-
nal’ wavefunctions can describe some types of bond breaking that
is more difficult in RHF CC calculations, though UHF CC does
much better. That such a method can introduce geminal char-
acter into CC theory offers an alternative route toward describ-
ing certain non-dynamic correlation features that only scale as
~m4 like HF. See66 for a recent critical study for excited states
where the alternative tailored single-reference pCCD+TCCSD, is
used, that is meant to exploit the pCCD kernel augmented by the
rest of the CCSD terms. This has the advantage that it is solely
a single-reference approach for bond-breaking problems where
most would think some kind of MR-CC should be used. But, via
pCCD, some non-dynamic correlation effects can be introduced

and there is no need to introduce an active orbital MR space.

A different take on our ultimate T2 follows from the expectation
value, XCCD expression,67

EXCCD = ⟨0|(exp(T †
2 )H exp(T2))|0⟩C (92)

whose variational optmization would be VCCD. Now, exp(T †
2 ) in-

troduces different terms than just those in CCD, like T4.

E [5]
XCC(T2) =

1
4
⟨0|(T †[1]

2 )2W0(T 2
2 )

2|0⟩C (93)

where the T[1]
2 terms are generalized first order. But for the T2

part, this is equivalent to the E[5]
Q (T2) expression we just derived

although there is no D4 denominator to remove. In fact, this ex-
pression was the origin of the simplified T4 expression above, and
attests to XCCD introducing new terms that do not occur in CCD.

If we want to incorporate either expression into an infinite-
order CCD-like method, we define a ‘factorized’ version, Q f ,

Q2Q f = Q2(T
†

2 )W0(T2)
2/2|0⟩C

Q2D2T2|0⟩= Q2(W +W0T2 +W−2T 2
2 /2+(T †

2 )W0(T2)
2/2|0⟩C (94)

and add it to the rest of the CCD equations to provide an infinite-
order solution that is correct through fifth-order in doubles and
quaduples. This expression is now applicable to any order T2 am-
plitude instead of the first-order T[1]†

2 version above that is specific
to fifth-order.

Going to the next term in an ultimate T2 method, consider
the sixth-order term that arises from just T2 in the T4 equations,
namely

Q4D4T [4]
4 |0⟩= Q4W−2T 3

2 /3!|0⟩ (95)

that is similarly processed into the sixth-order energy,

E [6]
Q (T2) = ⟨0|

W ′
−2

D′
2

Q2
W−2

D2

Q4

D4
T [4]

4 |0⟩ (96)

=
1
2
(
W ′

−2
D′

2
+

W−2

D2
)(

Q4

D4
T [4]

4 |0⟩ (97)

=
1
2
(
W−2W ′

−2
D2D′

2
Q4T [4]

4 ) (98)

where the D4 denominator is again eliminated by the factoriza-
tion theorem. Note, this too, is equal to

E [6]
XCC(T2) =

1
12

⟨0|(T [1]†
2 )2W−2T 3

2 |0⟩ (99)

Higher-even orders from hextuples like E[8]
H can be similarly

added.

For hextuples, the lead fifth-order terms come from

Q6D6T [5]
6 |0⟩= Q6(W0T4T2 +W−2T 4

2 /4!+W0T 2
3 /2)|0⟩ (100)

where the T3 is not relevant to an ultimate T2 method. T4 is, in
the sense it comes from Q f , evaluated solely from T2.The same
will apply to combinations of T2,T4,T6,and higher even orders.
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A detailed study of the ultimate T2 method is presented else-
where.68

Note the XCCD expression offers an upperbound to the exact
energy for any choice of T2, if there is no truncation. To de-
scribe ‘strong correlation’ one would hope to be able to evaluate
such variational, untruncated exponential expressions (VCCD) in
closed form.

The next potential step in an ultimate T2 model is the transition
to its unitary form,69

τ = T2 −T †
2 (101)

UCC = exp(τ)|0⟩ (102)

⟨0|exp(−τ)exp(τ)|0⟩ = 1. (103)

EUCC = ⟨0|exp(−τ)H exp(τ)|0⟩ (104)

= ⟨0|exp(τ)†H exp(τ)|0⟩ (105)

Now, expectation values are simply

⟨0|O|0⟩= ⟨0|exp(−τ)Oexp(τ)|0⟩ (106)

with no denominator. In both XCC and UCC, the expectation
value form does not terminate, requiring some kind of truncation
to provide useful approximations like UCC(4).70 .Unlike normal
CC/MBPT, UCC satisfies the Hellman-Feynmam condition above
for properties, making the determination of analytical gradients
much easier than in standard CC, a strong recommendation for
their further development, along with their ready application on
quantum computers. Note, [T†

2,T2] ̸= 0, complicating UCC com-
pared to XCC, since both terms occur on the same side of the UCC
expressions.

Without dwelling on too many numerical results, most of the
above results with triples and quadruple terms compare on aver-
age with the known, small molecule FCI results as shown in Fig.
5. The valence only BH only has four electrons so CISDTQ is ex-
act. Larger molecules would tend to show pretty well converged
results at the CCSDTQ level, but not at the CISDTQ level because
of the latter’s unlinked diagrams and upper bound property. The
improvement between finite-order MBPT and infinite-order CC is
as expected. The poorness of CISDT is notable, as the largest
error in CI after CISD arises from C4 ~ 1

2 T2
2.

G. Equation of Motion Coupled-cluster Theory:

So far, everything discussed has pertained to describing elec-
tron correlation in a single state, usually the ground state, but
can be any state of the lowest symmetry, perhaps a broken sym-
metry one, or even an excited state of the same symmetry as the
ground state if the starting single determinant reference is good
enough.71 But such a method is severely limited if one’s objective
is a spectrum of electronic states. The solution to this problem is
the EOM-CC method.72–74

The concept is very simple. One simply considers two solu-
tions of the time-independent Schrödinger equation, one for the

ground state, ΨG, and for a second excited state, ΨX .

(H −Eg)ΨG = 0 (107)

(H −EX )ΨX = 0 (108)

|ΨG⟩ = exp(T )|0⟩ (109)

The next step is to exploit the fact that the excited state, ΨX =

ΩX ΨG, can be created with an excitation operator,

ΩX = r0
X +(rX1Ω1 + rX2Ω2 + ...) (110)

rX1Ω1 = ∑ra
i {a†i} (111)

rX2Ω2 = ∑rab
i j {a†ib† j} (112)

.. (113)

operating onto the ground CC state. Of course, there is no restric-
tion as the ultimate excited state would be the FCI for the target
state. Then a little algebra shows that

[H,Ω]|0⟩ = (HΩ)C|0⟩= ωX Ω|0⟩ (114)

ωX = EX −EG (115)

where [T, Ω] = 0, allows moving exp(±T) inside of Ω, leaving us
with the EOM CI-like eigenvalue equation for the X state. The
ground state correlation is used to build H = exp(−T )H exp(T ),
and then the target state is obtained by appropriate projection
to define the individual excitation operators. For the example
shown, the excitation operators (1h,1p), (2h,2p), (3h,3p),... pro-
vide excited states of the same particle number as the ground
state and are not limited to states of different symmetry than the
ground states, as r0

X formally allows for the same symmetry. More
completely, this model is called EE-EOM-CC for ‘excitation energy’
EOM-CC.

If we want a spectrum of principal ionized states, the oper-
ators of interest would be (1h,0p), (2h,1p), (3h,2p), etc. And
the reverse for electron attached states. For double ionizations,
(2h,0), (3h,1p), (4h,2p), ... Hence, to obtain the target state
requires projection onto the same (nh, mp) determinants, and
the latter defines the rank of the EOM matrix and its computa-
tional scaling. All calculations directly provide the energy differ-
ence instead of having to subtract between two large numbers
as some approaches would require. They are termed IP-EOM-CC,
EA-EOM-CC, DIP-EOM-CC and DEA-EOM-CC, e.g.

VII. Evolution toward simplicity requires direct calculations of
energy differences.

For properties the model for EOM-CC is the same as the sin-
gle state CC calculation as both are built upon an H that is non-
Hermitian. Such operators have both left- and right-hand eigen-
vectors that are bi-orthogonal to exhaust their Hilbert space,

(HRX )C = ωX RX (116)

LX H = LX ωX (117)
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though the eigenvalues are the same. Thus, to evaluate the dipole
strength, O=−→

ε ·−→r ,

⟨O⟩= |⟨0|LX ORX |0⟩| (118)

Note this is directly analogous to the CC ground state solution
where Λ has the role of L and R becomes unity. A slightly more
general expression for the transition moment can be derived from
the dynamic polarizability75. It adds to the above a quadratic
term that arises from the CC non-linear equations. The numerical
effect is small for any single molecule, but the latter approxima-
tion will scale correctly to all repeated units.

Excited states can be roughly characterized as in Fig. 7. From
a closed shell ground state, most allowed excitations are to open-
shell singlets, with the coordinate Ms=0 triplet states symmetry
forbidden. In addition, there are excited states that are dom-
inantly composed of double excitations sometimes called ‘dark’
states since they have little or no oscillator strength since doubly
excited states cannot mix with a closed shell reference over a one-
particle transition operator regardless of spectroscopic symmetry
considerations.

In terms of excitation energies, the performance of EE-EOM-
CCSD is shown in Fig. 8 compared to the iterative, EE-EOM-
CCSDT-3 values, where the CCSDT-3 ground state is augmented
by its excited state counterpart. These results are for the Mül-
heim data set.77 These excited states are mostly allowed, singlet
excited states, and provide a mean absolute error of 0.15 eV, all
above the reference result. Close inspection of the plot shows that
there are a few outliers that one would assume are from excited
states dominated by doubly excitations. It is known that such
states are less accurately treated at the EOM-CCSD level than the
usual allowed excited states. requiring at least triple excitations,
given by

Q3D3R[2]
3 |0⟩= Q3(HR2|0⟩+HR1)C|0⟩ (119)

since the right-hand side has to be connected. But whereas the
R2 term starts with (WR2)C and (fR2) in second-order, the only
connected contribution from the presumably more important R1

term arises from the three-body part of H that makes the term an
order higher. Hence, the fourth-order correction to EOM-CCSD is

E [4]
T = ⟨0|L2WR[2]

3 |0⟩+ ⟨0|L1WR[2]
3 |0⟩+ ⟨0|L2 f R[2]

3 |0⟩ (120)

Adding this term provides the result in Fig. 9 where the mean
absolute error is reduced to 0.06 eV, and there are no obvious
outliers.

Note the three fourth-order terms that constitute this EOM E[4]
T

in 10 are the same terms that occur in ΛCCSD(T ) except T3 re-
places R3, and Λ1and Λ2 replace L1 and L2. For CCSD(T), Λ1

and Λ2 are further approximated by T†
1 and T†

2. A proposed im-
provement to EOM-CCSDT-3 has been presented by Matthews
and Stanton78 emphasizing the shape of excited state PES, along
with excitation energies.

The issue of dark states warrants some discussion, as this has
been a well-known failing of EOM-CCSD’s spectrum. One would
need to identify such doubly excited states and assign them larger

error bars compared to the normal allowed states. Once triples
are added at the level EOM-CCSDT, the errors are significantly
reduced, but CCSDT/EOM-CCSDT is an ~m8 computation com-
pared to CCSD’s ~m6. Simpler triples models like EOM-CCSD(T)
and EOM-CCSDT-3 are non-iterative and iterative, ~m7 and are
often sufficient. Arguments can be made for EOM-CCSDTQ as the
best viable ‘predictive’ level, though at an ~m10 scaling.

Whereas the role of R2 in EOM-CCSD is to relax the dominantly
R1 amplitudes in describing allowed singlet states–a necessity for
accurate results—for doubly excited states R3 plays the same role
for states dominated by R2. To illustrate, Loos, et al79 have iden-
tified several molecules that have such doubly dominated, dark
states and reported EOM-CCSDT and some EOM-CCSDTQ results.

For this collection of states, the % R2 at the EOM-CCSD level
is shown in Fig. 11, emphasizing the dominant role of R2.The
results from several levels of EOM are shown in Fig. 12, demon-
strating errors of EOM-CCSD for such states to vary from ~2-6
eV, but once triples are added, even at the ~m7 level the results
are much improved.

The new method also shown is termed the intermediate state
(IS) approach that provides dark state spectral energies limited
to IS-EOM-CCSD at its ~m6 cost. The procedure is illustrated in
Fig. 13 where an open-shell reference determinant is used sub-
ject to symmetry tailoring to ensure that the two determinants
involved have the same ± amplitudes depending upon whether
the IS is an Ms=0 triplet or an open-shell singlet. Regardless, the
dark state excitation energy is much improved, with or without
tailoring, even compared to the ~m7 triple excitation methods.
This augmentation provides a EOM-CCSD level approach that is
equally good for doubly excited states as it usually is for the al-
lowed singlet excitations, but not in one calculation. Hence, it
does not provide one method that is equally good for all states.
That is more likely to be the ~m7 EOM-CCSDT-3 or Matthews
and Stanton, or CC380 for the time being.

H. Time dependent EOM-CCSD

The next notable development in EOM-CC over the last few
years has been achieved by choosing to use time-propagation to
obtain an (TD)-EOM-CC spectrum81–83 as opposed to the stan-
dard matrix diagonalization approach. The numerical results are
the same to within their different computational errors, but the
two alternatives offer complementary ways to generate spectra.
In the time-dependent approach one propagates the dipole mo-
ment operator in the Heisenberg form,

Θ(t)|0⟩= [exp(H(0))Θexp(−H(0)t)] (121)

to act on the ground state CC wavefunction,

Θ(t)exp(T )|0⟩= [exp(H(0))Θexp(−H(0)t)]exp(T )|0⟩ (122)

Left multiplication by exp(-T) provides Θ =

exp(−T )Θ(t)exp(T ),whose time-derivative is

i
dΘ(t)

dt
exp(T )|0⟩=−[H(0),Θ(t)|0⟩ (123)

to give the right-hand propagation. The corresponding left-hand
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Fig. 7 Depiction of zeroth-order excited states.

Fig. 8 Error comparison between EOM-CCSD and EOM-CCSDT-376

propagation is

i⟨0|(1+Λ)
dΘ(t)

dt
=−⟨0|(1+Λ)[H(0),Θ(t)] (124)

Integrating either provides Θ(t) at any time interval (usually cho-
sen to be 0.01) relative to the initial value at t=0. The two over-
laps,

⟨0|(1+Λ)Θ(0)|Θ(t)|0⟩ (125)

⟨0|ΛΘ(t)|Θ(0)|0⟩ (126)

are the auto-correlation functions.

To illustrate its application, consider the full spectrum of the
water molecule and its cation in TD-EOM-CCSD from the core
excitations on the extreme right to the valence excitations on the
left of the Fig.14 By construction, only dipole allowed states are
obtained.

Of course, the same procedure can be used with other tran-
sition operators to provide other parts of a spectra. This is illus-
trated by a study of quadrupole transitions.84 Another useful gen-
eralization of TD-EOM-CC is to select a ‘tailored’ probe of a partic-
ular frequency and observe a molecule’s behavior over time. This

ties closely with the pump-probe experiments being conducted in
atto-second spectroscopy.85

I. One electron spectrum from IP and EA-EOM-CCSD

If we simply replace the R1,R2 and L1,L2 operators in the
EE-EOM-CC equations by operators that remove an electron,
like 1h0p, 2h1p, 3h2p..., meaning RIP

K = RiK{i†}+Ra
i jK{i† j†a}+

Rab
i jkK{i† j†k†ab}+ ...and sum over repeated indices we obtain the

IP-EOM-CC equations. Doing the same for 0h1p, 1h2p, 2h3p,...we
obtain the EA-EOM-CC equations. Diagonalization of H then
gives the {ωK} for each state, and to the degree the state is dom-
inated by an orbital index, {i†},or{a}, an easy orbital interpreta-
tion. This is the basis for what we call correlated orbital theory
(COT),86 as these orbitals reflect the electron correlation put into
the IP/EA-EOM equations while providing bi-orthogonal sets of
eigenvectors. Thus, in addition to HF and Kohn-Sham, another
single determinant form is obtained from COT. Hybrids of COT
with elements of KS-DFT lead to the QTP functionals87 we have
proposed that are meant to emulate the results of IP/EA-EOM-CC
in inexpensive calculations.

There is a seamless connection between the electronic excited
states from EE-EOM-CC and those where one electron has been
excited to give the IP-EOM-CC values or added to obtain the EA-
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Fig. 9 Error comparison between EOM-CCSD(T) and EOM-CCSDT-3

Fig. 10 Three Terms that Define CCSD(T), ΛCCSD(T), EOM-CCSD(T)
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Ethylene Formaldehyde

Butadiene Glyoxal

Nitrosomethane Nitroxyl

Fig. 11 Example of molecules with varying extents of population in the R2 vector.

Fig. 12 Error comparison of various methods targeting the dark states.

Traditional EOM-CC Intermediate state EOM-CC Intermediate state EOM-TCC

Fig. 13 Intermediate state EOM-CC scheme.
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Fig. 14 Depiction of water molecule spectra.

EOM-CC values. One can observe this fact from simply adding a
zero gaussian function into the basis set in an EE calculation88,89

as an approximation to a continuum function that will accommo-
date the extra electron leaving the IP’s for the N-electron problem
as the new eigenvalues to the EE-EOM-CC problem for N-1 elec-
trons. The reverse will provide the EA’s. This rigorous, seamless
connection between ionized and excited electronic states is not
satisfied by most quantum chemical calculations, but must be in
EOM-CC.

Generalization to double ionizations and double electron at-
tachment processes follow in the same way by considering 2h0p,
3h1p,4h2p„,terms in RDIP and LDIP and the opposite 0h2p 1h3p,
etc. for DEA. These DIP/DEA-EOM methods also have an impor-
tant role in rigorously describing multi-reference problems sub-
ject to a complete active space of two electrons in two orbitals90

within a standard single reference CC/EOM computational frame-
work. Formally, TIP and TEA would do the same for a space of
three electrons in three orbitals.91

VIII. A Seamless connection between excited states and ionized,
doubly ionized (DIP), and electron attached, and doubly attached
(DEA) states is another requirement of the evolution toward sim-
plicity.

As discussed with reference to the energy of an infinite system
like a polymer having to be extensive (scale with N) to be mean-
ingful, the energy difference (excitation energy) between two
such states that scale with N, has to be N independent, i.e., size-
intensive. This important property is ensured by EOM-CC. A fur-
ther consequence is that EE-EOM-CC excited states for a molecule
like, AB∗, separating into fragments, have the size-intensive prop-
erty, AB∗ 7→ A∗+B,A+B∗ 92 Just as extensivity is critical to quan-
tum chemical calculations, the corresponding ‘intensive’ property
is, too, where the excitation energy difference is localized some-
where in the molecule. This property ensures accurate relative
energy differences that reflect the local excitation in a large com-
plicated molecule. Ideally, the intensive value would correspond
to the difference between two properly extensive results as as-
sumed above, but that is not always necessary, as a non-extensive

CIS result still provides intensive excitation energies. For very
large polymeric systems where there is a charge-transfer excita-
tion between the two ends of the chain, one would want an exten-
sive method to account correctly for size and an intensive method
to account for the localized energy difference consisting of an IP
at one end and an EA at the other.

IX. The evolution toward simplicity requires that quantum
chemical methods provide properly size-intensive numerical re-
sults for local excitations, as does EOM-CC.

To take this example all the way, it would be nice if AB↪→
A++B− as well as the size-intensive property above. But as men-
tioned earlier, charge transfer separability (CTS) is not assured
by EE-EOM-CC for charge-transfer. The origin of this formal dis-
crepancy in that the EE-EOM-CC equations are CI-like, instead of
depending upon an exponential ansatz for the target wavefunc-
tion. Though all expressions are connected, this failure shows
up in the eigenvalues.93 The effect is numerically small even
at the EOM-CCSD level, and much smaller once triples are in-
cluded, but is not 0. Methods like Fock space (FS-MRCC)94,95

and STEOM-CC,96 fix this problem being both extensive, inten-
sive, and charge-transfer separable, as their exponential ansatze
pertains to both the ground and excited states. But neither are
exact for two electrons, unlike CC/EOM. Note the fact that IP/EA-
EOM-CC is seamless with EE-EOM-CC for excited states does not
ensure CTS for a given charge-transfer excited state can be de-
composed into those two terms, except at complete separation
where the residual coupling terms that give rise to this CTS issue
have to vanish.

X. A further desirable property would be a seamless transition
to AB↪→ A++B−, but CC/EOM-CC without modification does not
have this property. EOM-CCX

93 restores it as does STEOM-CC
and FS-MRCC.

J. Electron Propagator

The electron propagator (Greens’ function)97,98 offers a seem-
ingly different approach to the direct determination of energy dif-
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ferences. It is defined as

Gpq(ω) =⟨Ψ0|p†(ω −E0 +H)−1q|Ψ0⟩

+ ⟨Ψ0|q(ω −H +E0)
−1 p†|Ψ0⟩

=∑
µ

( ⟨Ψ0|p†|ΨN−1
µ ⟩⟨ΨN−1

µ |q|Ψ0⟩
ω − (E0 +EN−1

µ )

+
⟨Ψ0|q|ΨN+1

µ ⟩⟨ΨN+1
µ |p†|Ψ0⟩

ω − (EN+1
µ +E0)

)
(127)

Its poles define ionization potentials when ω = (E0+EN−1
µ ) and

electron attachment when ω = (EN+1
µ +E0). The residue at the

poles defines the transition moments. Note the two parts of the
propagator, the IP part and the EA part, are coupled with both
being required to obtain any solution of G(ω) = ω. The latter be-
comes the Dyson equation when reduced to a one-particle form
with the addition of the self-energy, Σ(ω), to describe electron
correlation, hD(ω) = f + Σ(ω). Its eigenvectors are Dyson am-
plitudes (not orbitals). The philosophy of Greens’ functions is
to de-emphasize the importance of the complicated ground state
solution given by Ψ0, in favor of the actual energy differences
seen in experiments. This has often led to using an SCF func-
tion as an approximation to Ψ0 for computational simplicity. But
quite generally, amazing things happen once one formally inserts
a CC wavefunction represented in Hilbert space into the electron
propagator.99,100 First, the frequency dependence of the opera-
tors disappears. This eliminates the coupling between the IP and
EA parts of the propagator. Instead, one gets an exact decom-
position of the propagator into the IP-EOM-CC and EA-EOM-CC
problems with the frequency dependence showing up only as the
eigenvalues, ωK , for the particular Kth states,

(HRIP
K )C = ωKRIP

K (128)

(HREA
K )C = ωKREA

K (129)

Hence, in our evolution toward simplicity, all electron propagator
methods could be viewed as approximations to the above simpler
EOM-CC formulae that eliminates having to solve a G(ω) = ω,
problem in favor of the above eigenvalue solutions. As all CC and
EOM-CC solutions are represented in Hilbert space, not the one-
particle space of the frequency dependent Dyson approach, this
suits the linear algebra solutions of the equations better than a
root search as occurs in the Dyson case. This also means that the
‘principal’ IPs, meaning the energy required to remove an elec-
tron from any orbital without further orbital rearrangements are
obtained first, while the subsequent shake-up roots that mix ex-
citation energies with IP’s that are other poles of the usual Dyson
equation can be obtained from additional eigenvalues of H with
further effort. All the roots are there that would occur in the
Dyson equation, but now come conveniently in different orders.
This is a major advantage of the IP/EA-EOM-CC formulation as
the Dyson equation indiscriminately provides all possible roots.

A word about the polarization propagator101 might be perti-
nent. Its objective is the treatment of electronic excited states and

their transitions. This propagator is simply the frequency depen-
dent polarizability75 whose poles are the excitation energies and
whose residue at the poles defines the dipole transition strength.
This provides the alternative transition expression to the EOM
form in Eqn. () for the transition moments. A normal polariza-
tion propagator would include particle-hole intermediate states
often used with a HF ground state approximation to derive the
RPA equations.102 But like the electron propagator, inserting the
CC ground state into the frequency dependent polarizability pro-
vides EOM-CC for excitation energies and dipole strengths. See
also103 for a CC discussion of the polarization propagator.

K. Relativistic corrections for coupled-cluster calculations
Obviously, ‘predictive’ accuracy demands an account of rela-

tivistic corrections on top of even FCI results for the Schrödinger
equation. These apply to heavy atoms and the molecules or solids
built from them. But even for light atoms various effects can be
essential at times like the scalar relativistic corrections for core
ionization and excitation and the pervasive spin-orbit effects es-
sential in spectroscopy. All can be added rigorously by solving the
many-body Dirac equation with coupled-cluster theory. This leads
to the four-component solution of the Dirac equation made pos-
sible today by the DIRAC program104 that offers the relativistic
equivalent to the non-relativistic CC solutions.

In between the full four component treatment and non-
relativistic calculations lie various possible approximations rang-
ing from relativistic psuedo-potentials, to the evaluation of
DMV (Darwin and Mass Velocity) corrections, to Douglas-Kroll-
Hess,105 to an exact two-component theory.106,107 ACES2 uses
fifth-order Douglas-Kroll (DKH5). CFOUR includes the exact two-
component correction. To do relativistic corrections justice would
require a thorough review, see108. Some comparative numerical
results are shown elsewhere.109

More pertinent to this perspective is new CC work for spin-orbit
effects, as EOM-CC has been formulated to provide direct spin-
orbit corrections by adding the latter as a perturbation on top of
non-relativistic CC ground and EOM-CC states,110 implemented
in ACES 3. The problem is illustrated in Fig. 15 and some results
for methyl iodide are shown in Fig. 16. In this work, the basis set
problem is further mitigated by using F12 basis set methods in the
CC/EOM-CC calculations, as shown in Table 1. Note, there is also
a nice and automatic treatment of double group symmetry for the
spin-orbit states that is part of this EOM spin-orbit package.

A particularly important aspect of the F12 methods that fits our
‘evolution toward simplicity’, is that the current incarnation of
this method employs the ‘SP ansatz’ which means it incorporates
the mathematically rigorous properties of the correlation cusp in
its equations.8,9 This rectifies the failure of a gaussian basis’ de-
scription of the cusp, the origin of much of the correlated basis
set error in quantum chemistry. Hence, building in the exact cusp
behavior in CC is currently the best way to solve this problem.
One should always use exact conditions in quantum chemistry
when possible. Perhaps, a simpler route would allow correcting
for the cusp error with an analytic form that could be built into
the second-quantized Hamiltonian from the start for all applica-
tions, but so far, no such universal option is available.
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Fig. 15 Depiction of spin-orbit splittings

Fig. 16 Results for methyl iodide
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Table 1 Electron affinities (in eV.) and corresponding splittings (∆, in cm−1) for different basis sets using regular (Reg.) and explicitly-correlated (F12)
EA-EOM-CCSD

AUG-CC-PCDZ AUG-CC-PCTZ AUG-CC-PCQZ AUG-CC-PC5Z CBS Exp.111

Reg. F12 Reg. F12 Reg. F12

Al+ γ = 3.1 γ = 3.8 γ = 4.3
2P1/2 5.8333 5.8565 5.9049 5.9140 5.9371 5.9420 5.9458 5.9549 5.986
2P3/2 5.8206 5.8435 5.8915 5.9004 5.9235 5.9283 5.9321 5.9411
∆3/2−1/2 102.42 104.84 108.07 108.89 109.68 110.49 110.50 111.30 112.10

NO+

Ω = 3/2 9.3938 9.7377 9.6685 9.7911 9.7425 9.8000 9.7694 9.7976 9.262
Ω = 1/2 9.3805 9.7241 9.6542 9.7767 9.7279 9.7853 9.7547 9.7828
∆3/2−1/2 107.43 109.80 115.24 115.97 117.67 117.93 118.64 119.60 123.1

O 2+
2

Ω = 3/2 23.9112 24.3839 24.2601 24.4222 24.3589 24.4342 24.3981 24.4393 24.14
Ω = 1/2 23.8881 24.3606 24.2356 24.3276 24.3338 24.4092 24.3729 24.4139
∆3/2−1/2 186.02 188.69 198.78 198.94 202.02 202.25 203.56 205.17 200.3

L. Coupled-cluster theory for polymers and crystalline
solids

The natural domain for applications of CC/EOM beyond
molecules is to extended, indeed, infinite systems. This broad
area defines the subject of solid-state or condensed matter
physics, and only linked, size-extensive, many-body methods like
CC, MBPT, or many-body Greens’ functions or propagator meth-
ods are suited to describing electron correlation in infinite sys-
tems, as discussed earlier. The developments in solids are built
upon translational symmetry and periodic boundary conditions,
not the square-integral ones that pertain to finite atoms and
molecules. This distinction might seem modest, but it had largely
kept the two domains separate in terms of correlation until the
late 90’s, when at least MBPT2 correlation was added for 1D-
polymers. Sun and I reported such results112 in carefully con-
verged calculations113 that built upon three independent peri-
odic HF programs that provided polymer SCF calculations as the
reference for further electron correlation treatments.114,115

The other group from quantum chemistry to address the poly-
mer problem was Hirata and Iwata,116 whose initial emphasis
was on analytical energy derivatives in polymers to optimize
structures and to compute force constants, as one would do for
molecules, but now at the MP2=(MBPT2) level. Hirata117 gener-
alized his and Sun’s work to the treatment of electron correlation
to include CCD and various approximations to it.

For extended systems, at this point, the framework was for-
mally in place to treat 1D, 2D and 3D periodic systems subject to
crystalline gaussian basis functions, but such calculations still re-
quired far more computational effort than molecules as one had
to ensure convergence with the number of unit cells and the num-
ber of k-points in the first Brillouin zone. Also, one had to move
to a complex orbital description that few quantum chemists had
employed in their programs.

Other concerns pertained to the perceived linear dependence
in the gaussian basis set that would have to occur for an infi-

nite system. In fact, early practitioners,118–120 felt that such CC
calculations should use plane-wave basis sets that have the ad-
vantage that convergence with the number of plane waves can be
controlled, but the disadvantage that they do not provide a good
approximation for the mostly localized electrons in the compo-
nent atoms where gaussians are far better. This typically forces
plane wave calculations into using psuedo-potentials for the non-
valence bands.

In the early years of the 21th century, serious CC/MBPT studies
for infinite systems were beginning in earnest using crystalline
Gaussian basis functions.5,29 This development will continue to
evolve until for the first time there will be a seamless connection
between CC/MBPT calculations for molecules, for oligomers and
increasingly larger clusters, and an ability to study convergence
to the infinite limit using precisely the same tools. It should also
be understood that contrary to conventional wisdom, even met-
als are accessible to CC/EOM as a band-gap is not a necessity
to apply an infinite-order method. So most of the infinite-order
approximations obtained from CC will be applicable. The likely
exception will be a method like CCSD(T) where the triples part
is treated perturbatively, as it implicitly expects a band gap in its
applications, but switching to CCSDT-n that has the same physics
and computational attractiveness as CCSD(T) but is infinite or-
der should rectify the problem. As long as there is a band-gap
CCSD(T) is imminently doable.

To see the current, impressive progress in CC/EOM-CC for infi-
nite, periodic systems in 1D, 2D, and 3D„ see the work of Berkel-
bach,121 Xiao Wang,122 Xin Xing,123 and others.117 A typical cal-
culation now will provide the band structure and the fundamen-
tal gap from IP/EA-EOM-CCSD, the optical and excitation spectra
from EE-EOM-CCSD, and the detailed geometric structure of var-
ious phases from geometry optimization that might use the CC
analytical derivative methods created for molecules, all discussed
earlier in this perspective. Even modified Gaussian basis sets have
been introduced for periodic systems29 to help to moderate the
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basis set’s linear dependency that once upon a time was thought
to be a major problem for the use of finite basis sets like crys-
talline gaussians in infinite systems. It goes without saying that
the eleventh component of the ’evolution towards simplicity’ is

XI. A seamless connection between CC/EOM-CC for finite sys-
tems and the same for infinite ones. This is now a reality, and it
portends many fundamental consequences for the field from the
treatment of strong electron correlation, to phase transitions, to
high-Tc superconductivity.

Conclusion
I hope this perspective has succeeded in documenting how

CC/EOM theory, and its underlying ‘many-body’ framework, has
enabled electronic structure theory to take a giant step forward.
The eleven components identified as steps in the ‘Evolution to
Simplicity’ are critical to the further advancement of quantum
chemistry and they should serve as a template that should be as-
sessed to identify worthy future developments. Combining these
formally exact conditions with others that might be encountered,
like the correlation cusp condition used in F12, guarantee gen-
uine advances in the field.

To complete the circle, besides electronic structure, the CC
method that was first conceived in nuclear physics by Coester
and Kummel,124 is now a prominent choice for application to
nucleons using the tools and approximations first introduced in
quantum chemistry,125,126 that are discussed in this perspective.

In all its manifestations, coupled-cluster theory has dramati-
cally changed the treatment of electron correlation, and its future
contributions, on quantum computers and otherwise, will be re-
markable!
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