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Mapping spin contamination-free potential energy surfaces using re-
stricted open-shell methods with Grassmannians†

Jake A. Tan∗a and Ka Un Lao∗b

The Lagrange-based Grassmann interpolation (G-Int) method has been extended for open-shell sys-
tems using restricted open-shell (RO) methods. The performance of this method was assessed in
constructing potential energy surfaces (PESs) for vanadiun (II) oxide, benzyl radical, and methane-
sulfenyl chloride radical cation. The density matrices generated by G-Int when used as initial guesses
for self-consistent field (SCF) calculations, exhibit superior performance compared to other tra-
ditional SCF initial guess schemes, such as SADMO, GWH, and CORE. Additionally, the energy
obtained from the G-Int scheme satisfies the variational principle and outperforms the direct energy-
based Lagrange interpolation approach. In the case of methanesulfenyl chloride radical cation, a
unique example with a flat PES at the end region along the H-C-S-Cl dihedral angle, the use of an
equally-spaced grid sampling leads to significant oscillations near the end of the interval due to the
effects of Runge’s phenomenon. Introducing an unequally-spaced grid sampling based on a scaled
Gauss-Chebyshev quadrature effectively mitigated the Runge’s phenomenon, making it suitable for
combining with G-Int in constructing PESs for general applications. Thus, G-Int provides an efficient
and robust strategy for building spin contamination-free PESs with consistent accuracy.

1 Introduction
Modeling electronic structure of open-shell species is essential to
obtain their properties relevant to spectroscopy and excited-state
processes.1 The unrestricted (U) variant2 of Hartree-Fock (HF),
density functional theory (DFT), and post-HF through the use of
a single Slater determinant with two sets of optimized orbitals (α

and β) is always the first choice to describe open-shell systems.1

However, the unrestricted variant suffers from spin contamina-
tion which is a long standing problem owing to the incorporation
of higher spin state character.2 Spin contamination may become
a difficult issue in transition metal complexes, radical chemistry,
and bond dissociation, such as predictions of geometries, elec-
tronic state ordering, as well as vibrational modes, the shape of
the potential energy surface (PES), vertical detachment energies,
and discrepancies between theoretical and experimental spec-
tra.3–5 An alternative to the unrestricted variant is the restricted
open-shell (RO) variant, where molecular orbitals are constrained
to be doubly occupied as much as possible in open-shell systems.
An advantage of the restricted open-shell over the unrestricted
variant is that the wavefunction is an eigenstate of the total spin
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operator Ŝ2 and therefore RO computational results are spin con-
tamination free. Nevertheless, restricted open-shell methods fail
to describe spin polarization, tend to converge slower than their
unrestricted counterparts, and are less commonly available in
quantum chemistry software. As a result, even suffering from
spin contamination, much of the open-shell systems are studied
using the unrestricted variant, especially in mapping PESs which
need many ab initio calculations. One can ameliorate some of
the problems caused by spin contamination in unrestricted calcu-
lations using spin projection techniques.3 However, spin projec-
tion may create unphysical cusps (i.e., derivative discontinuities)
on potential energy curves.6 Thus, restricted open-shell variant
is still the preferred method to generate spin contamination-free
PESs if its slow convergence issue can be overcome. This work
will introduce a method to generate a good self-consistent field
(SCF) initial guess in solving the Roothaan-Hall equation2 for
restricted open-shell methods which can reduce the number of
RO-SCF cycles to accelerate convergence.

An initial guess density matrix Pguess is used to build the
Fock matrix F for starting the SCF iteration procedure. Tra-
ditionally, this guess can come from well-established schemes
such as the superposition of atomic densities (SAD),7 purified
SAD (SADMO),8 core Hamiltonian (CORE), and generalized
Wolfsberg−Helmholtz (GWH).9 Afterward, F is used to solve for
the Roothaan-Hall equation (FC = SCE) to obtain the molecu-
lar orbital (MO) coefficient matrix C and the MO energy matrix
E, where S is the overlap matrix. From the occupied MOs in C,
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a new density matrix is built via P = Cocc(Cocc)T. A new Fock
matrix is then built again, and the previous steps are repeated
until self-consistency is achieved with respect to a certain conver-
gence criteria. It is known that the number of SCF cycles needed
to reach convergence depends on the quality of the initial guess,
Pguess.10 A good initial guess will require fewer SCF cycles, while
a poor initial guess will require more SCF cycles or even worse
lead to SCF convergence issues.10–13

Exploring a potential energy surface (PES) is a commonly per-
formed computational study in chemical research, where one has
to do many SCF calculations along different molecular geometries
for mapping out the surface. One of the current practice is to use
a sparse grid obtained from ab initio calculations to build a PES.
Afterward, an energy-based (EB) interpolation scheme14 is per-
formed to refine the PES. Instead of performing direct EB inter-
polations, density matrix (DM)-based interpolations, which have
been realized recently ,11,12,15 can also be performed. The devel-
opment of DM-based interpolations has been hampered, because
density matrices do not obey closure property where a linear com-
bination of density matrices does not necessarily yield another
density matrix.11 In other words, the interpolated density matrix
Pinterp does not necessarily satisfy three physical requirements in-
cluding (1) Pinterp = PT

interp; (2) PinterpSinterpPinterp = Pinterp; and (3)
Tr[PinterpSinterp] = Nelec, where Nelec is the number of electrons in
the investigated system. Recently, the community11,12,15–18 has
realized that density matrices in the orthonormal basis are ele-
ments of a Grassmann manifold.19,20 As a result, the mathematics
of Grassmann manifolds can then be exploited to perform indirect
interpolations on density matrices.

Our group has recently explored the utility of the Grassmann
interpolation (G-Int) method to generate highly accurate Pinterp

for closed and unrestricted open-shell systems.11,12 When Pinterp

is used as an SCF initial guess, its high quality leads to the ex-
tent that one can bypass performing SCF iterations and obtain ab
initio energies directly. For instance in the case of ferrocene, the
energies ESCF

initial obtained using Pinterp directly only have an error of
∼10−6 Eh when compared with the results from fully converged
SCF solutions.11 In this work, we extended applications of G-Int
in building spin contamination-free PESs using restricted open-
shell methods. In addition, we will compare the accuracy of the
DM-based G-Int method and the corresponding direct EB inter-
polation using the Lagrange interpolation.21 Then, we will com-
ment the effects of the Runge’s phenomenon12,22,23 on the DM-
based and EB interpolation schemes. Lastly, the mitigation of the
Runge’s phenomenon by performing sampling on an unequally-
spaced grid will be introduced and discussed.

2 Computational details
Fig. 1 briefly recapitulates the main concept of the G-Int
method.11,12,15 First, a collection of density matrices {Pk} at var-
ious geometries {rk} is sampled. Then, {Pk} is converted to {Pk}
in the orthonormal basis through Pk = S1/2

k PkS1/2
k . These {Pk} are

objects of the Grassmann manifold MGr and is depicted in Fig 1.
A reference point R0 is then chosen on which the tangent plane
TrrefMGr will be defined. It has been shown that the interpolation
accuracy is not sensitive with the choice for the reference point.11

Afterward, the {Pk} is mapped to its corresponding set of vectors
{ΓΓΓk} in TrrefMGr. This is achieved through the use of Grassmann
logarithm.11,15,20 We note here that such mapping is of prime im-
portance, because MGr is not a vector space, while TrrefMGr is a
vector space which possesses closure property. Meaning to say, a
linear combination of {ΓΓΓk} also belongs to TrrefMGr, as a result
direct interpolations at TrrefMGr can be performed to obtain ΓΓΓunk.
In our current implementation, this interpolation is performed
through the Lagrange interpolation method.21 Finally, the den-
sity matrix at the desired geometry can be obtained by converting
ΓΓΓunk back to Punk by means of Grassmann exponential.11,15,20 Af-
terward, Punk can be converted back to Punk, which can then be
used as an initial guess in an SCF calculation or to predict the
energy directly. For a more comprehensive description of the G-
Int method, the reader is advised to read our previous works11,12

as well as the work from Polack and co-workers.15 All restricted
open-shell calculations in this work were performed using a lo-
cally modified version of Q-Chem24 interfaced with an external
Python 3 code for G-Int which needs to be performed two times,
one for Pα and another for Pβ .

Fig. 1 Schematic representation of MGr, TR0MGr, and their mappings via
Grassmann logarithm logGr,0(P) and Grassmann exponential expGr,0(ΓΓΓ).

3 Results and discussion
We first demonstrate the newly developed restricted-open shell
G-Int method for vanadium (II) oxide (VO) in its ground quartet
state (X4Σ−) since transition metal oxide clusters were shown to
suffer from significant spin contamination.4,5 For VO, we choose
the RO-revPBE0/def2-TZVP method to sample the density matrix
along the V-O bond distance (r). Although HF or other DFT func-
tionals can also be used to describe the electronic structure of
VO, our purpose is to illustrate the use of G-Int to an open-shell
system using a restricted open-shell method. The sampling was
made in the 1.2 Å ≤ r ≤ 2.0 Å range with dr = 0.10 Å as the step
size. The sampled density matrices were then used to interpolate
the density matrices along the 1.35 Å ≤ r ≤ 1.75 Å range with dr
= 0.10 Å using G-Int. The density matrix at r =1.2 Å was used as
the reference point for defining TrrefMGr.

Table 1 summarizes the performance of G-Int for the interpo-
lated points. We first compare how good the interpolated density
matrices are with respect to the converged SCF results. This was
done by calculating the Frobenius25 norm ||∆∆∆Pσ ||F error for each
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Table 1 Performance of G-Int in predicting the restricted open-shell (RO) density matrices of vanadium oxide for both α and β spins along the V-O
bond distance (r) at the level of RO-revPBE0/def2-TZVP. The corresponding SCF energy and SCF error are also shown.

r(Å) ||∆∆∆Pα ||F ||∆∆∆Pβ ||F ESCF
initial(Eh) ESCF

initial−ESCF
conv(Eh)

1.35 2.86×10−4 2.16×10−4 −1019.0549802263 1.30×10−8

1.45 1.02×10−4 6.66×10−5 −1019.1093278846 2.20×10−9

1.55 5.58×10−5 3.15×10−5 −1019.1286204093 8.00×10−10

1.65 4.50×10−5 2.72×10−5 −1019.1261738812 4.00×10−10

1.75 5.11×10−5 3.58×10−5 −1019.1114683897 8.00×10−10

spin density matrix,

||∆∆∆Pσ ||F =
√

∑
i, j
|(∆∆∆Pσ )i j |2, (1)

where ∆∆∆Pσ = Pσ
interp−Pσ

conv, which is the difference between the
interpolated Pσ

interp and converged Pσ
conv density matrices. The su-

perscript σ here denotes either an alpha or beta spin, σ = {α,β}.
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Fig. 2 RO-revPBE/def2-TZVP potential energy scan along the V-O bond
distance (r) of vanadium oxide with reference scan (black), sampled data
points used for interpolations (brown), energies obtained from the G-Int
interpolated density matrices (blue), and directly interpolated energies
using the energy-based (EB) Lagrange polynomial (red).

As shown in Table 1, ∆∆∆Pα and ∆∆∆Pβ have Frobenius norm errors
between 2.72×10−5 to 2.86×10−4. This implies that the interpo-
lated density matrices are close to their converged counterparts.
To better assess on how these Frobenius norm values translates to
errors in the energy of the system, these Pσ

interp are used to predict

energies directly. Their corresponding energies ESCF
initial are then

compared with the converged SCF energies ESCF
conv. Table 1 shows

ESCF
initial and ESCF

initial−ESCF
conv. The difference between ESCF

initial and ESCF
conv

for the interpolated points is 1.30×10−8 Eh at most. These re-
sults implies that the Pσ

interp are of superior quality to the extent
that one can bypass the SCF iterations.

Fig. 2 shows a plot of a PES along the V-O coordinate of vana-
dium oxide. The reference curve (black) corresponds to a refer-
ence PES scan along the coordinate. The corresponding energies

from the sampled density matrices are shown as brown dots in
Fig. 2. The sampled density matrices were then used to generate
the G-Int density matrices at the interpolated points, which are
then used to evaluate the energies. Those energies are shown as
blue dots in Fig. 2 and basically reproduce the reference curve,
which indicates the good quality of these G-Int density matrices.

In the G-Int approach, the vectors on TrrefMGr are interpolated
using the Lagrange method. A natural question would be what is
the performance of the direct EB Lagrange interpolation instead
of doing the indirect DM-based G-Int. To address this question,
we performed an EB Lagrange interpolation, and the results are
shown as red squares in Fig. 2. Note that both the direct EB
Lagrange interpolation and the indirect G-Int results agree well
with the reference curve. Table 2 compares the performance of
both methods with respect to the converged SCF energies ESCF

conv at
several interpolated points. We note that between the two meth-
ods, the energies that were predicted by G-Int (EG−Int) are about
four orders of magnitude more accurate than those obtained from
the EB Lagrange interpolation (ELagrange(EB)). The G-Int scheme,
which automatically ensures the correct geometrical structure,
properties, and physical requirements of the interpolated density
matrix, generates a much more accurate PES as compared with
the direct EB interpolation scheme. Furthermore, the interpo-
lated density matrix can also be used to predict other molecular
properties such as atomic charges.12 Another interesting point is
that EG−Int in VO is always higher than the SCF solution and sat-
isfies the variational principle which cannot be satisfied by the
direct EB interpolation scheme.

Table 2 Comparison between the performance of the indirect G-Int and
the energy-based (EB) Lagrange interpolations along the V-O bond dis-
tance (r) of vanadium oxide at the level of RO-revPBE/def2-TZVP.

r (Å) EG−Int−ESCF
conv(Eh) ELagrange(EB)−ESCF

conv(Eh)

1.35 1.30×10−8 1.03×10−4

1.45 2.20×10−9 −6.31×10−5

1.55 8.00×10−10 7.04×10−6

1.65 4.00×10−10 −2.01×10−5

1.75 8.00×10−10 −3.23×10−6

To illustrate the use of G-Int in a larger system, we con-
sider the rotation of the −CH2 moiety in a benzyl radical which
is a resonance-stabilized radical with high spin contamination
in UHF.26 Geometry optimization at the RO-B3LYP/def2-TZVP
method reveals that its minimum structure is planar and belongs
to the C2v symmetry group. From the minimum structure, the
density matrices were sampled in the −90.00◦ ≤ φ ≤ 90.00◦ range
with dφ = 10.00◦ as the step size. The information at φ = 0.00◦

was used to define TφrefMGr. Interpolation was conducted in the
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−85.00◦ ≤ φ ≤ 85.00◦ range with dφ = 10.00◦ as the step size.
Afterward, the SCF energies corresponding to the interpolated G-
Int density matrices were evaluated. The Cartesian coordinate
and atoms used in defining the dihedral angle φ can be found in
Section A of the Supplementary Information (SI).

To assess the quality of the interpolated density matrices, let’s
consider the case at φ = 15.00◦. The Frobenius norms are compa-
rable for the interpolated α and β density matrices. In particular,
||∆∆∆Pα ||F = 3.45×10−4 and ||∆∆∆Pβ ||F = 1.01×10−4. The assessment
for the rest of the interpolated points can be found in Section B
of the SI. Fig 3 compares the performance of G-Int with other
SCF initial guess schemes for the case of φ = 15.00◦. The SCF cal-
culation was performed using the geometric direct minimization
(GDM) algorithm.27 As shown in Fig. 3, G-Int outperforms all the
other traditional SCF initial guess schemes with about 2, 5, and 7
times faster than SADMO, GWH, and CORE, respectively.

0 20 40 60 80
SCF Cycle
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Fig. 3 Logarithm of the GDM algorithm’s RMS error as a function
of the SCF cycle number for a benzyl radical with φ = 15.00◦ at the
level of RO-B3LYP/def2-TZVP using several SCF initial guess schemes:
CORE (golden rod) , GWH (blue), SADMO (red), and G-Int (green).
The magenta line corresponds to log10 (1.00×10−8), which is the SCF
convergence criterion.

To compare qualitatively how good EG−Int are with respect to
their converged SCF energies, a rigid PES scan in the −90.00◦ ≤
φ ≤ 90.00◦ range was performed and is shown as a black curve
in Fig. 4. Except for φ = ±85.00◦ which are near the end of the
interval, all of the interpolated points agrees fairly well with the
reference curve. The small deviation between the reference and
interpolated points at φ =±85.00◦ with an error up to 9.04×10−4

Eh is likely due to the Runge’s phenomenon,12,22,23 which is in-
herent to a Lagrange interpolation when an equally-spaced grid is
used. The Runge’s phenomenon is a problem of large oscillations
which occurs at the edges of the interpolation interval and hap-
pens when a high-degree polynomial is used for the interpolation.

We then compare the performance of EG−Int and ELagrange(EB)
on the whole PES. As shown in Fig. 4, EG−Int is one to four orders

Fig. 4 RO-B3LYP/def2-TZVP rigid potential energy scan along the
dihedral angle between the phenyl and −CH2 moiety of a benzyl radical
with reference scan (black), sampled data points used for interpolations
(brown), energies obtained from the G-Int interpolated density matrices
(blue), and directly interpolated energies using the energy-based (EB)
Lagrange polynomial (red).

of magnitude more accurate than ELagrange(EB). In addition, EG−Int

still satisfies the variational principle, but ELagrange(EB) does not.
ELagrange(EB) starts to have deviations at φ = ±75.00◦ and show
very large errors at φ =±85.00◦ as shown in Fig. 4. The energies
at φ = ±85.00◦ that were obtained from G-Int agrees way much
better than those obtained from the direct EB Lagrange interpo-
lation. Such finding suggests that the indirect Lagrange interpo-
lation on TrrefMGr (G-Int) appears to be less susceptible to the
Runge’s phenomenon, and therefore the indirect G-Int scheme
outperforms the direct the EB Lagrange interpolation approach in
mapping PESs. A more thorough study is needed to fully charac-
terize this aspect which is currently explored in our group.

As mentioned earlier, the Runge’s phenomenon associated with
the G-Int method is an artifact of using an equally-spaced grid
for the Lagrange interpolation.12,22,23 To further investigate this
phenomenon, we explore the case for methanesulfenyl chloride
radical cation, CH3SCl•+, serving as an illustrative and special ex-
ample that further magnifies errors near the end of the interval at-
tributed to Runge’s phenomenon in flat PES regions. The ground
doublet state geometry for CH3SCl•+ was optimized at the level
of revPBE0/def2-TZVP. Afterwards, a rigid potential scan along
the H-C-S-Cl dihedral angle of this species was performed in the
−64.00◦ ≤ φ ≤ 64.00◦ range with dφ = 8.00◦. The density matrix
at φ = 0.00◦ was used in defining the tangent space. Fig. 5 shows
that the potential curve is flat at both ends of the scan interval. A
Lagrange-based G-Int for points on the flat regions would result
to large errors when an equally-spaced grid is used since the La-
grange interpolating polynomial would tend to oscillate (Runge’s
phenomenon) near the end regions of the sampled grid.22

To investigate the severity of such errors, interpolation at se-
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Table 3 Performance of G-Int in predicting the restricted open-shell (RO) density matrices using an unequally-spaced grid (a scaled Gauss-Chebyshev
quadrature) for CH3SCl•+ for both α and β spins along the H-C-S-Cl dihedral angle (φ) at the level of RO-revPBE0/def2-TZVP. The corresponding
SCF energy and SCF error are also shown.

φ(◦) ||∆∆∆Pα ||F ||∆∆∆Pβ ||F ESCF
initial(Eh) ESCF

initial−ESCF
conv(Eh)

5.00 7.11×10−3 6.95×10−3 −897.8546774974 5.65×10−6

10.00 4.07×10−3 3.99×10−3 −897.8547733728 1.86×10−6

15.00 8.74×10−3 8.56×10−3 −897.8549082770 8.64×10−6

31.00 5.86×10−2 5.74×10−2 −897.8552929056 3.92×10−4

38.00 4.88×10−2 4.79×10−2 −897.8557856435 2.72×10−4

45.00 1.20×10−2 1.18×10−2 −897.8563559055 1.64×10−5

58.00 3.65×10−3 3.59×10−3 −897.8567110954 1.49×10−6

60.00 7.77×10−3 7.63×10−3 −897.8567150402 6.74×10−6

62.00 3.23×10−3 3.17×10−3 −897.8567205067 1.17×10−6

Fig. 5 RO-revPBE0/def2-TZVP potential energy scan along the H-C-S-
Cl dihedral angle for methanesulfenyl chloride radical cation, CH3SCl•+

with reference scan (black), sampled data points used for interpolations
(brown), and energies obtained from the G-Int interpolated density ma-
trices (blue) using the scaled Gauss-Chebyshev grid.

lected φ values near the end region were performed. Table S3
in Section C of the SI shows the performance of the interpolated
points at the end region, φ = 58◦,60◦,and 62◦, using an equally-
spaced grid. Notice that the Frobenius norm errors when the
G-Int density matrices are compared with their converged SCF
solutions are large. In particular, ||∆∆∆Pα ||F is between 22.5 to
26.6, while ||∆∆∆Pβ ||F is between 21.4 to 25.2. These large Frobe-
nius norm errors, which is due to Runge’s phenomenon, also pro-
duces large errors when the corresponding EG−Int is compared
with ESCF

conv. As shown in Table S3, the EG−Int deviate between
1.13 to 1.17 Eh for these three end points. Meanwhile, density
matrices in the inner region of the sampling interval such as from
φ = 5◦ to φ = 45◦ not only have low Frobenius norm errors for
the alpha and beta density matrices, but also have a EG−Int that
agrees excellently with their ESCF

conv counterparts. As given in Ta-
ble S3, the EG−Int−ESCF

conv for the representative points in the inner
sampling region have an error of 2.46×10−7 Eh at most.

We now examine whether there is a correlation between the

significant end-point errors in G-Int with respect to the “near-
ness” of the interpolated point from the reference point at which
the tangent space TφrefMGr is defined. Using the previously sam-
pled points in the −64.00◦ ≤ φ ≤ 64.00◦ range with dφ = 8.00◦

for CH3SCl•+, we performed G-Int at φ = 58◦ on tangent spaces
defined at different reference points, φref ∈ {0.00◦,40.00◦,64.00◦}.
We found that the errors are not so sensitive with the choice for
φref. For example, when φref = 0.00◦, the EG−Int−ESCF

conv is 1.17 Eh.
Choosing a φref = 64.00◦, which is much closer to the interpolated
point only decreases the EG−Int−ESCF

conv to 1.13 Eh (Table S4 in
Section D of the SI). Hence, these significant errors at the end-
points do not stem from the choice of φref. In essence, the current
findings suggest that the origin of these substantial end-point er-
rors is due to the well-known Runge’s phenomenon,22 inherent
to the interpolation method (Lagrange method) when an equally-
spaced grid is employed. It is noteworthy that significant end-
point errors persist even when employing the direct energy-based
Lagrange interpolation approach with an equally-spaced grid. In
other words, these interpolation errors near the interval’s ends are
not specific to G-Int but rather stem from the well-known Runge’s
phenomenon in numerical analysis. Thus, changing the interpo-
lation method is expected to alleviate the issue of undesired loss
in accuracy attributed to Runge’s phenomenon. A potential al-
gorithm that alleviates the impact of Runge’s phenomenon on an
equally-spaced grid is the S-Runge algorithm, developed by De
Marchi and co-workers.28

We note that it is also possible to mitigate the Runge’s phe-
nomenon by performing sampling on an unequally-spaced grid.23

Table 3 shows the performance of G-Int when an unequal-space
grid is used. This unequally-spaced grid was generated using
a scaled Gauss-Chebyshev quadrature.21 A total of seventeen
points were generated in the range of −1 to 1. Afterwards,
these generated points were then multiplied by 64◦, which is
the highest-end of the sampling interval. The resulting grid then
was used to sample the density matrices along the H-C-S-Cl di-
hedral angle. Fig. 5 shows the sampled points in (brown), the
reference scan potential (black), and a few representative inter-
polated points using the scaled Gauss-Chebyshev grid. Here we
note that by using an unequally-spaced grid, the Runge’s phe-
nomenon can be largely mitigated as the interpolated points near
the ends of the sampling interval have a much better accuracy this
time with error up to 6.74×10−6 Eh for three points at the end
region. Although the use of a scaled Gauss-Chebyshev quadra-
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ture does introduce errors in the region between 30◦ and 40◦

where errors at φ = 31◦ and 38◦ increase to 3.92×10−4 Eh and
2.72×10−4 Eh, respectively, G-Int combined with points sampling
on an unequally-spaced grid provides a much better PES than the
one used with an equally-spaced grid. The errors introduced by
an unequally-spaced grid in the middle range can be in principle
reduced by sampling more points around that region. However,
the oscillations due to the Runge’s phenomenon introduced by an
equally-spaced grid will be even larger if more sampling points
are used. This works has demonstrated that the impact of Runge’s
phenomenon on Lagrange interpolation can be significantly re-
duced by utilizing an unequally-spaced grid. Consequently, an
unequally-spaced grid sampling may be a more favorable choice
for G-Int in constructing PESs for general applications. Our group
is currently exploring various combinations of interpolating and
sampling schemes to effectively overcome Runge’s phenomenon.

4 Conclusions
In summary, we have demonstrated that the indirect G-Int scheme
excels in accelerating the construction of spin contamination-free
restricted open-shell PESs, surpassing the direct energy-based La-
grange interpolation approach in both vanadiun (II) oxide and
benzyl radical. Additionally, in the special case of the methane-
sulfenyl chloride radical cation, characterized by a flat PES at the
end region along the H-C-S-Cl dihedral angle, substantial oscil-
lations occur due to the well-known Runge’s phenomenon in-
troduced by an equally-spaced grid. Our findings indicate that
an unequally-spaced grid significantly mitigates the Runge’s phe-
nomenon, making it a suitable choice when combined with G-Int
for constructing PESs, even for challenging systems. We antic-
ipate that this work extends the applicability of G-Int to build
PESs for open-shell systems without suffering from spin contam-
ination. Our group is actively developing extensions of the G-
Int method for larger systems and exploring alternative sampling
schemes,with results to be presented in upcoming publications.
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