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Economical Quasi-Newton Unitary Optimization of Elec-
tronic Orbitals†

Samuel A. Slattery, Kshitijkumar A. Surjuse, Charles C. Petersonb, Deborah A. Penchoffc,
and Edward F. Valeeva

We present an efficient quasi-Newton orbital solver optimized to reduce the number of gradient
evaluations and other computational steps of comparable cost. The solver optimizes orthogonal
orbitals by sequences of unitary rotations generated by the (preconditioned) limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm equipped with trust-region step restriction. The low-
rank structure of the L-BFGS inverse Hessian is exploited when solving the trust-region problem. The
efficiency of the proposed “Quasi-Newton Unitary Optimization with Trust-Region” (QUOTR) solver
is compared to that of the standard Roothaan-Hall approach accelerated by the Direct Inversion of
Iterative Subspace (DIIS), and other exact and approximate Newton solvers for mean-field (Hartree-
Fock and Kohn-Sham) problems.

1 Introduction
Orbital optimization is a fundamental ingredient of the electronic
structure methods at all levels of approximation, from 1-body
models (Hartree-Fock (HF), Kohn-Sham Density Functional The-
ory (KS DFT), collectively known as the Self-Consistent Field
(SCF) method1*), to many-body methods (e.g., multiconfigura-
tion self-consistent field (MCSCF)). Despite the long history of
innovation,2–29 development of improved orbital optimizers con-
tinues to this day.30–35 Although the relevant functionals of the
orbitals are nonconvex, and global and local nonconvex optimiza-
tion is NP-hard,36,37 it is known that many practical orbital opti-
mization problems are easily solved using existing heuristics. For
the crucial HF/KS SCF use case, the most popular solvers in the
molecular context are based on the Roothaan-Hall (RH) iterative
diagonalization of the Fock matrix2,38 augmented by convergence
accelerators such as Anderson mixing39 or the closely related di-
rect inversion in the iterative subspace (DIIS) method,10,13,40,41

as well as others.42 However, several issues plague the efficient
RH/DIIS heuristics:
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• for systems with complex electronic structure (such as
molecules far from equilibrium, open-shell systems,32,43 and
systems with small HOMO-LUMO gaps28) convergence will
be slow,44 erratic, or nonexistent,31,45

• the use of diagonalization produces canonical orbitals whose
lack of localization makes them incompatible with fast algo-
rithms for the Fock matrix construction (e.g., using local or
sparse density fitting46–48),

• applications to large systems and/or in non-LCAO represen-
tations can be bottlenecked by the O(N3) cost of diagonal-
ization,17,18,26

• locating non-Aufbau (e.g., excited state) solutions is possi-
ble49 but is not robust, and

• even in favorable cases the convergence rate is linear50,51

(i.e., the error is reduced by approximately the same factor
each iteration) or perhaps slightly better when accelerated
with DIIS52; this is slower than the quadratic convergence
exhibited by, e.g., the Newton method.53

The lack of convergence guarantees is probably the most severe of
these in practice. Extensions of the standard RH/DIIS heuristics
have been devised to improve the robustness40,54,55 but for chal-
lenging cases the user is expected to control the many heuristic
solver control parameters that help the convergence (level shift,
damping, etc.).

Orbital optimizer solvers that rely on direct energy minimiza-
tion can address some/all of these concerns and thus have a long
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history of development.3,5,6,8,9,11,12,14–19,21–29,56 In the molecu-
lar mean-field context direct minimization SCF solvers have long
been employed as the recommended alternative in the case of
convergence problems, used in combination with RH/DIIS to gain
superlinear convergence, and to enable reduced-scaling SCF ap-
proaches.26,28 Nevertheless, RH/DIIS remains the default SCF
solver, not due to its formal advantages, but due to its superior
efficiency. This may be puzzling since direct minimization solvers
are often demonstrated to converge in as few as (or fewer) iter-
ations than RH/DIIS.21,35 However, the number of iterations is
a misleading figure since each update of the orbitals or density
matrix may involve multiple energy/gradient evaluations or solv-
ing similarly expensive subproblems (such as multiplication of a
trial orbital rotation by the orbital Hessian). In other words, the
number of gradient evaluations (Fock build equivalents, NF) in
a direct minimization solver is typically significantly greater than
the number of iterations (NI), whereas in RH/DIIS they are equal.
Thus the latter typically involves significantly fewer Fock matrix
evaluations, which in most practical applications determines the
overall cost.

The objective of this work is to design a quasi-Newton or-
bital optimizer that minimizes the number of gradient evalua-
tions (and its equivalents) to be as competitive with RH/DIIS
as possible, and as robust as possible without the need to ad-
just the control parameters. Our “Quasi-Newton Unitary Op-
timization with Trust-Region” (QUOTR) solver uses precondi-
tioned limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm53 step-restricted by trust-region (TR) and lever-
ages the inverse L-BFGS Hessian’s low-rank structure to efficiently
solve the trust-region update problem.57

The rest of the manuscript is structured as follows. In Sec-
tion 2 we briefly review the general classes of SCF solvers before
describing the theoretical aspects of QUOTR. Next, the implemen-
tation of QUOTR is discussed in Section 3. In Section 4 we dis-
play solver performance statistics for a standard set of chemical
systems and make a comparison to a method that uses informa-
tion from the “exact” Hessian. Additionally, in Section 4 we il-
lustrate the utility of QUOTR for several prototypical problems
where RH/DIIS and other SCF solvers struggle, such as a sys-
tem with vanishing HOMO-LUMO gap as well as select d- and
f-element containing systems. In Section 5 we summarize our
findings.

2 Formalism

2.1 Overview of SCF Solver Approaches

All SCF methods attempt to iteratively minimize the electronic
energy E(x) or its Lagrangian counterpart, where x is a set of
independent parameters defining the particular method. In prac-
tice the minimum is determined by using the energy, its gradient
g, and optionally the Hessian B. Starting with an initial (guess)
set of parameters x(0) SCF solvers construct improved parameter
values using the current energy and its derivatives, (optionally)
their values from previous iterations (histories), as well as any

optional additional parameters and their histories:

x(k+1) = f ({x(k)},{E(k)},{g(k)}, . . .) (1)

The SCF solvers differ in how they construct the update in Eq. (1);
unfortunately, it is not possible to systematically classify the
solvers since in the vast majority of cases f () is an algorithm, not
a simple function. Thus here we only focus on essential common
elements of all SCF solvers.

Most solvers split the update problem (1) into 2 subproblems
by defining the parameter update,

s(k) ≡ x(k+1)−x(k) = α
(k)p(k) (2)

in terms of a search direction p(k) and a step size α(k), each of
which has its own prescription similar to Eq. (1)

p(k) =g({x(k)},{E(k)},{g(k)}, . . .), (3)

α
(k) =h({x(k)},{E(k)},{g(k)}, . . .). (4)

The need to control the step size is common to all SCF solvers due
to the fundamental nonlinearity of the energy function. Therefore
even solvers that do not employ Eq. (2), such as RH/DIIS, still
introduce ad hoc ways to control the step size by level shifting,
damping, and other means of step restriction.

The simplest “2-step” solver is the steepest descent (SD)
method3 in which the search direction p(k) is opposite to the cur-
rent gradient g(k):

p(k) SD
= − g(k)

||g(k)||
(5)

Unfortunately, although the SD method is guaranteed to con-
verge to a nearby minimum, the plain SD variant converges very
slowly;58,59 this can be rationalized by comparing it to the (exact)
Newton step:

s(k) Newton
= −

(
B(k)

)−1
g(k). (6)

Hessian B is a diagonally-dominant matrix with a large (and
growing with the basis set size) condition number. Luckily it is
relatively simple to construct an effective approximation to the
Hessian; a particularly popular way is to use only the 1-electron
terms in the Hessian, B1e. Approximate Hessians can then be used
for preconditioning SD (using the 1-electron Hessian for precon-
ditioning is also known as the “energy weighted steepest descent”
method5,6,8) by replacing g(k) in Eq. (5) with the preconditioned
gradient:

g̃(k) ≡
(

B(k)
1e

)−1
g(k). (7)

The RH method can be viewed as a simplified version of precon-
ditioned SD, due to its step being exactly the negative of the gra-
dient preconditioned by the 1-electron Hessian:24,28

s(k) RH
= − g̃(k). (8)

More sophisticated prescriptions for direction include the con-
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jugate gradient (CG) method18,20,22,27,29 in which history is lim-
ited to the information about the current and previous iteration.
Of course, the use of preconditioning is mandatory with CG just as
with SD. Unfortunately neither SD nor CG, even with an approxi-
mate preconditioner, lead to an optimal convergence rate near the
minimum. Thus the most efficient solvers utilize exact or approx-
imate Hessians near the minimum. The time-determining step of
such models usually involves direct evaluation of the action of ex-
act (or approximated) Hessian onto a trial step, at a cost similar
to the cost of the gradient evaluation (i.e., the Fock matrix eval-
uation in the mean-field case).13,16,17 Although it is possible to
apply the straightforward Newton method using the exact Hes-
sian when sufficiently close to the minimum,9 to be able to use
the exact Hessian further away from the minimum requires some
form of step restriction. The popular augmented Hessian (AH)31

method can be viewed as a Newton method with optimally re-
stricted steps; it can also be viewed as a quasi-Newton method
in which an approximate (level-shifted) Hessian is used. The di-
verse family of quasi-Newton methods each use approximate Hes-
sians of some form, often generated from information contained
in the gradients and steps of the previous iterations.53 The quasi-
Newton idea has been used in MCSCF for a long time,60 and the
most commonly employed approximation in SCF is some form
of the BFGS algorithm.14,15,19,21,29,33 The BFGS method has re-
cently been used with success in the MCSCF context61 and the
selected configuration interaction (CI) context.62

Although some solvers compute the step length separately from
the direction, more sophisticated approaches fuse step restriction
deeper into the step computation. Indeed, when an underlying
quadratic model of the energy exists, it is not natural to simply
perform a line search toward the (unrestricted) minimum of the
model, considering that the model is known to be locally accu-
rate in all directions. The alternative concept of searching for
the minimum of a model in all directions, but restricting the step
size to some maximum value, is the key idea of the trust-region
(TR) method.23–26,28,31,56,63,64 Two important aspects of any TR
method are: how the trust-region is updated between iterations,
and how the trust-region problem is solved for the step. The up-
date method that is commonly used is based on an algorithm de-
veloped by Fletcher,65 and one of the first true TR applications in
quantum chemistry used it in the context of MCSCF.63 A common
occurrence of the TR problem in quantum chemistry is within the
framework of the AH method; due to the use of full (level-shifted)
Hessian in AH the cost of the TR solve is similar to the cost of the
unrestricted step.31 Here we use the TR method in the context of
the L-BFGS method which allows us to exploit the low-rank struc-
ture of the L-BFGS Hessian to essentially eliminate the extra cost
of using the TR method.57

2.2 QUOTR: Quasi-Newton Unitary Optimization with Trust-
Region

Our direct minimization SCF solver is a preconditioned quasi-
Newton (L-BFGS) solver with TR step restriction. Although its
aspects are similar to prior SCF solvers, there are several novel
elements:

• The optimization is parameterized with a consistent “ref-
erence” (epoch) MO basis allowing use of the exact gradi-
ent with minimal computation after the Fock matrix is con-
structed.

• The preconditioner is updated only on some iterations, and
it is regularized in a simple way to ensure a positive definite
Hessian.

• The low-rank structure of the L-BFGS Hessian is exploited
when solving for the quasi-Newton step on the TR boundary.

The QUOTR algorithm is described in Algorithm 1, and its
user-controllable parameters are listed in Table 1. The parame-
ters listed have been divided into three groups: free user choice,
convergence tweaking, and expert-only controls. The two con-
vergence criteria for the solver can be chosen however the user
wishes, within reason. The next three parameters could be ad-
justed in cases that convergence is not as fast as desired. Finally,
the remaining parameters are not recommended to be adjusted.
Below we elaborate on each key aspect of the solver.

Table 1 User-controllable parameters of the QUOTR solver.

Description Symbol Value
energy convergence threshold tce 10−9

gradient convergence threshold tcg 10−5

L-BFGS start threshold tb 0.1
max history size m 8
regularizer threshold tr 0.25
history keep threshold th 10−5

exponential tolerance te 10−15

Compare zero threshold t0 10−11

line search fitting range shrink factor αfit,shrink 1/2
minimum TR tolerance tt 10−10

TR step accept threshold τ1 0
TR shrink threshold τ2 0.25
TR expand threshold τ3 0.75
TR shrink factor η1 0.25
TR shrink by step factor η2 0.5
TR expand check factor η3 0.8
TR expand by factor η4 2.0

2.2.1 Parameterization.

It is important to consider how the standard unconstrained quasi-
Newton minimization scheme can be mapped to the constrained
minimization of the single-determinant energy where the orbitals
are required to be orthonormal. In the following, we assume the
linear combination of atomic orbitals (LCAO) representation of
the molecular orbitals (MOs), and thus the MOs are defined by
the coefficient matrix C.

We seek a unitary matrix, Ū, that transforms the initial (guess)
set of orthonormal orbitals, C(0), into the target solution, C̄.

C̄ = C(0)Ū (9)

The target unitary matrix is built as a sequence of unitary rota-
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Algorithm 1 QUOTR SCF Solver

1: function QUOTR(C(0))
2: k← 0, Staken← false, Rhist← false, Uepoch← 1, {E(k),FAO}← FOCK(C(k))

3: g(k)← GRAD(FAO,C(k),Uepoch) ▷ Eq. (14)
4: B0← PRECONDITIONER(FAO,C(k)) ▷ Eq. (24)
5: while RMS(g(k))> tcg AND (k=0 OR ∆E(k) > tce) do
6: if Staken then
7: s(k−1)← B−1/2

0 s̃(k−1)

8: if y(k−1) · s(k−1) > tr||y(k−1)|| ||s(k−1)|| then
9: ỹ(k−1)← B−1/2

0 y(k)

10: S̃← APPEND(S̃, s̃(k−1)), S̃← TRIM(S̃,m), Ỹ← APPEND(Ỹ, ỹ(k−1)), Ỹ← TRIM(Ỹ,m) Ṽ← CONCAT(S̃, Ỹ) ▷ update history
11: end if
12: end if
13: Rhist← ∆(k) < tt OR ||g(k)||∞ > tb
14: if NOT Rhist then
15: g̃(k)← B−1/2

0 g(k)
16: if k > 0 AND Ṽ not empty then ▷ BFGS
17: s̃(k) ← L-BFGS(g̃(k), Ṽ) ▷ Eqs. (27) and (29)
18: if ||s̃(k)||> ∆(k) then
19: s̃(k)← TRSTEP(∆(k), g̃(k), s̃(k), Ṽ) ▷ Algorithm 2
20: end if
21: q(k)← Eq. (38), Rhist← q(k) > 0 ▷ energy increase predicted
22: else
23: s̃(k)←−g̃(k) ▷ steepest descent
24: end if
25: end if
26: if Rhist then ▷ new epoch
27: if not Staken then
28: {E(k),FAO}← FOCK(C(k))
29: end if
30: Ṽ←{}, Uepoch← 1, B0← PRECONDITIONER(FAO,C(k)), g(k)← GRAD(FAO,C(k),Uepoch)

31: g̃(k)← B−1/2
0 g(k), s̃(k)←−g̃(k) ▷ steepest descent

32: end if
33: if k = 0 OR Ṽ is empty then ▷ line search
34: α(k)← LINESEARCH(s̃(k)) ▷ Section 2.2.4
35: s̃(k)← α(k)s̃(k)/||s̃(k)||, ∆(k)← α(k)

36: end if
37: Staken← true,s(k)← B−1/2

0 s̃(k) ▷ attempt step
38: U(k)← UNITARYSTEP(s(k),Uepoch) ▷ Eq. (16),Eq. (12)
39: C(k+1)← C(k)U(k), {E(k+1),FAO}← FOCK(C(k+1)), ∆E(k)← E(k+1)−E(k)

40: if k > 0 AND Ṽ not empty then
41: ρ(k)← ∆E(k)/q(k)

42: Staken← ρ(k) ≥ τ1 OR ∆E(k) ≤ t0
43: if ρ(k) < τ2 then
44: ∆(k+1)← MIN(η1∆(k),η2||s̃(k)||)
45: else if (ρ(k) > τ3 AND ||s̃(k)||> η3∆(k)) then
46: ∆(k+1)← η4∆(k)

47: end if
48: else
49: Staken← ∆E(k) ≤ t0
50: if Staken then
51: ∆(k+1)← ||s̃(k)||
52: end if
53: end if
54: if Staken then
55: k← k+1, Uepoch← UepochU(k−1), g(k)← GRAD(FAO,C(k),Uepoch), y(k−1)← g(k)−g(k−1) ▷ accept step
56: else
57: ∆(k)← ∆(k+1) ▷ reject step, change TR
58: end if
59: end while
60: return C(k)

61: end function
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tions,

Ū = U(0)U(1) · · · ≡∏
k

U(k), (10)

with each unitary rotation U(k) obtained by solving a local sub-
problem. The orbitals at iteration k > 0 are given by the coef-
ficient matrix obtained from the total rotation determined thus
far.

C(k) = C(0)
k−1

∏
i=0

U(i) = C(k−1)U(k−1) (11)

We use the standard9,66–68 exponential parameterization of
unitary U(k) :

U(k) = exp(σσσ (k)), (12)

where σσσ (k) is an antihermitian matrix encoding the unitary ro-
tation of the orbitals. Formulating the optimization problem in
terms of the antihermitian coordinate matrix σσσ rather than in
terms of the density matrix allows us to avoid the need for diago-
nalization (which restores the idempotency of the density matrix
in extrapolation/interpolation methods like DIIS13,40). The ma-
trix exponentials are evaluated accurately (to finite precision te)
as a Taylor series expansion using a simple scaling-and-squaring
approach31,69 with a fixed order of 2. In this technique, the ma-
trix to be exponentiated is first divided by 22 = 4. Next, the Tay-
lor expansion for the exponential function is carried out on this
scaled matrix, truncating when the norm of the next term in the
series drops below te. The resulting matrix is raised to the fourth
power (by squaring twice) to obtain the exponential of the orig-
inal matrix. Although some approaches evaluate the exponential
approximately and return to the target manifold by additional or-
thogonalization,9,19 accurate evaluation is important to be able
to maintain the fidelity of the relationship between parameters
and the objective function values in the context of extrapolation
methods like BFGS. Evaluation of the matrix exponential could
be improved further, e.g., by leveraging the block-sparse antiher-
mitian structure of σσσ .34

It is important to express both the gradients and parameter up-
dates for each iteration in the same coordinate frame (basis). In
the context of the DIIS methods this is usually done by working
in the AO basis (e.g., as noted by Pulay in Ref. 13 “In order to
be useful for extrapolation purposes, [the Fock] matrices (one in
each iteration step) must be transformed to a common basis, e.g.,
to the original AO basis set.”). Here the working frame is defined
by the initial orthogonal MO basis for each epoch (namely, the se-
quence of iterations whose history is used to construct the current
approximation to the Hessian). The gradient of the energy evalu-
ated with orbitals C(k) with respect to their arbitrary rotation σσσ (k)

has the familiar form when expressed in terms of C(k):

(g(k))ia ≡
∂E

∂σ
(k)
ai

= 2ni(F(k))ia, (13)

where a and i refer to the unoccupied and occupied MOs in C(k),
respectively, and ni is the occupancy of ith orbital (2 for spin-

restricted closed-shell SCF, 1 for spin-unrestricted SCF). However,
the gradient “at” arbitrary MOs can be expressed in an arbitrary
(e.g., epoch) basis. For example, the gradient at current orbitals
C(k) in epoch basis can be obtained by transforming Eq. (13) to
the epoch basis:

g(k)epoch ≡ 2ni[F
(k)
epoch,P

(k)
epoch]. (14)

Here F(k)
epoch is the Fock matrix evaluated with current orbitals C(k)

but represented in the epoch MO basis and P(k)
epoch is the projector

onto the occupied MOs in C(k) expressed in the epoch basis. In
practice, the Fock matrix in the epoch basis is evaluated in AO
basis using the AO density matrix evaluated from C(k) and then
transformed to the epoch basis. The projection operator onto the
occupied space at iteration k in the epoch basis is obtained as

P(k)
epoch = U(k)

epochP(U(k)
epoch)

T, (15)

where P is the diagonal matrix, with ones and zeroes on the di-
agonal for the occupied/unoccupied MOs, respectively. Not only
does this formulation of the gradient allow us to have a consistent
basis for forming the L-BFGS Hessian, but it also avoids evaluat-
ing the gradient at particular MOs using a non-truncating Taylor
series around the reference/epoch basis, as in other solvers.33

Note that σσσ (k) is a matrix, but only some of its elements can be
varied independently. It is also traditional in applied mathemat-
ics literature to arrange the parameters of multivariate functions
into vectors. Thus it is appropriate to comment on the detailed
relationship of σσσ (k) and the corresponding step vector s(k). Due
to the antihermiticity of σσσ , σpq = −σqp, hence for real orbitals
(which we assume here without any loss of generality) only the
lower elements are independent. Notice that the gradient ma-
trix in Eq. (14) is also antihermitian, with the same structure as
σσσ . Although for 1-body SCF methods considered here elements
of the gradient matrix are nonzero only between occupied and
unoccupied orbitals, hence one would think that only (σσσ)ia ele-
ments need to be independently varied, this is only true for σσσ

expressed in the current MO basis (i.e., the basis defining the
density). To be able to work in an arbitrary (e.g., epoch) basis
all lower-triangular elements of σσσ thus must be considered inde-
pendent. For an MO basis with no orbitals, this means that the
number of independent parameters is n≡ no(no−1)/2, assuming
no additional symmetries are taken into account. In the spin-
unrestricted case, the kappa elements for the separate alpha and
beta spin MOs are simply concatenated into one vector. Notice
that the gradient matrix in Eq. (14) is also antihermitian, with
the same structure as σσσ . Thus, we can map the matrix elements
of the gradient to a vector in exactly the same way as for the ma-
trix elements of σσσ , using only the lower (or upper) triangle. We
use the symbol s(k) for the vector version of σσσ (k); for the gradient
henceforth only its vector form, g(k), is used.

The steps and gradient differences are the ingredients for the
L-BFGS update to the Hessian and its inverse. All quantities
throughout each epoch (see below) are kept in the epoch “ref-
erence” basis to make application of L-BFGS and TR consistent.
However, when a new step s(k) is proposed, to convert it to the
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unitary rotation via Eq. (12) it must be transformed to the cur-
rent MO basis, via

σσσ
(k) = U(k−1)T

epoch σσσ
(k)
epochU(k−1)

epoch . (16)

Our convergence criteria require both the energy change be-
tween iterations (∆E(k) ≡ E(k+1)−E(k)) and the root mean square
(RMS) of the unique gradient elements to be small. Generally,
we require energy change to be below 1× 10−9Eh and the RMS
gradient (in epoch basis) to be smaller than 1× 10−5. However,
for some comparisons with other solvers, we use the 2-norm of
the gradient instead of the RMS version.

2.2.2 Quasi-Newton method.

The L-BFGS algorithm is used to approximate the Hessian,
B(k)

BFGS ≈ B(k), and its inverse, H(k)
BFGS ≡ (B(k)

BFGS)
−1 ≈ (B(k))−1, us-

ing the history vectors from (at most) m previous iterations. In
the following, we will assume that the history size is equal to m
for simplicity. This approximate Hessian and its inverse can be
represented in low-rank form as follows:57

B(k)
BFGS = B0−V(k)

B (W(k))−1V(k)T
B (17)

H(k)
BFGS = H0 +V(k)

H M(k)V(k)T
H (18)

Here the matrix B0 is an initial (often diagonal) approximation to
the Hessian chosen at the beginning of the current epoch, which
in principle could be any positive definite matrix.53 The matrix
H0 is the corresponding initial inverse Hessian approximation:
H0 ≡B−1

0 . More will be said about these critical components later.
At iteration k with the BFGS history containing m {step,gradient
differences} pairs, matrix V(k)

B has 2m columns, with the first m
being history step vectors multiplied by the initial Hessian, B0s(k),
followed by the m matching gradient differences, y(k) ≡ g(k+1)−
g(k). V(k)

H is obtained from V(k)
B as V(k)

H ≡ H0V(k)
B . The square

matrices W(k) and M(k) have dimension 2m, and the need for the
inverse of W(k) is not a problem since m is typically small (we
have used m = 8). The formation of W(k) and M(k) is described in
the literature,57,70 but essentially they are composed of various
dot products involving the history vectors, (requiring an inverse
of one of the m×m subblock).

W(k) =

(
((S(k))TB0S(k)) L(k)

(L(k))T −E(k)

)
(19)

M(k) =

(
((L(k))−1(E(k)+(Y(k))TH0Y(k))(L(k))−T) −(L(k))−1

−(L(k))−T 0

)
(20)

In Eq. (19) and Eq. (20), S(k) is an n×m matrix containing
the history column vectors, s(k), and similarly Y(k) contains the
gradient differences, y(k). The smaller m×m submatrices L(k) and

E(k) are simply constructed as below.

L(k)
i j =

{
s(k−m−1+i) ·y(k−m−1+ j), if i > j

0 otherwise
(21)

E(k)
i j =

{
s(k−m−1+i) ·y(k−m−1+ j), if i = j

0 otherwise
(22)

One of the advantages of the L-BFGS Hessian approximation,
apart from not requiring calculation of second derivatives, is that
it can be stored in this factorized form by simply keeping the rel-
atively small matrices B0, V(k)

B , and W(k). Considering that B0 is a
diagonal matrix, we only need to store (2m+1)n+4m2 elements,
which is typically much smaller than the full Hessian which re-
quires n2 elements. From the development up to this point, it
would seem that we also need to store the information for the in-
verse L-BFGS Hessian, specifically V(k)

H , but this will be dealt with
soon.

The quasi-Newton step, s(k) =−H(k)
BFGSg(k), is calculated by mul-

tiplying the inverse L-BFGS Hessian of Eq. (18) with the negative
of the gradient. Thus, the factorized form of Eq. (18) makes the
task of calculating the quasi-Newton step simply a matter of a
few matrix-vector multiplications. Note that although we only
need the inverse Hessian to compute the quasi-Newton step, the
Hessian is used to compute the energy decrease predicted by the
quadratic model. This is needed for determining how the TR is to
be updated between iterations as described in Section 2.2.3.

As is well known, due to the large (and increasing with the
basis) condition number of the Hessian it is important to use a
preconditioner to achieve competitive convergence.18,19,21 Since
the orbital Hessian is often diagonally dominant and its 1-electron
(Fock) contributions are cheap to evaluate, we define B0 in terms
of the diagonal elements of the 1-electron component of the exact
Hessian, B1e, whose unique nonzero elements in the current MO
basis are

(B1e)(ia)( jb) = 2ni(Fabδi j−Fi jδab). (23)

Since we compute the preconditioner once per epoch (i.e., infre-
quently), for each epoch we choose the basis to make the Hes-
sian as diagonally dominant as possible by choosing the “pseu-
docanonical” basis,5 which makes the occupied-occupied and
unoccupied-unoccupied blocks of the Fock matrix diagonal (the
off-diagonal blocks are non-zero until convergence). In such
choice of the epoch basis B0 is defined as the regularized nonzero
unique elements on the diagonal of B1e:

(B0)(ia)(ia) = 2nir(Faa−Fii); (24)

the rest of the unique diagonal elements are set to 1 to ensure
the finite condition number of the Hessian and existence of the
inverse Hessian in an arbitrary basis. Regularizer r(x) in Eq. (24)
is defined as

r(x) =

{
x, if x > tr,

tr otherwise.
(25)
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with the regularizer threshold tr defining the minimum accept-
able HOMO-LUMO gap at the beginning of the epoch. Unlike
some other quasi-Newton solvers,21 we do not update the diago-
nal part of the approximate Hessian every iteration. In principle,
this could lead to slower convergence, since the approximation
becomes less accurate as the orbitals are changed from the point
where the diagonal Hessian was calculated.21 Indeed, we found
that in the early iterations, it is imperative to use an updated pre-
conditioner, and thus we do an approximate line search along the
preconditioned steepest descent direction until the max element
of the gradient drops below a threshold (we generally use 0.1
which is smaller than 0.25, which has literature precedent19).
During this early phase of the solver, the orbitals are made “pseu-
docanonical” in each iteration, and the preconditioner is rebuilt.
Essentially, the epochs are only 1 iteration long. However, near
the solution, we have found that it is not necessary to update the
preconditioner every iteration, and because we work in the epoch
MO basis it would be difficult to update the preconditioner. We
have found that with a good initial guess, only a median of 3 it-
erations of this line search are required to drop the max gradient
element below 0.1 and trigger L-BFGS starting for simple systems
(see Section 4.1). If the gradient gets large again, the history is
reset, and preconditioned steepest descent is again carried out
with an updated preconditioner. Every time the history is reset
the epoch basis is also reset to the current orbitals.

An alternative and perhaps more conventional view of the pre-
conditioner is that it is a basis transformation that makes the di-
agonal part of the L-BFGS Hessian or its inverse closer to an iden-
tity matrix. To see how this view relates to the diagonal Hessian,
consider the following transformation of the quasi-Newton equa-
tion: s = −Hg (omitting iteration index). Multiply both sides of
the equation by B1/2

0 and insert 1 = B1/2
0 B−1/2

0 (which is clearly
acceptable because the diagonal matrix B0 is guaranteed to be
positive definite due to the regularizer) between the inverse Hes-
sian and the gradient, to get an equivalent equation.

B1/2
0 s =−(B1/2

0 HB1/2
0 )B−1/2

0 g. (26)

With s̃ ≡ B1/2
0 s, g̃ ≡ B−1/2

0 g, and H̃ ≡ B1/2
0 HB1/2

0 identified as the
step, gradient, and inverse Hessian, respectively, in the “precondi-
tioned” basis (henceforth denoted by the tilde), the Newton step
(Eq. (26)) becomes

s̃ =−H̃g̃. (27)

The L-BFGS Hessian and inverse Hessian in the preconditioned
basis simplify to

B̃BFGS ≡ B−1/2
0 BBFGSB−1/2

0 = 1+ Ṽ(W)−1ṼT, (28)

H̃BFGS ≡ B1/2
0 HBFGSB1/2

0 = 1+ ṼMṼT, (29)

where

Ṽ≡ B1/2
0 VH = B−1/2

0 VB. (30)

The Ṽ(k) matrix is computed straightforwardly from the history
vectors in the preconditioned basis. Note that some steps of

the algorithm require quantities in the original basis, such as
the sanity checks and computing the orbital rotation matrices via
Eq. (12), thus it is not possible to work exclusively in the precon-
ditioned basis. Transforming back to the original basis is straight-
forward, e.g., s(k) = B−1/2

0 s̃(k).
Here is probably a good place to summarize the steps to obtain

the unitary rotation at iteration k, since there are now quite a few
layers.

s̃(k)→ s(k)→ σσσ
(k)
epoch→ σσσ

(k)→ U(k) (31)

To keep the L-BFGS Hessian positive definite between itera-
tions, we require that57

s(k) ·y(k) > th||s(k)|| ||y(k)||. (32)

When this requirement is not met vectors {s̃(k), ỹ(k)} are not added
to the history. Here we used th = 10−5.

2.2.3 Trust-Region Step Restriction.

Since the quasi-Newton methods use a quadratic approximation
to the objective function, when optimizing a nonlinear function
every proposed quasi-Newton step must be tested for sanity to en-
sure that the quadratic model is a faithful approximation. First,
we expect each step to lower the energy, hence each proposed
step should point downhill. Second, steps in downhill direc-
tions should not be too large, due to the increasing likelihood
that the quadratic model becomes poor. QUOTR uses the trust-
region method for step restriction. In the TR method the maxi-
mum step size is limited by the trust-radius that is dynamically
updated by comparing the quadratic model predictions with the
actual objective function values encountered during the optimiza-
tion. Namely step s̃(k) is TR-acceptable if

||s̃(k)|| ≤ ∆
(k), (33)

where trust-radius ∆(k) is updated using Fletcher’s algorithm.65

By comparing the quadratic model prediction for the energy
with the actual energy value every iteration the trust-radius can
be expanded, contracted, or left unchanged (see Algorithm 1).
Fletcher’s algorithm parameters (τi/ηi) were borrowed from a re-
cent study.57 The initial value of the trust-radius is set to the most
recent successful line search step size since this should be of the
correct order of magnitude for the next step. Also, we always per-
form line search when there are no history data available so the
most recent step size from line search is always a known quantity
when quasi-Newton steps are attempted.

When the quasi-Newton step does not satisfy Eq. (33), we solve
for the optimal step that is within the TR, which must be on the
TR boundary: ||s̃(k)|| = ∆(k). This is done by finding an optimal
level-shift, σ , which satisfies the two conditions:57

(B̃BFGS +σ1)s̃(k) =− g̃(k) (34a)

||s̃(k)||= ∆
(k). (34b)

Level-shift σ of the L-BFGS Hessian is updated iteratively until
Eq. (34) is satisfied to the desired precision controlled by param-
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eters T1,2 (see Table 2 and Algorithm 2).
The TR solver in QUOTR is based on the solver described by

Burdakov et al.57 that leverages the low-rank structure of the L-
BFGS Hessian. The advantage of this approach is that the cost of
each TR solver iteration is trivial compared to the conventional
TR formulation with exact Hessian in which each iteration has
a cost similar to that of the gradient evaluation. The TR solver
algorithm is outlined in Algorithm 2 and its user-controllable pa-
rameters are given in Table 2. Although the parameters for the TR
solver could be adjusted, we recommend keeping them as listed.
The initial guess for σ is best kept at zero, as this will help conver-
gence in cases where the optimal level shift is a very small value.
Changing parameters T1,2 only impacts when the TR is problem is
considered solved, and tightening the values given is not expected
to have a significant impact on QUOTR overall.

Algorithm 2 Trust-Region Step Update

1: function TRSTEP(∆, g̃, s̃, Ṽ)
2: σ ← σinit, C← false, F ← F0 ▷ initialize
3: G← ṼTṼ
4: {R,R−1}← ORTHOGONALIZE(G) ▷ Eq. (37)
5: R−1W−1(R−1)T = UΛUT ▷ diagonalize
6: P∥ = ṼRU ▷ Eq. 1257

7: g̃∥ = (P∥)Tg̃
8: rmax = dim(g̃∥)
9: ||g̃⊥||2 = ||g̃||2−||g̃∥||2 ▷ Eq. 2557

10: i = 0
11: while not C AND i < imax do
12: ṽ∥←−(Λ+σ1)−1g̃∥ ▷ Eq. 1657

13: ||ṽ|| ← (||ṽ∥||2 + ||g̃⊥||2/(1+σ)2)1/2 ▷ Eq. 2057

14: vtemp←−||g̃⊥||2/(1+σ)3 ▷ Eq. 2157

15: r← 0
16: while r < rmax do
17: vtemp← vtemp− (g̃∥[r])2/(1+σ)3 ▷ Eq. 2157

18: r← r+1
19: end while
20: σ ← σ − φ(σ)

φ ′(σ)
= σ − (||ṽ||−∆)||ṽ||2

vtemp∆
▷ Eq. 1957

21: if σ ∈ {σ−1,σ−2,σ−3,σ−4} then ▷ stabilize
22: σ ← 1

2 (σ +σ−1)
23: end if
24: {σ−1,σ−2,σ−3,σ−4}← {σ ,σ−1,σ−2,σ−3}
25: if |||ṽ||−∆| ≤min(T1∆,T2) then ▷ converged?
26: if σ < 0 then ▷ wrong sign?
27: σ ←−σF ▷ reset σ

28: F ← FF0
29: C = false
30: else if σ ≥ 0 then
31: C = true ▷ converged
32: end if
33: end if
34: i← i+1
35: end while
36: ṽ∥←−(Λ+σ1)−1g̃∥ ▷ Eq. 1657

37: s̃ = P∥(ṽ∥+(1+σ)−1g̃∥)− (1+σ)−1g̃ ▷ Eq. 2757

38: if i≥ imax then
39: s̃← s̃given ▷ use original step
40: end if
41: return s̃
42: end function

Table 2 User-controllable parameters of the TR solver.

Description Symbol Value
Initial guess σ σinit 0.0
Convergence criterion 1 T1 10−4

Convergence criterion 2 T2 10−7

maximum iterations imax 500
sigma modify factor F0 1.1

We have modified the algorithm of Ref. 57 in several ways.
First, the use of rank-revealing Cholesky decomposition in Ref. 57
(see text around their Eq. (9)) is replaced by the use of Löwdin
canonical orthogonalization.71 Inserting Eq. (28) in Eq. (34a)
produces

((1+σ)1+ Ṽ(W)−1ṼT)s̃(k) =− g̃(k). (35)

Burdakov et al. use rank-revealing Cholesky decomposition of the
history Gramian G≡ ṼTṼ. Here we obtain matrix R satisfying

RTGR =1 (36)

by canonical orthogonalization ignoring Gramian eigenvalues less
than ε:

G =UgUT , gi > ε (37a)

R =Ug−1/2 (37b)

R−1 =(Ug1/2)T (37c)

This allows us to implement the algorithm more portably, using
only standard linear algebra available in LAPACK. Other differ-
ences can be seen in the algorithm listing, but the most notable
changes include:

• we enforce σ > 0,

• we prevent some infinite loops by averaging σ with the pre-
vious value if that value of σ occurred in the last four itera-
tions,

• we simplify convergence criteria to merely check that step
size is within a threshold difference of ∆.

Once a TR-compliant step has been determined energy (and
gradient) is evaluated at the displaced geometry and compared
to the quadratic model estimate

q(k) = s̃(k) · g̃(k)+ 1
2

s̃(k) · B̃(k)
BFGSs̃(k). (38)

If the actual energy change differs too much from q(k) (based
on τ1 and t0), the step is rejected, the trust-radius is decreased
and used to update the step by re-solving the TR problem. If the
quadratic model is catastrophically bad, repeated shrinking of TR
may occur. The lower limit for TR, tt , plays the role of an escape
hatch for such a scenario; if TR becomes smaller than tt , we reset
the history, do a single line search iteration, and continue from
there with the new trust-radius determined from the line search
step size.
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Note that the TR problem is always solved in the precondi-
tioned epoch basis; this is yet another reason to use the same basis
throughout the epoch. When a new epoch starts and the precon-
ditioner and the epoch basis change we cannot simply carry over
the TR value between epochs. Thus, however, since each epoch
starts with a line search step, this produces a fresh initial estimate
of the trust-radius valid in that epoch’s preconditioned basis.

2.2.4 Line Search

Each QUOTR epoch starts with a single steepest descent step:

s̃(k) SD
= −α

(k)g̃(k)/||g̃(k)||. (39)

Step “size” α(k) is determined by a line search. To reduce the num-
ber of gradient evaluations we use an approximate line search.
First, the energy along the SD direction E(α) is approximated by
its 3rd-order polynomial Efit(α) on a fitting interval [0,αfit):

E(α)≈ Efit(α) = aα
3 +bα

2 + cα +d. (40)

Coefficients {a,b,c,d} are determined by matching exactly the en-
ergies and gradients evaluated with the current orbitals (α = 0)
and at the end of the fitting interval αfit (see below). Thus at the
beginning of QUOTR 2 gradient evaluations are required for the
line search; in subsequent epochs only 1 extra gradient evaluation
is needed since the current orbitals’ gradient has been computed
as part of the previous epoch. A similar procedure has recently
been used,33 and a nearly identical method for the step determi-
nation also has precedent.50

Choosing αfit is crucial for the success of the line search. Due
to the fact that the exponential parametrization of the unitary is
periodic, it is straightforward to estimate the shortest period of
oscillation by finding the largest (magnitude) eigenvalue ωmax of
the σ matrix (or matrices, for the unrestricted case) correspond-
ing to the SD direction −g̃(k)/||g̃(k)||.72 This results in

αfit =
2π

q|ωmax|
(41)

Here q is set to 4 due to the quartic dependence of the Hartree-
Fock energy on the orbitals without the orthonormality con-
straint.

The minimum of Efit(α) is found by solving the quadratic equa-
tion dEfit/dα = 0. Each of its two solutions, αmin, is checked for
sanity in turn; it is expected to be real, positive, resulting in a de-
crease of energy (i.e., Efit(αmin)< Efit(0)), and the second deriva-
tive of Efit at αmin should be positive. Since a 3rd-order polyno-
mial can have at most one local minimum, the solution with the
smallest positive α is checked whether it satisfies all of these cri-
teria. The failure to meet these conditions indicates a poor quality
of the fit, and in such case the polynomial fit is recomputed with
αfit scaled by αfit,shrink = 1/2. Note that the energy decrease crite-
rion is checked only after building the new Fock matrix, while the
other conditions can be checked immediately after the solving the
quadratic equation.

2.2.5 Orbital guess.

Starting (guess) orbitals are another critical component for rapid
SCF convergence. We generally use an extended Hückel ini-
tial guess,73 which is constructed in a minimal basis and then
projected onto the full orbital basis. The standard Wolfsberg-
Helmholtz formula for the off-diagonal elements of the extended
Hückel Hamiltonian is used:73 Hi j = K′Si j(Hii +H j j)/2, but with
the updated formula for the value of K′.74 Instead of experimen-
tal ionization potentials for the diagonal elements, we follow a
suggestion by Lehtola75 (earlier by Norman76) and use numeri-
cal Hartree-Fock orbital energies77 for each shell. Although the
guess orbitals are populated according to the Aufbau principle us-
ing the extended Hückel energies and in the minimal basis, after
projection to the orbital basis the populations may not be qual-
itatively correct. When this situation occurs, and the symmetry
of the orbitals is such that there is no gradient between incor-
rectly occupied and incorrectly unoccupied orbitals, QUOTR will
not be able to correct the populations. Therefore, we have added
an option to perturb the guess orbitals to allow the solver to ro-
tate the incorrectly occupied orbitals and find the lower energy
solution. The orbitals are perturbed by exp(σσσ) with unique el-
ements of σσσ filled with uniformly-distributed random numbers
in [−0.05,0.05]. The “strength” of this random perturbation can
be changed, which simply scales all elements of σσσ such that the
maximum absolute value is something other than 0.05 (default).
Additionally, we can choose to either perturb “All” or just the “Va-
lence” orbitals. Pseudorandom number generator is used with
user-controlled seed to ensure deterministic perturbation.

2.2.6 Additional Heuristics.

Unfortunately, the sole use of preconditioned L-BFGS with TR
step restriction is not sufficient when dealing with problems with
complex optimization landscapes that arise for open-shell and, es-
pecially, metal-containing systems. This occurs due to poor qual-
ity of the quadratic model when far from convergence. Thus, as
is typical with second-order solvers,19,21 QUOTR uses SD steps
until the ||g||∞ drops below the L-BFGS start threshold, tb.

Here’s a brief recap of all situations that cause history reset:

• The gradient is too large (||g(k)||∞ > tb)

• The TR is too small (∆(k) < tt)

• The quadratic model predicts energy increase (q(k) > 0)

The first 2 of these situations are detected before the L-BFGS
step is constructed, allowing the solver to skip this step to go
directly to re-building the preconditioner and on to perform the
line search. The last situation is only determined after the L-BFGS
step is calculated.

3 Technical Details
The QUOTR solver was implemented in a developmental version
of the Massively Parallel Quantum Chemistry (MPQC) version 4
program package.78 The default values for parameters in Tables 1
and 2 were used throughout, unless noted. The orbital bases sets
used were 6-31G*,79–85 6-31G**,81 6-311++G**,86–89 def2-
TZVPP,90 cc-pVTZ-DK,91 and cc-pVTZ-X2C.92 Density fitting,
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where noted, used the def2-universal-J basis.93 The extended
Hückel initial guess was constructed in the Huzinaga MINI ba-
sis,94 then projected onto the orbital basis. Calculations on the
f-element containing system in Section 4.2.3 did not use the ex-
tended Hückel guess to avoid the uncertainties about its quality in
such heavy systems. Instead, we use a superposition of minimal
atomic basis guess densities to construct the initial Fock matrix
in the orbital basis (without projection), followed by diagonal-
ization. The minimal AO basis used the corresponding subset of
the ANO-DK3 basis95 on Fm atom and the MINI AO basis on the
other atoms. The same minimal bases were used to compute the
atomic charges in Section 4.2.3, using the pseudoinverse method
described in Ref. 96. The orbital bases used in the relativistic cal-
culations employed cc-pVTZ-X2C on the Fm atom, and cc-pVTZ-
DK on all other atoms.

Hartree-Fock calculations were performed in Section 4.1 for
the G2 set,97 the geometries for which were obtained from the
Gaussian output files on the NIST website98 with the exception
of four systems that were not available with the correct method
(MP2=FULL/6-31G*). For the four systems that were not avail-
able from NIST (acetamide, furan, SiH2-triplet and 2-butyne)
Gaussian 0999 was used to obtain the geometry. The G2-1 set
consists of 55 systems and is a subset of G2-2, which consists of a
total of 148 systems.97

Henceforth RH/DIIS will be denoted simply by DIIS. Unless ex-
plicitly mentioned, DIIS results were obtained with its implemen-
tation in MPQC using the default parameters: keeping the 5 most
recent pairs of Fock matrix and error vectors for the extrapolation,
and no damping applied.

The KS DFT implementation in MPQC uses GauXC100 (which
uses LibXC101) for calculation of the exchange-correlation poten-
tials and energies. The integration grid used for the 1PLW calcu-
lations in Section 4.2.1 was the “ultrafine” grid (99 radial Mura-
Knowles102 points, 590 angular Lebedev-Laikov103 points). All
other KS DFT calculations used the “superfine” grid which has
250 radial points and 974 angular points for all atoms except hy-
drogen, which has 175 radial points. The particular parameteri-
zation we use for LDA is Slater Exchange104 with VWN RPA.105

For the B3LYP calculations on the Cr systems in Section 4.2.2, we
use VWN3 for the local correlation functional105 to match PySCF.
The structure of the neuropeptide, 1PLW,106 was obtained from
the Protein Data Bank (PDB).107

Calculations using KDIIS54 for SCF acceleration on the CrC and
Cr2 systems in Section 4.2.2 were performed with the Orca pro-
gram system, version 5.0.4.108 Additionally, the DIIS implemen-
tation from Orca was also used for these systems instead of the
MPQC version. The bond length used for both of these diatomic
systems is 2 angstrom, as has been used in previous studies.20,31

Orbitals were plotted for Cr2 with Jmol; due to its inability to read
in Molden files with l = 4 (g) AOs, the calculations (only for the
visualizations) were performed with def2-TZVPP with g-type AOs
removed.

Full (2-component) and spin-free (1-component) 1-electron
X2C Hamiltonians were implemented in MPQC using the stan-
dard formalism.109,110 No empirical scaling was utilized to emu-
late the mean-field effects on the Dirac Hamiltonian. For the sake

of comparison with the results of Ref. 111 only the spin-free X2C
Hamiltonian was used here.

4 Results and Discussion

4.1 Easy Testset: G2 Data Set

Performance of QUOTR was first assessed for converging Hartree-
Fock wave functions (RHF and UHF for closed- and open-shell
systems, respectively) and compared to DIIS, as well as pub-
lished literature data for three second-order solvers, GDM,21

ETDM,33 and CIAH.30 The computations where convergence was
not achieved in 256 iterations (333 for ETDM, 50 macroiterations
for CIAH) were removed from the statistical values and aggre-
gated in the “no convergence” row. The number of “local minima”
for each solver was determined by comparing converged energies
to the lowest energy that we obtained, except for the GDM and
ETDM results (which are the numbers reported by the respective
publications). All calculations with QUOTR and DIIS used the ex-
tended Hückel guess with perturbed valence orbitals. Although
we attempted to compare solvers as faithfully as possible, due to
lack of direct access to the source code and/or implementation of
GDM and ETDM this was not always possible (see below).

Table 3 reports the number of Fock matrix evaluations NF

(“Fock builds”) and the number of solver iterations NI. Due to
the different performance statistics reported in the literature for
GDM and ETDM, three different sets of G2 calculations were per-
formed.

4.1.1 G2-1/6-311++G**.

Similar to QUOTR, the Geometric Direct Minimization (GDM)
solver is a BFGS-based solver introduced by Head-Gordon and
Van Voorhis in 2002.21 A key difference between GDM and
QUOTR is the use of the TR by QUOTR. Additionally, GDM up-
dates the preconditioner every iteration (rather than once per
epoch in QUOTR), with regularization applied by adding a diag-
onal shift to the Hessian equal to the energy change in the most
recent iteration. Therefore, comparison to GDM is appropriate
as a way to evaluate the effectiveness of the TR and the appro-
priateness of the preconditioner. Due to the lack of access to the
commercial implementation of GDM, we restricted our compari-
son to the data published in Ref. 21.

To make the comparison with GDM as faithful as possible,
we used the same orbital basis set and convergence criteria
(1× 10−10Eh for the energy difference between iterations and
1× 10−7 for the RMS of the unique gradient elements). Our ini-
tial guess orbitals were likely similar; however, we did apply a
random unitary perturbation to the valence orbitals, which was
not done by GDM. The average number of iterations taken by
QUOTR is about 4 more than GDM, and it has a higher max at
107 for NO followed by P2 at 66 iterations. Notice, though, that
GDM found 5 local minima relative to the lowest energy that they
could obtain in any of their calculations. Thus, while the conver-
gence with QUOTR takes more iterations, QUOTR appears to be
more robust than GDM. Unfortunately, the number of Fock builds
used by GDM was not reported in Ref. 21. The computational cost
of QUOTR is fairly competitive with DIIS, with a median number
of Fock builds being 20 and 14, respectively; note that the latter
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Table 3 Performance comparison of QUOTR to other SCF solvers for standard G2 set.

G2-1/6-311++G** G2-2/6-31G** G2-2/6-31G*

DIIS QUOTR GDMa DIIS QUOTR ETDMb DIIS QUOTR CIAHc

NF: mean 15.2 26.8 — 13.6 20.5 (17) 15.3 19.4 34.5
NF: median 14 20 — 12 17 (17) 12 16 30
NF: max 40 136 — 64 107 72 234 69 77
NI: mean 15.2 20.5 16.3 13.6 15.3 — 15.3 14.2 2.9
NI: median 14 15 — 12 12 — 12 12 3
NI: max 40 107 42 64 96 — 234 55 5
local minima 3 0 5 5 0 — 8 0 4
no convergence 2 0 0 2 0 0 1 0 1

a Geometric Direct Minimization21

b Exponential Transformation Direct Minimization33

c Co-iterative augmented Hessian30

is close to the reported performance of DIIS in the GDM paper.21

The only systems that did not converge for DIIS in 256 iterations
were HCO and Si2. There were no local minima found by QUOTR
(relative to the DIIS solution) but for 3 systems (CN, O2 and CH
singlet) QUOTR got a significantly lower energy than DIIS. Also
note that for 5 systems GDM landed on local minima too.21 Thus
for the G2-1/6-311++G** test set QUOTR was found to be more
robust than DIIS and GDM, albeit with a slightly worse perfor-
mance.

4.1.2 G2-2/6-31G**.

Another similar, and more recent, direct minimization SCF solver
is the exponential transformation direct minimization (ETDM)
solver.33 Again, the lack of TR is one of the main differences com-
pared to QUOTR, but ETDM also approximates the gradient as it
does not work in the epoch formulation. The fact that ETDM does
not use TR may be compensated by the stronger criteria used in
the line search. Due to the lack of access to the implementation
of ETDM we restricted our comparison to the data published in
Ref. 33.

Comparison to ETDM was less precise for a few reasons. The
data presented in Table 3 for ETDM used KS DFT (PBE) and a dif-
ferent basis (double-zeta polarized numerical atomic orbital basis
equipped with projector augmented wave (PAW) for the inner re-
gion). Here we performed all-electron SCF in the 6-31G** Gaus-
sian AO basis, because it is a double-zeta basis with polarization
functions on all atoms, so should be similar to the basis used by
ETDM. Also, the open-shell KS DFT implementation in MPQC is
not yet finalized, hence we are comparing QUOTR HF SCF to
ETDM PBE SCF. Lastly, QUOTR set m = 3 to make the compari-
son with ETDM as faithful as possible. The average number of
iterations (unclear if it is mean or median) reported for ETDM
was 17, which compares well with the median of QUOTR at 17.
Therefore, we conclude that QUOTR is roughly equivalent in com-
putational cost to ETDM. Notice also that 5 of the DIIS solutions
are local minima relative to QUOTR.

4.1.3 G2-2/6-31G*.

The last batch of comparisons pits QUOTR and DIIS against CIAH,
a second-order (augmented Hessian) solver that uses exact Hes-

sian.30 The augmented Hessian (AH) approach can be viewed as
a variant of the Newton method with step restriction induced by
a spectral shift of the Hessian tuned at each step to ensure that
the predicted step results in energy decrease (this idea is suffi-
ciently general to be applicable in combination with RH/DIIS28).
The spectral shift can be viewed as an optimal regularizer for the
Hessian; since it vanishes automatically in the vicinity of the mini-
mum the augmented Hessian approach approaches the quadratic
convergence rate of the unmodified Newton method. Thus the
augmented Hessian methods are potentially superior to RH/DIIS
or quasi-Newton methods (like QUOTR) that have slower conver-
gence rates. Indeed, for the SCF problem the AH methods are
known30,31 to converge in substantially fewer iterations than the
RH/DIIS heuristics, and are more robust. Thus the AH-based SCF
methods can viewed as the benchmark to beat for QUOTR.

With access to the implementation of CIAH in PySCF112 we
were able to perform a direct comparison with QUOTR (Table 3).
Note that the number of iterations is sometimes used35 to com-
pare the cost of the AH-based methods to that of RH/DIIS and
quasi-Newton approaches; such comparison is misleading. Each
iteration of the AH approach, in addition to the evaluation of the
gradient, involves iteratively solving an eigenproblem defining
the optimal shift; thus the cost of each iteration is determined
by the cost of multiplying a trial step vector by the (exact) Hes-
sian times the number of iterations of the eigensolver. The cost
of applying exact Hessian to the trial step is comparable to the
cost of the Fock matrix evaluation (in fact many programs will
use the same machinery for both). Thus the performance as-
sessment of CIAH and other AH-based methods will report the
number of Fock build equivalents, NF. For CIAH the total number
of Fock build equivalents is the sum of the key frames (KF) and
coulomb/exchange (JK) calls, with the former accounting for the
cost of the exact evaluation of the gradient and the latter the cost
of Hessian-step products.30

The convergence statistics in Table 3 indicate that the median
NF for QUOTR is roughly half of the median NF for CIAH. QUOTR
was also more robust: for one system (HCl) CIAH did not con-
verge as it could not reduce the gradient norm below 1.2× 10−6

and failed to make progress until the maximum number of iter-
ations was reached (50). In four other systems (CH, O2, NO2

Journal Name, [year], [vol.], 1–18 | 11

Page 11 of 18 Physical Chemistry Chemical Physics



and Si2) CIAH landed on a local minimum, as indicated by the
substantially lower energies obtained with QUOTR. For the rest
of the systems, CIAH and QUOTR agreed within 1×10−9Eh. The
systems that took the most Fock build equivalents to converge
with QUOTR and CIAH were Si2 and NF3, respectively, requiring
69 and 77.

As expected, RH/DIIS is on average slightly faster than QUOTR,
but is far less robust, with 8 local minima and 1 system where con-
verged solution could not be obtained. This demonstrated prolif-
eration of incorrect solutions found with DIIS for even such “easy"
chemical systems at those in the G2 test set has significant impli-
cations. How could high-throughput screening be performed with
confidence using such a solver? We expect that other programs
that default to using the RH solver will also have similar issues.
And, as demonstrated in Ref. 21, second-order solvers are not a
panacea.

Even with direct access to the CIAH implementation it was dif-
ficult to compare methods fairly. Some differences were minor,
such as the convergence tests. Both solvers use magnitudes of
energy change and gradient for convergence monitoring. For the
former threshold was set to 1×10−9Eh, but the CIAH gradient cri-
terion (1× 10−6) is defined in terms of the gradient norm rather
than the RMS value used by QUOTR (1× 10−5). Some differ-
ences were more significant, like the choice of the guess orbitals.
The QUOTR data in Table 3 was obtained with its default guess
(perturbed extended Hückel) that differs from the default mini-
mal AO guess used for CIAH calculations. To elucidate the im-
pact of the guess differences we performed additional tests with
(unperturbed) core Hamiltonian guess implemented identically in
MPQC and PySCF to ensure that the initial energies matched to
better than 9 digits between the two programs. The convergence
criteria for QUOTR were changed to match the criteria of CIAH,
using 1×10−6 norm of the unique elements of the gradient, and
the criterion on energy change was kept at 1× 10−9Eh. The re-
sults for RHF computations of 10 small molecules in the G2 set
are displayed in Table 4. In all cases, CIAH and QUOTR found the
same solution but the former required on average 3 times more
Fock build equivalents.

A deeper breakdown of QUOTR’s convergence statistics for the
G2-2/6-31G* set is presented in Table 5, where “Before L-BFGS”
refers to the line search iterations before the first use of a quasi-
Newton step, and “Line Search” refers to all instances of line
search (including those occurring later in the SCF process e.g.
due to the gradient becoming too large again). On average 7
Fock builds are needed before the gradient is sufficiently reduced
to start quasi-Newton steps. This is consistent with the average of
3 line search iterations before stating L-BFGS because each line
search takes two Fock builds and we need one initial Fock build.
These results are mostly an indication of the quality of the initial
guess and the relative simplicity of the electronic structure in this
test set. The data in Table 5 also illustrates the efficiency of the
L-BFGS/TR combination used in QUOTR since almost half (8.8)
of the total number of Fock builds (19.4) are spent in performing
steps that ultimately use line searches. The negligible difference
between “Line Search” and “Before L-BFGS” statistics indicates
that in most cases there is no need for line search after starting

Table 4 Performance comparison of CIAH and QUOTR for a subset of
G2-2/6-31G* with core Hamiltonian guess.

CIAH QUOTR

System KF JK NF NF
CH4 9 35 44 14
CO 17 70 87 22
F2 7 24 31 12
H2 3 7 10 5

H2O 11 43 54 14
HF 12 48 60 13
Li2 6 18 24 10
LiH 5 15 20 10
N2 9 34 43 13

NH3 12 53 65 19
median 9 34.5 43.5 13
mean 9.1 34.7 43.8 13.2
max 17 70 87 22

Table 5 QUOTR convergence statistics breakdown for G2-2/6-31G*.

median max mean

NF

Cumulative 16 69 19.4
Before L-BFGS 7 21 7.8
Line Search 7 27 8.8

NI

Cumulative 12 55 14.2
Before L-BFGS 3 10 3.4
Line Search 3 13 3.9

L-BFGS/TR steps.
Although the G2-2 test set is composed of systems with rel-

atively simple electronic structure, there is substantial variance
within the set, as illustrated in Figure 1. Although for most sys-
tems convergence is achieved in fewer than 30 Fock builds, there
are more than 10 systems for which more Fock builds were re-
quired.

Quality of the initial guess unfortunately matters even with
very robust solvers. Specifically, the need for random perturba-
tion of the initial guess orbitals was found to be crucial for some
systems with geometric symmetry. In particular, we found for
AlCl3 that without breaking the symmetry of the extended Hückel
orbitals, a local minimum at -1,619.598631 Eh was obtained by
QUOTR. However, when the perturbation was applied, a solution
at -1,620.576010 Eh was consistently found. To examine how the
random perturbations to the initial guess impact convergence, we
ran AlCl3 with 50 different seeds for the random number genera-
tor. The plot in Figure 2 shows that when the minimum solution
is accessible by symmetry, then QUOTR is robust in converging to
the solution.

4.2 Challenging Tests
We have now shown that QUOTR is competitive with standard
RH/DIIS and competitive or superior to the representative quasi-
Newton SCF solvers for the relatively easy test problems (G2 test
set). To test the robustness of QUOTR we considered several pro-
totypes of systems where the standard (RH/DIIS) usually fails
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Fig. 1 Histogram of QUOTR’s NF for G2-2/6-31G*.

outright, and even representative quasi-Newton heuristics strug-
gle. We selected 3 types of problems where convergence diffi-
culties often occur: (a) systems with small or vanishing HOMO-
LUMO gap, (b) transition metal-containing systems, and (c) f -
element containing systems.

4.2.1 System with Vanishing HOMO-LUMO Gap.

To demonstrate the performance of QUOTR for a more chal-
lenging problem, we considered a small neuropeptide (1PLW106)
among several identified by Rudberg et al.45, for which the
semilocal KS DFT SCF solutions could not be obtained using an
RH-based solver. We used QUOTR to obtain converged KS de-
terminants with hybrid (PBE0 and B3LYP), semilocal (PBE), and
local (LDA) functionals. The converged energies for the HOMO
and LUMO along with the gap are displayed in Table 6 using the 6-
31G** orbital basis, with the def2-universal-J basis used for den-
sity fitting. For the KS DFT calculations, QUOTR found somewhat
lower energy solutions when the initial guess was not perturbed
(about 0.36 mEh for LDA, 0.31 mEh for PBE, and 0.17 mEh for
B3LYP). Thus, the data in Table 6 is for the unperturbed initial
guess. As this system is significantly larger than the G2 tests, it is
appropriate to comment on the orthogonality of the final orbitals.
We repeated the calculations for 1PLW and computed the orthog-
onality error, ||C†SC−1||, for the converged coefficient matrix. In
all cases, this measure was on the order of 1× 10−12, indicating
that the final solution does not deviate significantly from orthog-
onality.

The sizeable 7.24 eV gap found for HF nearly vanished with the
hybrid DFT functionals (PBE0, B3LYP), with all values within 0.01
eV of the values found in Ref. 45. For the LDA and PBE function-
als, for which solutions could not be located in Ref. 45, QUOTR
produced converged solutions with a nearly zero HOMO-LUMO
gap! The origin of the vanishing gap in this and other similar
biopolymers will be elaborated elsewhere, but we emphasize that

Fig. 2 Convergence of AlCl3 using QUOTR with random perturbation
to extended Hückel guess orbitals.

Table 6 Frontier orbital energies (eV) and the HOMO-LUMO gap for HF
and KS DFT models of the 1PLW popyleptide (see text).

HF LDA PBE PBE0 B3LYP
HOMO -6.38 -3.26 -2.53 -2.70 -2.75
LUMO 0.86 -3.25 -2.52 -2.34 -2.47
Gap 7.24 0.01 0.01 0.36 0.28

the vanishing gap solution is the unphysical but “correct” solu-
tion, and QUOTR successfully located it. A key motivation for the
development of QUOTR was the need to understand the origin of
such unphysical solutions.

Figure 3 illustrates how the HF and KS LDA energies converge
with QUOTR and RH/DIIS solvers. The two panels in the Figure
illustrate the impact of the starting orbitals on the solver conver-
gence. While the ultimate outcome — RH/DIIS did not converge
for LDA, the rest of the combinations converged — did not de-
pend on whether the starting orbitals were perturbed or not, it
took twice as many iterations for QUOTR to converge to the LDA
solution without perturbation than with. Note that the pertur-
bation in these cases is applied to all orbitals, not just valence.
Both solvers converge at a similar rate for the HF case where the
HOMO-LUMO gap is large, with approximately 20 or fewer it-
erations sufficient for microhartree accuracy. With unperturbed
guess the number of Fock builds for RH/DIIS and QUOTR are
17 and 43, respectively; with perturbed guess the corresponding
counts are 28 and 34.

While QUOTR manages to locate the LDA solution correctly, its
rate of convergence can be relatively slow. We identify regular-
ization of the preconditioner as the likely culprit. Since at the
converged KS LDA solution the HOMO-LUMO gap is zero (see Ta-
ble 6) and the condition number of the exact Hessian is large and
grows with the system size, the exact Hessian (hence, the precon-
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ditioner) can vary significantly as the solution is approached. The
last iteration where the preconditioner was recomputed was 51
(with non-perturbed guess) and 32 (with perturbed guess).

LDA

HF

Perturbed: QUOTR vs RH/DIIS

Not Perturbed: QUOTR vs RH/DIIS

LDA

HF

Fig. 3 Convergence of HF and KS DFT for the 1PLW polypeptide
(displayed energy error relative to the lowest energy obtained for each
method).

4.2.2 Transition metal-containing molecules.

We considered two small systems that are well-known to be chal-
lenges to mean-field solvers: Cr2 and CrC in their lowest-energy
singlet states.20,31,35

Table 7 reports the number of Fock builds necessary to con-
verge HF and KS DFT using a variety of solvers. The first set of
comparisons juxtaposes QUOTR (implemented in MPQC) against
a quasi-Newton TRAH solver (implemented in the Orca program)
and 2 variants of DIIS (both implemented in Orca). These com-
putations used the core Hamiltonian initial guess throughout and
the default convergence criteria of Orca: 5×10−5 for the gradient
norm, 1×10−6Eh for the energy difference between iterations. Al-
though the core Hamiltonian initial guess is known to be poor,
it was chosen to make sure that the same initial orbital set was
used to bootstrap computations in MPQC and Orca. The choice of
such a poor starting point makes the job of the orbital optimizer
even more difficult. It should be noted that TRAH uses a ran-
dom number in one of the Davidson diagonalization start vectors
which helps break symmetry, while for QUOTR we apply a small
random unitary rotation to the initial guess (all orbitals, not just
valence) with a maximum σσσ element of 0.01 for these systems.
Thus, the initial guess for QUOTR differs from the others by this
perturbation, and the QUOTR initial guess is usually higher in
energy (approx. 1 - 2 Eh for CrC and 4 - 4.5 Eh for Cr2).

Comparing QUOTR to TRAH, we see that in all cases QUOTR
requires fewer Fock builds. The largest error in converged ener-

Table 7 Performance of various SCF solvers for HF and KS DFT singlet
ground states of CrC and Cr2.a

QUOTR TRAH DIISb KDIISb QUOTRc CIAHc

CrC
RHF 162 377 44d 47d 205 164d

LDA 148 202 — 320d 107 208
B3LYP 129 300 25d 440d 91 240
Cr2
RHF 249 295 26d — 472 160d

LDA 208 233 20 113d 144 478d

B3LYP 123 267 18d 201d 169 330

a NF are reported for each solver. The core Hamiltonian eigen-
states were used as the initial guess, unless noted. The def2-
TZVPP basis used throughout.
b As implemented in ORCA.
c initial guess: hcore + 1 Fock build and diagonalize
d local minimum

gies for QUOTR was for CrC with B3LYP, which was higher than
TRAH by 1.1×10−6Eh. This error is reasonable since the energies
were only converged to 1×10−6Eh.

The results for DIIS and KDIIS look promising according to the
number of Fock builds; however, local minima are very common,
so the rapid convergence is deceiving. Only in the LDA case for
Cr2 was DIIS able to find a solution that is not a local minimum
relative to QUOTR’s solution.

The second batch of comparisons juxtaposes QUOTR (in
MPQC) against the CIAH solver (in PySCF) using the custom vari-
ant of core Hamiltonian (hcore) guess in PySCF, namely the stan-
dard hcore guess followed up by a single RH iteration. The first
thing to notice is that QUOTR takes more Fock builds than CIAH
for RHF, but fewer Fock builds for the other two methods. How-
ever, CIAH converges to a local minimum for both systems when
using RHF, indicating that QUOTR is more robust and/or faster
than CIAH in both cases.

The very large number of Fock builds for Cr2 with RHF merits
further investigation. While QUOTR does converge to the lowest
energy solution that we could find, it does so at a cost of 249
Fock builds (or 472 for the comparison with PySCF hcore guess).
However, this difficulty is not unique to QUOTR, as TRAH also
takes nearly 300 Fock builds to achieve the same solution. This
is in contrast to the LDA solution, which seems to be generally
easier to converge. Figure 4 provides some insight into why RHF
for Cr2 is a difficult case. Namely, the RHF solution located by
QUOTR lacks cylindrical symmetry, in contrast to LDA.

To summarize: for CrC and Cr2 QUOTR was able to locate the
lowest-energy solution (unlike DIIS and CIAH) and was faster
than TRAH.

4.2.3 Actinide-containing molecule.

For the ultimate challenge, we considered the problem of con-
verging the all-electron UHF orbitals in fermium mononitrate di-
cation ([Fm(NO3)]

2+), which is a known challenge for the SCF
solver.111 Namely, Penchoff et al.111 located 2 solutions, one
with the expected +3 formal charge on Fm but located ∼ 100
kcal/mol above the correct ground state characterized by a +2
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Fig. 4 The valence orbitals viewed along the bond axis and the matching
orbital energies (eV) for RHF and LDA singlet ground states of Cr2.

RHF LDA

-6.00

-6.20

-9.61

-10.14

-10.73 -5.50

-5.50

-5.12

-4.32

-4.32

Table 8 Convergence statistics (NI,NF), energy error in kcal/mol (∆E),
and atomic charges on the fermium atom (Q) for the UHF ground
state of [Fm(NO3)]

2+ obtained by QUOTR starting from a series of
quasirandomly-perturbed minimal atomic guesses.

Valence Perturbed All Perturbed

Seed NI NF ∆E Q NI NF ∆E Q
1 124 189 40.19 2.70 131 201 0.58 1.81
2 132 199 40.13 2.70 102 168 0 1.81
3 203 274 0.76 1.81 205 295 0.54 1.81
4 136 191 40.16 2.70 225 307 0.04 1.81
5 189 262 40.16 2.70 209 290 0.25 1.81
6 167 229 40.34 2.70 144 215 0.34 1.81
7 126 170 0.92 1.82 155 243 0.35 1.81

formal charge on Fm.
We used QUOTR with superposition of atomic densities guess

orbitals, constructed as described in Section 3. Due to the com-
plex optimization landscape in this system, it was necessary to
explore the landscape of solutions by varying the initial guess.
Thus the entire set of guess orbitals, or just their valence subset,
was perturbed by pseudorandom unitaries generated using seven
different integers (between 123 and 129) as the random engine
seed. The results are displayed in Table 8. The column labeled
“Energy Error” is relative to the lowest energy solution that we
obtained, which was for seed 2 with all orbitals perturbed (total
energy -35,045.703224 Eh). As can be seen, two types of solu-
tions were found; the lower energy one has a formal +2 charge
on Fm, and the other, roughly 40 kcal/mol higher in energy, has a
+3 charge on Fm. The ground state energy agreed quite well with
the value located by Penchoff et al. in Ref. 111 using Molpro’s
RH/DIIS SCF solver using complicated guess obtained by merg-
ing converged fragment MOs (in fact, the ground state energy
located by QUOTR is slightly lower in energy). Unfortunately,
it was only possible to obtain 10 significant digits of precision
in the energy, due to the impact of roundoff errors and the non-
determinism of the Fock matrix construction in MPQC. As we did
for 1PLW, we ran separate calculations to check the orthogonality
of the converged orbitals. Again, we found errors on the order of
1×10−12 in all cases. Clearly, all electron computations in heavy
element systems with Gaussian AO bases that have high condition
numbers will be increasingly untenable in double precision.

There are clearly many outstanding challenges suggested by
the computational experiments on this actinide-containing com-
plex. In particular, the sensitivity of the final solution to the initial
guess suggests that various global (e.g., stochastic35) approaches
to the orbital optimization should be considered.

5 Summary
We have presented a state-of-the-art solver for quasi-Newton uni-
tary optimization that combines the preconditioned L-BFGS or-
bital update with the trust-region step restriction method. The
exploitation of the low-rank structure of the L-BFGS Hessian,
including in solving the trust-region (sub)problem, makes the
QUOTR solver remarkably efficient, approaching the efficiency
of the mainstream RH/DIIS heuristics when applied to problems
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All Perturbed

Valence Perturbed

Fig. 5 Convergence of X2C-UHF for [Fm(NO3)]
2+ starting from a series

of quasirandomly-perturbed minimal atomic guess orbitals; for each panel
the energy error is defined relative to the lowest energy obtained in that
panel’s subset.

with easy optimization landscapes (like the standard G2 test set).
When applied to problems with complex optimization landscapes
(problems with vanishing HOMO-LUMO gaps, d- and f-element
containing molecules) QUOTR matches or exceeds the robustness
of representative quasi-Newton solvers, all at a significantly lower
computational cost due to avoiding the exact Hessian evaluation.

While QUOTR guarantees convergence to a local stationary
point, it is not able to guarantee global convergence due to the
nonconvexity of the energy. However, its efficiency makes it a
robust building block for even sophisticated solvers that combine
efficient local minimum search with global (e.g., stochastic) land-
scape traversal.
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