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Molecular-Scale Understanding of Diluent Effects on Lig-
and Assembly for Metal Ion Separations†

Derrick Poe,∗a Soenke Seifert,b and Michael J. Servis∗a

Use of metal-selective ligands in solvent extraction is instrumental in critical material extraction and
recycling, yet diluent effects on extraction performance is not well understood. Experimental and em-
pirical solvent parameters have been proposed to correlate with extraction performance, but are often
inadequate predictors. We follow the hypothesis that the diluents’ primary influence on extraction
efficiency is in enabling or hindering assembly the bulky extracting ligands in solution into a geometry
necessary for metal complexation. This behavior is readily accessible with molecular dynamics (MD),
where the atomistic description of molecules can be applied to arbitrary extractant–solvent molecules
and their mixtures. Several simulated quantities are considered, from both pairwise or graph the-
oretic analyses, and compared to experimental distribution ratio data for americium extraction by
TODGA in a series of inert, non-interacting diluents. These simple properties, especially the forma-
tion of closed triplets corresponding to the 3:1 ligand:metal stoichiometric solvate, suggest potential
predictive power of this approach. This methodology provides a path forward to comprehensively
understand and predict diluent effects in more complex systems involving different extracting ligands
and multi-component diluent mixtures.

1 Introduction

Rare earth elements (REEs), actinides, and other metals are criti-
cal materials for modern technology, becoming increasingly more
important with rapid advancements in electronics and green tech-
nologies.1–5 It follows that separation, refinement, and purifica-
tion of these metals are equally essential. The difficulty lies in the
fact that feeds for these critical materials can be extremely dilute,
highly acidic, have many mixed competing ions, or combinations
of all three.6–8 Liquid–liquid extraction (LLE), or solvent extrac-
tion, is naturally suited to selectively partitioning these aqueous
target species into an immiscible organic phase with energy costs
significantly lower than that of other separations methods.9–12

While classic solvent extraction methods simply select specific sol-
vent mixtures to achieve this goal, modern techniques facilitate
extraction and generate selectivity between ions through the use
of complex ligands designed to preferentially and selectively bind
target metal ions and enhance organic-phase partitioning.11,13
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Extraction efficiency is typically quantified by a distribution ratio,

DM =
[M]org

[M]aq
(1)

where DM is the ratio of concentrations of the metal ion in the
organic extractant phase to the aqueous phase.

In efforts to enhance extraction performance, the extractant lig-
and often receives a high degree of study,14–18 and rightfully so
considering their intricacy and the expansive design-space. How-
ever, the extractant is diluted by an organic solvent, called the
diluent, that improves the physical properties (e.g., viscosity) of
the organic phase. The impact of the diluent on metal extraction
is significant, where the same extractant ligand can possess orders
of magnitude difference in its distribution ratio simply by chang-
ing the diluent.19,20 While these so-called diluent effects have
been historically reported,21,22 modern studies frequently focus
on ligand design. Attempts to explain these diluent effects have
been made using experimental or empirical solvent descriptors
such as dielectric constants,23 solubility parameters24 or diluent
parameters.21 These relationships are often uncorrelated and not
motivated from a fundamental, molecular-level understanding,
limiting their predictive capability. For example, one might ex-
pect a higher dielectric constant of the diluent to enhance solu-
bility of polar metal-containing species, while in fact the opposite
is often the case.25 This inconsistent behavior of diluent effects
confounds the rational choice of diluent for a target system, ne-
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Fig. 1 Top: Explanation of TODGA visual representation for this study. Octyl tails are excluded for clarity, and the central etheric oxygen (Oc), used
in later analysis, is highlighted in pink. Bottom: Free energy diagram of solvent extraction processes. On the left is the positive ∆Fassembly process of
TODGA trimer assembly, split in two to represent a DGA dimer and subsequent trimer assembly. On the right is a depiction of the negative ∆Fbinding
process of metal–ligand complexation. The final energy difference ∆Fextraction provides the chemical gradient driving solvent extraction. Relative ∆F
arrow lengths are not necessarily to scale, and charge-balancing ions and TODGA octyl tails are omitted for clarity.

cessitating simple, physically motivated explanations.
The importance of diluent effects has been known of since the

1960s when Healy demonstrated that even different “inert dilu-
ents” — diluents that do not directly participate in the extracted
complex — can increase or decrease distribution ratios by orders
of magnitude.26 While aliphatic diluents typically enable signif-
icantly better extraction than aromatic solvents, studies by Re-
gadío et al. found that mixed diluents with both aliphatic and
aromatic components performed only slightly worse than the pure
aliphatic mixtures.27 This suggests that diluent effects are com-
plex and nonlinear, indicating that empirical approaches such as
solubility parameters derived from mixing rules28 are not suffi-
cient to capture actual behavior. Poirot et al. examined solvent
effects from the perspective of solvent structuring and the resul-
tant effect on energetics. They found that weak solvent interac-
tions induced pre-organization of malonamide aggregates and af-
fected trivalent Nd extraction more than divalent Pd, driving up
both distribution ratios and Nd selectivity.29 Finally, most dilu-
ent studies are focused on screening solvents to maximize dis-
tribution ratios rather than understanding solvent effects from a
molecular level, which, while practically useful, does little to de-
velop a holistic understanding of diluent effects.

It is important to recall that solvent extraction is fundamen-
tally driven by differences in solvation free energies, where the
final extracted species yields a lower free energy than the initial
species present either in the aqueous phase (water-solvated tar-
get metal ions) or solvent phase (free ligands). An overall idea

of the energy differences in this process is illustrated in Figure
1. Complexation of a REE ion with ligands is typically highly en-
thalpically favorable, and when calculated computationally yields
a large negative energy of complexation, ∆Fcomplex.30–33 What is
not captured by this approach are positive ∆F contributions that
can counteract the complexation favorability, a critical one being
assembly of ligands into a complex favorable for ion coordination,
which necessarily occurs within a diluent. This is the ∆Fassembly

seen in Figure 1, which we hypothesize is highly sensitive to dilu-
ent choice and is the primary mechanism by which inert diluents
affect separations energetics. There exists an energy penalty for
organizing these bulky molecules into a binding configuration,
and that penalty can differ from solvent to solvent. By focusing
on minimizing this assembly energy, more efficient extraction of
target metals can be achieved without needing to improve metal–
ligand binding behavior. Note that because the extraction free en-
ergies are state functions, the final determinant of distribution ra-
tio is the overall ∆Fextraction rather than any specific mechanism or
assembly path. This approach is also more tractable than involv-
ing all potential solvent extraction species, as only binary ligand-
in-solvent systems need to be studied. With this approach, under-
standing how ligands behave in the purely ligand-in-solvent sys-
tem and the changes in ∆Fassembly on ∆Fextraction would contribute
greatly in understanding this final energy difference.

To study diluent effects on extractant assembly, a ligand of suf-
ficient complexity was chosen as a representative test case, specif-
ically N,N,N’,N’-tetraoctyl diglycolamide (TODGA). DGAs have a
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strong affinity for trivalent ions, making them particularly useful
for extraction of lanthanides and minor actinides.18,25,34–36 To
validate the idea that TODGA self-association is a critical driver of
diluent effects, four initial test solvents of n-hexane, n-dodecane,
benzene, and toluene were chosen. It is emphasized that these
solvents are non-interacting and known to not alter or partici-
pate in the metal–ligand extraction complex, i.e., they are inert
diluents in this extraction system. In these cases, three TODGA
molecules extract target trivalent metals, which is useful since it
emphasizes complexation energetic effects on extraction more-so
than a dimer or monomer extracting complex such as TEHDGA
or ADAAM-EH, respectively.37 Distribution ratios of americium,
DAm, in these solvents from Ansari et al. were used as a self-
consistent dataset of metal extraction.25 With these selected sys-
tems, it can be demonstrated in Figure 2 how dielectric constant,
diluent parameter, nor solubility parameter entirely correlate with
DAm in these four solvents. Furthermore, Figure 2d includes a
correlation plot for dielectric constant of all solvents reported in
Ansari et al., demonstrating how extremely poorly dielectric con-
stant more broadly correlates with DAm.
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Fig. 2 Comparison of the log of DAm with solvent (a) dielectric constant,
(b) solubility parameter, and (c) diluent parameter in n-dodecane, n-
hexane, benzene, and toluene. Included in (d) is a dielectric constant
comparison for all solvents included in Ansari et al.. 25

In order to fully understand ligand–diluent assembly and struc-
turing, TODGA behavior at both the molecular level and nanome-
ter length-scale is needed. Molecular dynamics (MD) is well
suited for this task, capable of extracting system-level output
such as density or SAXS patterns as well as providing molecular-
level resolution of ligand assembly that is traditionally difficult
to achieve experimentally. MD simulations have proven useful
for providing understanding of TODGA solvent complexation, ex-
traction, and selectivity in a variety of diluents and extraction
systems.38–46 By modeling TODGA in the above four solvents,
while keeping in mind the framework described in Figure 1, lig-
and self-association and the resultant effects on energetics and
liquid structure can be not only described, but meaningfully quan-
tified. This study proposes that intuitive quantities derived from
MD simulations of binary ligand–solvent mixtures, absent of any

metal, can serve as a better predictor of diluent effects on distri-
bution ratios than previously proposed experimental descriptors.
These simulations can also provide insight into the molecular in-
teractions that effect such large extraction differences. Finally,
by being based on MD simulations using general-purpose force
fields, this approach is inherently generalizable and highly ex-
pandable to new ligands, solvents, or solvent mixtures of interest
in future studies of diluent effects.

2 Methodology

2.1 Small Angle X-ray Scattering

SAXS measurements were performed at beamline 12-ID-
C47 at the Advanced Photon Source (APS). N,N,N′,N′-
tetraoctyldiglycolamide (TODGA, > 99% purity by HPLC) was
purchased from Technocomm Ltd. and n-dodecane (> 99% pu-
rity) was purchased from Sigma-Aldrich. Samples were prepared
by massing TODGA followed by volumetric dilution with dode-
cane, which were then loaded into a 2 mm outer diameter quartz
capillary with a remote access auto sampler. SAXS patterns were
taken using a Pilatus 2M detector with a 2.133 m sample-to-
detector distance and 18 keV incident x-ray energy. The SAXS
pattern of each sample were averaged over five one-second expo-
sures, followed by empty capillary subtraction and normalization
to an absolute scale using scattering from pure (18 MΩ) water.48

2.2 Molecular Dynamics and Density Functional Theory Sim-
ulations

Atomistic classical molecular dynamics simulations were con-
ducted using GROMACS 2022.149. Fixed atomic charges and
flexible bonds, angles, and dihedrals were used to describe the
system described by the GAFF class 1 force field.50 Force field pa-
rameters and charges for dodecane were taken from Vo et al.,51

while n-hexane, benzene, toluene, and TODGA from the GAFF2
force field, which is an improved and ongoing update to the tra-
ditional GAFF force field. Partial charges for TODGA were fit by
performing vacuum phase density functional theory (DFT) opti-
mization on a single molecule with Gaussian1652 at the B3LYP/6-
311++G level of theory and basis set53,54 followed by AM1-
BCC55 fitting of the optimized conformation with Antecham-
ber.56 Additional DFT analysis was performed of N,N,N’,N’-
tetramethyl diglycolamide (TMDGA) monomers, dimers, and
trimers in implicit solvent polarizable continuum model (PCM).
Geometry optimizations of one, two, and three TMDGA molecules
were each conducted using n-hexane, n-dodecane, benzene,
and toluene implicit solvents, in addition to in vacuum, using
B3LYP/6-31G*.

Systems were assembled by calculating the necessary num-
ber of TODGA solute molecules to achieve the target concen-
tration within a 100 Å cubic box and subtracting off the pre-
dicted contributed volume based on density. The number of sol-
vent molecules was determined from the remaining box volume
and experimental solvent density. This resulted in systems with
molecule compositions detailed in Table 1.

These molecule counts were then packed into an approxi-
mately 110 Å cubic box using Packmol version 17.333.57. The
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Table 1 System compositions

Solvent [TODGA]
(mM)

Solvent
Molecules

TODGA
Molecules

n-Hexane 200 3991 120
Benzene 200 5889 120
Toluene 200 4941 120

n-Dodecane 100 2482 60
n-Dodecane 200 2312 120
n-Dodecane 300 2139 181
n-Dodecane 400 1970 241
n-Dodecane 500 1800 301
n-Dodecane 600 1630 361
pure TODGA 1560 0 937

packed systems were energy minimized using a steepest descent
algorithm with a threshold of 300 kJ mol−1nm−1 and step size
of 0.001 nm. The minimized system was equilibrated in the
isothermal-isobaric ensemble (NPT) at 300 K and 1 atm with
a 2 fs timestep, stochastic velocity rescaling thermostat with a
0.2 ps time constant, and a Berendsen barostat with a 2 ps time
constant. The resultant equilibrated system was then fed into a
canonical (NVT) ensemble at 300 K held at the final system vol-
ume of the NPT trajectory using a Nosé-Hoover thermostat and
time constant of 0.4 ps. The NVT system was equilibrated for 10
ns before continuing into a 100 ns production run for data collec-
tion. Both NPT and NVT simulations utilized a timestep of 2 fs, a
cutoff of 15 Å for van der Waals and coulombic interactions, and a
Particle-Mesh Ewald solver for long-range electrostatics. A linear
constraint solver (LINCS) restraint was imposed on all hydrogens
bound to heavy atoms, fixing the bond length at the equilibrium
bond length.

Radial distribution functions (g(r)), structure factors (S(q)),
and spatial distribution functions (SDF) were calculated using
the TRAVIS package.58,59 S(q) was then used to calculate inten-
sity factors (I(q)) for comparison with experiments by adding the
molecular fraction weighted self-scattering following procedure
detailed in Liu et al.60 Graph theoretic analysis was performed
with the NetworkX python package.61 Snapshot and SDFs were
rendered using both Ovito62 and VMD.63

3 Results and Discussion

3.1 Model Validation

Validation of the MD model is critical to extract accurate physical
insight from the in silico systems. Densities of the pure compo-
nents, shown in Table 2 were accurately captured compared to
experimental values,64–68 with a largest deviation of 4.7% with
n-dodecane and the rest at 2% or less error. Given the focus on
structure of this study, further validation of the MD model tied to
liquid structure was performed by comparing experimental and
simulated SAXS patterns.

X-ray scattering patterns, and structure factors more broadly,
provide detailed information of structural patterns in a system
with a broad length-scale range from first-solvation sphere ef-
fects all the way up to long-range structural features or fluctu-
ations. SAXS is an important validation method for this study as
it captures both short and long-range solvent structuring features,
particularly TODGA aggregation occurring at the nanoscale. The

Table 2 Simulated and Experimental density comparison

ρ (Exp)
298 K

Extrapolated
ρ (Exp)
at 300 K

ρ (Sim)
300 K % Error

TODGA 0.9011 0.8997 0.9038 0.454
n-Hexane 0.6551 0.6528 0.6533 0.070
n-Dodecane 0.7452 0.7437 0.7789 4.729
Benzene 0.8731 0.8709 0.8899 2.176
Toluene 0.8621 0.8603 0.8736 1.554

presented experimental SAXS captures a q-range of of 0.02 to 0.9
Å−1, while simulated results assess ordering from the atomic scale
up to approximately 50 Å, or q > 0.13 Å−1. This leaves consider-
able overlap to validate the MD model, seen in Figure 3, where
SAXS scans of increasing concentrations of TODGA in n-dodecane
where simulated intensity factors, I(q), show good agreement be-
tween the two methods.

As additional TODGA is added to the system, an ordering pre-
peak induced by TODGA addition grows in at approximately q =
0.3 Å−1 in both experiments and simulations. There can also be
seen an increase in the extrapolated low-q I0 for both systems.
Not only is the overall concentration trend well-captured via MD,
but there is even good quantitative agreement between the two at
lengthscales that are often difficult to accurately model for fully
atomistic simulations. Overall, agreement with the experimen-
tal structural features at all accessible lengthscales indicates these
simulations can be leveraged to understand TODGA clustering be-
havior with molecular-level insight.

3.2 TODGA Self-Association
An understanding of the two-order-of-magnitude difference in
DAm seen between aliphatic solvents n-hexane and n-dodecane
compared to aromatic solvents benzene and toluene is the ini-
tial goal of this solvent effects study. With the proposed free en-
ergy framework shown in Figure 1, understanding differences in
TODGA self-assembly between solvents is essential to understand-
ing solvent effects. This self-structuring be captured by standard
MD pairwise analyses. Given that the DGA group of TODGA is
the functional extractant substructure, the central etheric oxy-
gen (Oc) of TODGA is used as the reference site for all TODGA
molecules and the Oc–Oc pair is the primary focus of all pairwise
analyses, starting with a radial distribution function (RDF), or
g(r).

Varied concentrations of TODGA in n-dodecane were first stud-
ied to ensure that the methodology is robust and extensible to
reasonable concentrations of ligand in solvent. The Oc–Oc pair
was observed in n-dodecane in 100 mM increments from 100 mM
to 600 mM TODGA. As seen in Figure 4a, the DGA structuring be-
havior stays effectively the same across all concentrations, exhib-
ited by no change in the overall RDF shape, only the intensities.
Primary peak positioning and lack of strong anticorrelation past
the first solvation shell is preserved with increasing solute, with
an overall diminishing in RDF peak intensities. There are also
two key features of the primary peak, with a large initial peak
centered at approximately 4.5 Å and a second, broader peak or
shoulder at 7 Å.

4 | 1–14Journal Name, [year], [vol.],

Page 4 of 14Physical Chemistry Chemical Physics



0.1 1
0.01

0.1

I(q
) [

cm
-1

]

q [Å-1]

 0 mM TODGA    100 mM TODGA    
 100 mM TODGA    300 mM TODGA
 400 mM TODGA    500 mM TODGA
 600 mM TODGA

Total I(q) - Experimental

(a)

0.1 1
0.01

0.1

I(q
) [

cm
-1

]

q [Å-1]

 0 mM TODGA    100 mM TODGA    
 200 mM TODGA    300 mM TODGA
 400 mM TODGA    500 mM TODGA
 600 mM TODGA

Total I(q) - Simulation

(b)

Fig. 3 SAXS patterns of 0 to 600 mM TODGA in n-dodecane with (a)
experimental and (b) simulated results.

Given that RDFs are sensitive to particle density normalization,
coordination numbers (NC) can quantitatively state whether the
local environment is truly changing. Figure 4b, which is NC plot-
ted for all concentrations, reveals that coordination number stays
approximately equal up to 6 Å for all concentrations over 100
mM, implying that, on average, the same number of Oc groups
coordinating any given Oc observed. This is likely simply due
to the volume of space occupied by the rest of the DGA group,
and indicates that the RDF peak reduction is entirely a concentra-
tion normalization effect and has nothing to do with a reduction
in Oc–Oc structuring. Longer range coordination number trends
seen in Figure S1 exhibit standard, homogenous concentration
trends. At 100 mM, there appears to be some less counts of Oc–Oc

pairs for the first solvation shell, indicating that 200 mM TODGA
in dodecane is necessary to to fully saturate the pairwise interac-
tion and maximize TODGA extraction efficiency.

The TODGA self-association can also be expressed as a free en-
ergy term w(r), derived from the RDF via w(r) = −kT ln(g(r)), as
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Fig. 4 Concentration effects on TODGA etheric-oxygen structuring in
n-dodecane. Shown is the radial distribution function (a) and the coor-
dination number (b) of the Oc–Oc pair.

shown in Figures S3 and 5b. Examination of the w(r) of TODGA
association as a concentration effect, Figure S3, indicates that the
reduction in primary peak structuring results in a shallower en-
ergy well at 4.5 Å though the overall modest energy barrier at
15 Å does not appreciably change. This can be interpreted that
with an increased availability of TODGA in the immediate vicinity,
there is a greater ability for any given Oc–Oc pair to disassociate
either to cluster with or be displaced by a new DGA group.

With an understanding of solvent-extraction-relevant concen-
trations of TODGA in a well understood system, n-dodecane, the
focus is shifted towards the main goal of understanding solvent
effects on TODGA self-association. Looking at the RDF for Oc–Oc

at 200 mM TODGA in the four different solvents, Figure 5a, it
can be seen that TODGA maintains both the primary 4.5 Å and
secondary 7 Å peaks for all solvents. While position of the first
maximum the same between all solvents, implying similar first
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solvation structuring of TODGA, aromatic mixtures display drasti-
cally weaker structuring compared to alkanes along with anticor-
relation of TODGA pairs between 6 and 20 Å. Examining the free
energy transformation of g(r), a deep potential well for the alka-
nes of the order -2.5 kT implies a strongly favorable and unhin-
dered association for TODGA. Conversely, the aromatic solvents
indicate a minimal preference for association, -0.9 kT. There is
also a notable energy barrier for benzene and toluene starting at
8 Å, though hexane has effectively no barrier. The energy barrier
at long-distance for n-dodecane at 15 Å is due to anti-correlations
in the g(r), likely from long-lived, statistically unlikely structures
given the lack of such anti-correlation at any other concentration
in Figure 4a. While not high enough to block association, the en-
ergy barriers and minimal energy well combine to imply low fa-
vorability of short-range TODGA association in aromatic solvents,
while the large energy well for dodecane and hexane indicate an
energetically preferred interaction.

The DGA association energies can also be estimated from gas-
phase DFT using implicit solvent models. abinitio methods have
been used to great effect for analyzing molecule pairs or small-
scale, pre-defined clusters, including studies of TODGA com-
plexes energetics in a variety of applications.30,69–76 Use of PCM
solvent models also provides an opportunity to compare results
from DFT with implicit solvent to molecular dynamics model-
ing with explicit solvent and sampling solution-phase ensembles
of associating DGA monomers. Energetic analysis of TMDGA
monomers, dimers, and trimers are shown in Table 3, which is the
per-molecule energy change of TMDGA going from a monomer to
a dimer or trimer in their respective solvents. These are calculated
using ∆E = Esolvent

N /N - Esolvent
1 . Tetra-methyl functionalized DGA

was used instead of tetra-octyl to model DGA interaction behavior
while maintaining computational feasibility. These demonstrated
that the ∆E for a TMDGA molecule to form a dimer or trimer is
negative in vacuum and all four solvents. However, DFT calcula-
tions did not properly group the energy differences into different
groupings for aliphatic and aromatic solvents, with benzene ex-
hibiting the greatest multimer formation favorability. Looking at
total system energies in Table S1, subtracting off vacuum system
energies to better compare each system to each other similarly
shows a lack of the experimental trend. Potential explanations
for the DFT approach not resulting in the correct experimental
trends are: 1) sampling ensembles of clusters, rather than single
energy-minimized structure at zero temperature, would be nec-
essary to accurately represent condensed phase behavior, or 2)
the implicit solvent model does not account for aspects of the sol-
vent energetics, such as cavitation energies of the solvent itself,
which we hypothesize is a dominant component of DGA assem-
bly energy. This effect would be significantly more unfavorable in
aromatic solvents, explaining why it is not captured in this DFT
approach but is adequately captured with the explicit solvent MD
method.

A link between these TODGA–TODGA pairwise associations
with distribution ratios from a traditional solvent extraction fram-
ing can be demonstrated with equilibrium constants using Figure
1 as a guideline. The overall extraction complex formation can be
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Fig. 5 Radial distribution function between etheric oxygens of TODGA
molecules in various solvents and the free energy of the pair calculated
via w(r) =−kT ln[g(r)].

written as:
3 TODGA+M

Kex−−⇀↽−− TODGA3M (2)

where we use M to represent a neutral trivalent metal-anion salt,
such as nitrate salts of actinides or lanthanides (An(NO3)3 or
Ln(NO3)3). Overbars indicate organic phase species. We decom-
pose this process into two independent steps:

3 TODGA
KT−−⇀↽−− TODGA3 (3)

TODGA3 +M
KM−−⇀↽−− TODGA3M (4)

where Equation 3 is the formation of a hypothetical TODGA
trimer in the metal-binding configuration. The next step, given in
Equation 4, is complexation of the metal by the hypothetical pre-
formed TODGA trimer, which we assume is diluent-independent.
In this manner, we isolate the part of the extraction process that is
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Table 3 The per-molecule DFT energy difference (∆E) for a TMDGA
molecule in a dimer or trimer compared to a TMDGA monomer. Results
are shown for vacuum and implicit solvent models, as discussed in the
text.

Solvent ∆EDimer (kJ/mol) ∆ETrimer (kJ/mol)
Vacuum -51.15 -47.07

n-Hexane -40.56 -36.72
n-Dodecane -41.95 -38.16

Benzene -42.43 -38.67
Toluene -39.82 -35.95

affected by the inert diluent from the metal-ligand binding that is
not. Formation of the TODGA trimer can be broken down further
as:

2 TODGA
K2−−⇀↽−− TODGA2 (5)

TODGA2 +TODGA
K3−−⇀↽−− TODGA3 (6)

where Equation 5 and 6 are the step-wise formation of a TODGA
monomer to dimer and then dimer to trimer complex, respec-
tively. Given that K2 and K3 are equivalent, i.e., that TODGA
association is isodesmic,41 which will be demonstrated later, they
can be labeled each as Ka, the association constant for adding
an additional TODGA monomer to any TODGA complex of size
n. Using the definition for distribution ratio established in Equa-
tion 1, this allows the following reorganization of the originally
proposed Kex in Equation 2:

Kex =KT ·KM =K 2
a ·KM =

[TODGA3]

[TODGA]3
· [TODGA3M]

[TODGA]3[M]
=

DM
[TODGA]3

(7)

KM =
DM

K 2
a [TODGA]3

(8)

Given that we take KM to be independent of the solvent, the rela-
tionship of TODGA extraction of metal M in two arbitrary solvents
A and B can be expressed as:

DM·A
DM·B

=
Ka

2
A

Ka
2

B

[TODGA]3A
[TODGA]3B

(9)

This is simplified to
DM·A
DM·B

=
Ka

2
A

Ka
2

B
(10)

for low metal concentration (where the TODGA concentration
at equilibrium is unchanged by extraction) and assuming the
Henry’s law limit, where the activity coefficient of TODGA is taken
to be unity. If this assumption does not hold, an analogous treat-
ment with activities would yield a similar relationship between
the assembly constants and distribution ratios. While DM for
a system can be measured from experiments, there remains a
need to estimate Ka. For this, we use the Oc–Oc RDF maximum
peak height. Since g(r) is a population analysis, the maximum
peak height should directly correlate with the degree of pairwise
TODGA self-association, and thus Ka.

The validity of this equilibrium constant methodology is
demonstrated with Equation 10 using benzene as a “reference
solvent.” Additional comparisons are included, namely a pairwise
cutoff sensitivity analysis between 6 and 8 Å (CN2). From Figure

5a, it is evident that there are two features with minima located at
6 and 8 Å, though it is not clear if both of these structures should
be considered as the first solvation interaction of Oc–Oc. Compar-
ing ratios of DAm with the RDFmax and coordination numbers from
the Oc–Oc, this approach accurately captures the overall trends in
distribution ratio between solvents solely using a pairwise anal-
ysis of TODGA self-association. In contrast to the DFT analyses
discussed above that failed to exhibit correct trends between sol-
vents, the MD methods with explicit solvent reasonably capture
diluent effects on TODGA assembly. While the ratios for all pair-
wise quantities are in quantitative agreement, this simple initial
analysis finds the correct order of magnitude, demonstrating po-
tential predictive utility of pairwise analyses.

Table 4 Ratios of solvent descriptors with benzene as a baseline, i.e.
the DAm value shown below is DAm

Solvent/DAm
Benzene. DAm is the solvent’s

Americium distribution ratio, RDF2
max is the square of the OC–OC RDF

maximum, and CN2 6Å and CN2 8Å are the OC–OC coordination number
at 6 and 8 Å respectively.

Descriptor n-Hexane n-Dodecane Toluene
DAm (Exp) 84.6 76.9 0.770

RDF2
max (MD) 58.5 59.2 0.917

CN2 6Å (MD) 50.1 52.1 0.913
CN2 8Å (MD) 34.9 30.2 0.950

3.3 Disruption of TODGA Structuring
Having demonstrated simple properties readily obtained from MD
reasonably explain diluent effects, we now investigate the mi-
crostructure of these mixtures. In order to understand the un-
derlying source of strong TODGA structuring, or lack thereof,
in each solvent, spatial distribution functions (SDFs) are used
to assess three-dimensional structuring. SDFs of Oc around the
central TODGA ether group shown in Figure 6 show no obvious
differences in TODGA–TODGA spatial structuring. This means
that while the pairwise association energy of TODGA is signif-
icantly impacted in aromatic solvents, the overall way TODGA
self-associates does not change between solvents and is not the
source of unfavorable aggregation.

Without meaningful changes in the underlying mechanism
TODGA self-structuring, it is possible that decreased TODGA self-
association in aromatic solvents instead results from TODGA in-
teracting differently with the solvent itself. This structuring is
examined with RDFs of Oc and solvent carbons, Figure S4, and
shows an expected strong anticorrelation of Oc–alkane structur-
ing. Aromatics, however, exhibit some structure that, while be-
low a value of 1, has a noticeable peak. Shifting the observed
site from averaging all solvent carbons to specifically the aromatic
ring center for benzene and toluene, the resultant RDF shown in
Figure 7a has a structure that is well defined with a maximum
value above one. Looking at the coordination number of solvent
carbons and Oc atoms around the Oc site, Table 5, there are two
to three times more aromatic than alkane carbons solvating the
Oc site at 6.7 Å, with coordination number plots shown in Figure
S2. This is directly contrasted by a five-fold reduction in Oc–Oc

coordinations, implying that this preferential aromatic ring struc-
turing around the TODGA head group is displacing other TODGA
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(a) (b)

(c) (d)

Fig. 6 Spatial distribution functions (SDFs) of TODGA etheric oxy-
gen structuring around the central TODGA ether group in n-hexane (a),
n-dodecane (b), benzene (c), and toluene (d). The green isosurface rep-
resents 20% of the max isodensity for the oxygen – oxygen pair in that
particular solvent

molecules and preventing clustering.

Table 5 Coordination numbers of TODGA etheric oxygens (Oc) and sol-
vent carbons (Cs) around a reference TODGA Oc site at 6.7 Å

Solvent [TODGA]
(mM)

Oc CN
at 6.7 Å

Cs CN
at 6.7 A

n-Hexane 200 1.17 10.9
n-Dodecane 200 1.15 14.0

Benzene 200 0.176 31.0
Toluene 200 0.170 30.1

The specificity of this aromatic center structure is better dis-
played with SDFs as well, and Figure 7b shows that both benzene
and toluene preferentially coordinate the ether group predomi-
nantly above the Oc site, with some structuring below the etheric
carbons as well. Figure S12 shows that no such structure oc-
curs for any isodensity value for the linear alkanes and simply
indicates a random distribution of carbon sites. All displayed iso-
values are included in Table S2. It is clear with these pairwise
analyses that aromatic solvents can preferentially solvate the DGA
group in TODGA which is likely the source of the energy barrier
and shallow energy minima seen in Figure 5b.

3.4 Graph Theoretic Cluster Analysis
While RDFs provide a great way to assess pairwise interactions,
a full understanding of clustering behavior requires different
methodology. Graph theoretic analysis provides a way to decom-
pose the three dimensional distribution of Oc atoms into a col-
lection of nodes and edges, where each node represents a single
TODGA molecule and each edge is a connection between TODGAs
if they are adjacent in solution. Each Oc node is connected by an

edge to another Oc node if within a cutoff distance of 6 Å, deter-
mined from the first solvation shell in the RDFs shown in Figure
5a. Clusters are then defined as connected components of the
resulting graph: collections of nodes that are connected through
some path composed of edges, but are not connected through any
path to any nodes not in the cluster. An example of a 5-mer DGA
cluster and the resultant graph is provided in Figure 8. The cutoff
was chosen after a sensitivity analysis to ensure that cluster be-
havior accurately represented truly clustering TODGA monomers.
Too low of a cutoff results in clustering behavior capturing only
very close-range interactions, flattening out any differences be-
tween solvents, while too large a cutoff results in excessive group-
ing of non-interacting TODGA monomers. Example results of an
8 Å cutoff showing this second effect as well as additional 6 Å
analyses are included in Figures S5 - S11 which captures effects
of the second peak rather than just the primary RDF peak, and va-
lidity of excluding the secondary will be demonstrated with some
later results. All further discussed analysis is based on a 6 Å cutoff
unless otherwise specified. The resultant collection of nodes and
edges for each trajectory snapshot provides a simplified graph to
be analyzed for various clustering metrics that are more easily ac-
cessible than traditional 3-dimensional, fully atomistic analyses.

First, cluster size distributions show a mostly linear reduction
in cluster occurrence with increasing cluster size on a semi-log
plot for clusters of size 3 and below. Exponential decay implies
that the energy required to add an additional TODGA molecule
to a cluster does not change with cluster size and is seen at lower
cluster sizes for both varied solvents and varied concentrations,
Figures 9a and 9b respectively. This cluster analysis validates the
isodemsmic assumption for simplifying Equations 5 6 by show-
ing that going from a TODGA monomer to a dimer and a dimer
to a trimer are energetically equivalent. Furthermore, for higher
concentrations of TODGA, it appears that the linearity of the dis-
tribution is preserved for greater cluster sizes. While this may be
important for some systems, given that TODGA trimers are the
relevant size for metal extraction, the drop off at larger cluster
sizes for lower concentrations is less relevant for this particular
study. Figure 9b again shows the saturation effect seen in the
coordination numbers, where past 200 mM, the slope for sub 5-
mers effectively overlap each other with similar cluster addition
energetics. Solvent has an obvious effect on cluster formation at
200 mM TODGA, with aromatic clusters having a sharp decrease
in cluster occurrence with greater size and no observable clusters
above 5 and 6-mers. n-Hexane and n-dodecane show consider-
able clustering up to size 7 with similar energetics. Furthermore,
the energetics implied by the solvent slopes match well with those
shown in Figure 5b with the linear alkanes having a lower energy
penalty with each additional cluster as compared to the aromatics
and each solvent type having relatively similar energies of clus-
ter formation. This demonstrates that the pairwise energies from
RDFs in explicit, 3-dimensional space agree well with cluster for-
mation in a simplified graph theoretic description.

In graph theory, the topology of a cluster is an important fea-
ture given the variety of possible cluster morphologies. Clustering
coefficients (CC) provide a way of assessing degree of connection
through observing all triplets in a graph, where a triplet is de-
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(a) (b)

Fig. 7 Radial distribution function of TODGA etheric oxygen to the solvent ring center of benzene and toluene. An example of TODGA and Benzene
is included for reference (a). SDFs of solvent carbon ring-center structuring around the central TODGA ether group in benzene (top) and toluene
(bottom).

fined as any set of three nodes connected together. These triplets
can exist as independent clusters of size three or be a subset of
a larger cluster. For a given triplet, if all three points are within
the cutoff to form a closed “triangle” it is assigned a value of 1,
and if not it is considered open with a value of 0. When averaged
over all triplets within a given cluster, it describes how intercon-
nected that cluster’s nodes are on a scale from zero to one. The
value for a TODGA extraction system is immediately apparent,
given that the extraction mechanism involves three DGA groups
per metal extracted. A higher CC, and thus a higher percent of
DGA triplets that are within close proximity of each other, would
imply a solvent-ligand system where the ligands naturally and
preferentially associate in an extraction-ready cluster.

This CC can be analyzed on a cluster size basis, yielding CC
distributions as seen in Figures S5 and S6, and can indicate if
there are significant deviations in CC based on cluster size. Such
deviations are not seen as a concentration effect or with the two
alkane solvents which indicate some deviation around an aver-
age value, but a noticeable decrease is seen for the aromatics.
This is likely due to the extremely weak interaction of Oc in ben-
zene and toluene, resulting in more difficult formation of inter-
connected clusters for each larger cluster. The system-wide, aver-

age CC value can be calculated by simply calculating the CC for all
triplets in the system as well. This single value can then be used
to easily compare degree of TODGA clustering connection from
system to system. This is shown in Figure 10 as a concentration
effect and solvent effect. Plotted alongside the CC is proportion
of TODGA molecules participating in a cluster size of 3 or greater.
This is similarly important, as CC is only relevant for triplets, so
the proportion of TODGA participating in clusters of at least size
3 demonstrates what portion of the TODGA population the CC
assesses.

Figure 10a indicates that as a concentration effect in n-
dodecane, CC starts at roughly 0.26 at 100 mM and decreases to
an average 0.17 for 400 through 600 mM, while the proportion
of trimer or greater TODGA participants monotonically increase
with concentration. This implies that cluster morphology changes
from 100 to 400 mM TODGA in n-dodecane before reaching a
stable CC for 400 through 600 mM. A possible explanation is that
initial TODGA clusters form denser, more interconnected graphs
that become less so as additional monomers are incorporated at
the outer nodes of the graph with higher concentrations before
reaching a final, high-concentration morphology.

At 200 mM, n-hexane and n-dodecane have a CC of 0.26 and
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Fig. 8 A render of a DGA 5-mer cluster with lines drawn between the pink Oc atoms that satisfy a sub-6 Å distance cutoff. A 2-D representation of
the resultant graph is shown with pink nodes and dashed edges. The red and blue dashes indicate example open and closed triplets, respectively. For
reference, the example cluster has a total of four open triplets and two closed triplets

0.27, respectively, while benzene and toluene are lower at 0.29
and 0.19 respectively. This implies that using the primary 4.5 Å
feature for graph analysis, triplet morphology is largely the same
in all of these solvents. This isn’t necessarily true for a larger edge
definition, and is seen in plots S7. A key difference is an order-
of-magnitude drop in TODGA monomers participating in larger
clusters. Benzene and toluene have more than 95% of TODGA
molecules existing as unconnected nodes, meaning they are con-
sidered free monomers. This may indicate that the physical in-
terpretation of a closed triplet may be less relevant to extraction
efficiency than propensity to form larger clusters, something that
could potentially be inferred from the initial pairwise data. A
clustering descriptor that can provide additional information is
the fractal dimension D f ,77–79 which is a power law fit to the ra-
dius of gyration as a function of cluster size. The results of this
fit are included in the next section, and an in depth discussion is
provided in the SI. Overall, the cluster analysis shows that aro-
matic solvents form significantly less clusters than aliphatic sol-
vents, and when they do, the topology is less interconnected, as
would be needed for efficient trivalent metal extraction.

These descriptors are useful for understanding clustering mor-
phology and can also be used for population analysis similar to
Table 4. The average absolute number of closed triplets present in
a solvent directly calculated and compared to distribution ratios.
These values are not squared like the RDFmax or CN like before,
as the number of closed triplets is the fully formed complex and
does not need to pairwise associate.

Table 6 Ratios of solvent descriptors with benzene as a baseline, i.e. the
DAm value shown below is DAm

Solvent/DAm
Benzene. Comparison of the ratio

of solvent Americium distribution ratio (DAm) and the number of closed
triplets (N CT) within that solvent for an edge cutoff of 6 or 8 Å

Descriptor n-Hexane n-Dodecane Toluene
DAm (Exp) 84.6 76.9 0.770

N CT 6Å (MD) 85.0 76.8 0.833
N CT 8Å (MD) 42.3 31.5 1.04

Results from graphs derived with a 6 and 8 Å cutoff are shown

in Table 6, with the 8 Å results showing similar predictive power
to results from Table 4 with accurate order of magnitude match-
ing and absolute deviation by a factor of approximately 2. Using a
6 Å cutoff instead shows remarkable accuracy, effectively match-
ing the extraction efficiency ratios for all three solvents. While
the impressive agreement may result in part from some form of
fortuitous error cancellation—this approach is a simplification in
many ways of an actual extraction process—the physically moti-
vated choice of close triplets in representing the actual extractant
association process suggests this correlation is not incidental. This
graph theory derived quantifier is the most accurate predictor of
solvent extraction efficiency thus far addressed and shows incred-
ible potential for assessing new ligand–solvent mixtures in silico
for potential extraction efficiency.

3.5 Descriptor Correlation with Distribution Ratios

Whether experimentally, semiempirically, or computationally de-
rived, descriptors that try to reduce complex solute-solvent sys-
tems into singular values can clearly have mixed success in corre-
lating with a desired outcome. Properties like dielectric constant
or solubility parameters are extremely valuable for describing sys-
tems for more direct or designed applications, but can struggle
to appropriately correlate to phenomena that are more niche or
outside of their original design. Furthermore, the thermodynam-
ically critical steps of TODGA trimer assembly and trimer–metal
coordination cannot be adequately described experimental prop-
erties that only describe the solvent alone, and not the solvent–
ligand relationship. Figure 2 shows that while these experimental
and semi-empirical parameters correlate somewhat with reported
americium distribution ratios, there is poor grouping of the aro-
matics and alkanes. Looking at simulation-derived quantifiers in
Figure 11, it is similarly evident that some descriptors do a better
job of grouping data than others.

Pairwise interactions do remarkably well, with the maximum
RDF peak and Oc–Oc coordination numbers tightly correlating the
two different extraction regimes better than some more physically
motivated clustering descriptors. Clustering coefficient and does
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Fig. 9 Cluster size distributions of 200 mM TODGA in various solvents
(a) and various concentrations of TODGA in n-dodecane (b) with an
edge cutoff of 6 Å.

somewhat well at 8 Å, but is clearly highly sensitive to the se-
lected cutoff, and simply counting the total proportion of TODGA
participating in larger clusters does the better regardless of cutoff
chosen. Fractal dimension shows reasonable correlation, though
this seems attributable more to systems with similar max cluster
sizes having similar fractal dimension fits.

Overall, it is evident that the number of closed triplets at a 6
Å cutoff performed the best while also providing a physically jus-
tified conclusion: that the equilibrium “concentration” of closed
triplets was directly predictive of relative extraction efficiency be-
tween diluents of americium with TODGA. The propensity of any
two TODGA molecules to associate strongly, which is most di-
rectly captured by pairwise analysis, performed adequately well
at predicting solvent extraction efficiency. Whether all of these
observations extend to further solvents, especially solvent mix-
tures, remains to be seen in further studies given the sparseness
of this initial test dataset. Yet in spite of this sparseness, the num-
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Fig. 10 Clustering coefficients and proportion of monomers participating
in clusters of size 3 or greater for TODGA clusters as (a) a solvent effect
at 200 mM TODGA and (b) a concentration effect of TODGA in pure
n-dodecane.

ber of closed triplets and, to a lesser degree, the pairwise descrip-
tors, correlate strongly with the impact of the selected inert dilu-
ents on metal distribution. Given the strong physical motivation
for these specific properties, these results suggests a potentially
predictive approach to understanding solvent effects that may be
implemented for arbitrary solvent–ligand mixtures.

4 Conclusion
Ultimately, this study focused on understanding diluent effects in
separations. In particular, we investigate how the diluent affects
ligand assembly in solvent extraction of metal ions. Due to the
lack of adequate experimental properties or parameters to corre-
late with solvent extraction efficiency, an alternative framework
was proposed. By breaking down ligand–metal extraction com-
plex formation into a solvent dependent and independent pro-
cesses, solvent effects on ligand assembly, and thus extraction
efficiency, could be investigated with molecular dynamics simu-
lations of binary ligand–solvent mixtures.

Pairwise RDFs indicated that a significant loss in TODGA struc-
turing in aromatic solvents resulted in poor association energet-
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Fig. 11 Comparison of DAm with simulation derived quantifiers. Top row: maximum peak height of Oc–Oc g(r), number of closed triplets with a 6 Å
cutoff, and number of closed triplets with a 8 Å cutoff; Middle row: Oc–Oc coordination number at 6 Å, clustering coefficient with 6 Å cutoff, and
clustering coefficient with 8 Å cutoff; Bottom row: fit fractal dimension with 8 Å cutoff, proportion of TODGA participating in size greater than 3
with a 6 Å cutoff, and the same proportion with an 8 Å cutoff. All values are from MD simulations of 200 mM TODGA in the solvents n-dodecane,
n-hexane, benzene, and toluene.

ics, with shallow energy minima. An analysis using equilibrium
constants provided a satisfying explanation for the orders of mag-
nitude difference in the distribution ratios of americium in linear
alkanes or aromatic solvents. SDFs showed the etheric oxygen of
the TODGA molecule has a measurable solvation by the aromatic
ring of benzene and toluene penalizing TODGA-TODGA associa-
tion.

Graph theoretic analysis proved a powerful method for study-
ing TODGA clusters, with size distributions indicating that ad-
ditions of TODGA to existing clusters had a constant energy
penalty at small cluster sizes. Furthermore, a reduction in cluster
sizes between the alkanes and aromatics and a large decrease in
closed-triplet clustering coefficients was observed. Aromatic com-
plexes also had an order of magnitude smaller fraction of TODGA
molecules participating in larger clusters, implying that the sol-
vents are ill-suited to favorably assembling multiple TODGAs to-
gether for metal coordination.

Tying the pairwise and graph theory analyses together is a first-
principles focus on equilibrium constants of the metal extraction
process. Maximum RDF peaks and coordination numbers were
moderately predictive of metal extraction efficiency, while graph-

derived total closed triplet count showed nearly exact correlation
with experimental distribution ratios. While this approach involv-
ing isolating energetic contributions of metal-free binary mixtures
is a simplification to the actual extraction process, these findings
demonstrate that simulation-derived descriptors may go beyond
merely correlating with experimental data, potentially enabling
prediction of differences ion extraction behavior imparted by in-
ert diluents. Overall, these promising initial results with four
exploratory solvents suggest MD simulations may be a robust
method for assessing ligand–solvent mixtures, as this approach
is easily scalable to new ligands or solvents. Further analysis
of additional solvents and solvent mixtures will allow for confir-
mation whether these MD clustering descriptors can continue to
accurately predict metal distribution ratios and even potentially
provide guidance for selecting an ideal ligand-solvent system.
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