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Environmental significance

Emerging nano-agricultural technologies have the potential to enhance crop yield and
quality, while reducing environmental pollution compared to traditional formulations.
However, soil-crop systems exhibit complex interactions of factors that hinder the study
9 of nanoparticle (NP) bioavailability. Therefore, this study proposes the use of artificial
10 neural networks (ANN) for a systematic evaluation of Se NP applications in the plant-
1 soil system. Model-based interpretation methods combined with experimental data
allow for a more comprehensive understanding of the advantages and disadvantages of
14 NPs in the soil-plant system. This approach facilitates the implementation of safe design
15 options for NPs in agriculture, ensuring the development of NP-based solutions that are
both effective and environmentally sustainable.
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Abstract

While selenium nanoparticles (Se NPs) can effectively enrich crops yield and quality,
the limited research on the interactions between Se NPs and soil-crop systems hinders
their potential use in agriculture. Hence, the soil application of Se NPs (0 [control] and
0.5mg-kg') and Na,SeO; (1.11 mg-kg") was applied to enhance rice quality and yield.
The artificial neural network (ANN) approach was used to model and simulate the
response of soil properties (SP) and plant physiological activities (PPA) under different
treatments at different time stages (30, 60, 90, and 120 Day). The results indicate that
Se NPs can enhance photosynthesis, leading to increased yield (1.33-fold) and quality
of rice (Se-enriched rice, 3.46-fold). The effects of Se NPs on rice growth and
development were found to be time-dependent. Soil properties, including soil organic
matter (TOC), ammonium nitrogen (NH;"), pH, redox potential (Ey,), and conductivity
(E.), emerged as crucial factors influencing the observed effects. With the progression
of time, plant physiological activities, including chlorophyll (Chl), net photosynthetic
rate (Pn), stomatal conductance (Gs), and optimal/maximal photochemical efficiency
of PS II in the dark (Fv/Fm), exhibited an increasing level of importance. Moreover,
the processes of Se NPs affecting yield and quality were distinct, with TOC being more
important for rice yield and E. being more significant for quality. Therefore, this study
offers a novel approach to assess the bioavailability of Se NPs in soil-crop systems and
provides valuable insights into the potential for using Se NPs to enhance rice
productivity and quality. The use of model-based interpretation methods combined with
experimental data allows for a more comprehensive understanding of the advantages
and disadvantages of NPs in soil-plant system and facilitates the implementation of safe
design options for NPs in agriculture.

Keywords: metal (oxide) nanoparticles, mathematical models, nano-specific

descriptor, biological effect, Oryza sativa L.
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1 Introduction

In recent years, sustainable agriculture has become crucial in addressing population
pressure (9.7 billion by 2050).! The emerging nano-agricultural technologies
(nanopesticides, nanofertilizers, and nanosensors) have potential to improve crop yield
and quality while reducing environmental pollution compared with traditional
formulation. 2 For instance, nanopesticides can specifically targeted pests, reducing
the need for large quantities of pesticides and minimizing the exposure of non-target
organisms to harmful chemicals.> ¢ Nanofertilizers can increase the efficiency of
nutrient uptake by plants and reduce fertilizer requirements for the same yield. 7> 3
Consequently, this can reduce chemicals runoff and environmental damage associated
with traditional agricultural practices. 1% As such, nano-agricultural technologies have
the potential to transform traditional agriculture into a sustainable and efficient system
that capable of meeting the food and nutritional demands of a rapidly growing
population while minimizing environmental impacts. '! 12

To explain the mechanisms of NPs promoting plant growth, most previous works
had focused on exploring the physiological and molecular responses of NPs to plants.'3
Soil-crop systems exhibit complex interactions of factors that hinder the study of
bioavailability of NPs. Therefore, novel approaches, such as machine learning, are
necessary to overcome these limitations and enable more systematic research. 14 Recent
studies have utilized machine learning methods to develop agronomic-based models.!>
17 Given the complexity and diversity of soil-crop systems, artificial neural networks
(ANN) are a feasible solution. !® The advantages of ANN include suitability for
managing uncertain data, applicability to large or small data sets, and allowing to reveal
nonlinear relationship between various parameters. Previous studies have demonstrated
the superior accuracy of ANNs compared with traditional modeling approaches in
learning relationships between variables and targets. For example, Gandhi ef al. predict
the rice crop yield using multilayer perceptron ANN (accuracy, 97.5%; sensitivity,
96.3%; specificity, 98.1%).!° Some researchers examine the classification of rice leaf
diseases using attention-based depthwise separable ANN, achieving an accuracy of

96.45%. 2° Rossi et al. (2019) used ANN identified key physiological factors (i.e. root
3
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fresh weight, the net photosynthesis rate, and F,/F,, ratio) affecting Brassica napus
plant uptake of co-occurring Cd and CeO, NPs. '® Although ANN has been applied in
agriculture systems, its utilization in investigating the bioavailability of NPs in soil-
crop system is limited.

Selenium (Se) NPs have attracted great attention among various types of NPs due
to their unique structural, optical, and electronic properties.?! Compared with traditional
Se fertilizer, Se NPs have shown more significant advantages in crop Se-enrichment
and yield. ?? For instance, Li et al. proposed that the Se NPs (20 mg-L™!) could enhance
the nutrient quality (chlorophyll, +33.7%; soluble sugar, +36.9%; AsA, +48.2%;
flavonoids, +79.9%; total phenols, +58.7%) of pepper (Capsicum annuum L.) by
activating the capsaicinoid synthetic pathway0. 23 Cheng et al. demonstrated that foliar
sprayed Se NPs (10 mg-L™") could improve the yield (+67.6%) and nutritional quality
(Se content, 5.4 and 2.6 times in pericarp and pulp) of cherry radish (Raphanus sativus
L. var. radculus pers).?* At some concentrations, Se NPs enhanced plant root growth,
while Se ions inhibited callus growth and root regeneration.?> Hence, Se NPs could be
used for Se enrichment in crops and sustainable agriculture. Moreover, consuming
selenium-enriched crops provides health benefits to humans. Despite the potential
benefits, there is currently a lack of systematic evaluations regarding the effectiveness
of Se NP applications in the plant-soil system.

In our study, rice was selected as the test crop because it was one of the main grain
crops in the world. More importantly, more than 1/5 of the rice was planted in the
severely Se deficient areas thus Se enrichment in rice was imminent. The aim of this
study was to investigate the bioavailability of Se NP in soil-crop system using ANN.
The main objectives of this study were (i) to determine the effects of Se NPs on soil
properties and physiological activities of rice and (ii) to distinguish whether the
physicochemical activity in soil-crop system that has a more profound effect on the
yield and quality by using ANNs. By conducting a comprehensive investigation into
the utilization of Se NPs in the soil-crop system, the findings of this study will
significantly contribute to the effective implementation of Se NPs for enhancing both

rice yield and quality.
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2 Methods
2.1. Synthesis of materials

Se NPs were synthesized according to previous reports. 26 SeO, (0.11 g) and ascorbic
acid (0.36 g) were ground in a mortar until they turned red. Then, Se NPs were dispersed
into deionized water (20 mL). Subsequently, polyvinylpyrrolidone was added to the
mixture in the proportion of 3:20. Eventually, Se NPs were collected after ultrasonic
treatment for 30 minutes and centrifugation (8000 rpm, 10 mins). The characteristics of

Se NPs were reported in our previous study.?’

2.2. Rice cultivation and determination of physicochemical activity

Rice (Oryza sativa L.) seeds from Anhui Lvyi Seed Industry Co., Ltd. were soaked
in deionized water for 8 h and then 1% sodium hypochlorite for 10 min. Then, the seeds
were washed with deionized water until the solution on the surface of the seeds were
removed, and the seeds were placed in a dark environment to avoid light for 3 days.
Rice seedlings with uniform germination and growth were selected to be transferred to
a pot containing 5 kg paddy soil (2 plants per pot), which was filtered through a 5.0 mm
sieve in advance to make the soil homogeneous. Finally, 0.5 mg of Se NPs were added
to the pot of the Se NPs treatment group (0.5mg-kg!"), while 1.11 mg of sodium selenite
(45.0% selenium content) were added to the Se Ions (SeOs%>) treatment group as a
control. Each treatment had 5 repetitions. A Fluorcam chlorophyll fluorescence
imaging system, photosynthesis analyzer (PP systems, targas-1, China) and chlorophyll
meter (spad-502plus, China) were used to analyze the photosynthetic parameters of rice
leaves on the 30™, 60", 90t and 120™ days of rice growth. After 120 days, the rice was

harvested and the fresh weight and dry weight were recorded.

2.3. Determination of soil properties
2.3.1 Soil pH, Ec and E;,

Water and soil were evenly mixed in the proportion of 2.5:1, and then shaken at 150
r/min and 25 °C for 24 h. After standing for a week, pH was obtained by measuring the
supernatant with a pH meter (Mettler, Switzerland). The pH pretreatment method
remained the same, with the exception that the water-soil ratio was 5:1 for the

measurement of electrical conductivity (E.) and redox potential (E}) indicators. The Ec

5
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and E;, of the supernatant were measured with a multiparameter (Mettler, Switzerland).

2.3.2 Soil basic nutrients

A 15 mg soil sample was weighed, and 3 mL HNO; (GR, > 99%), 3 mL primary
water and 3 drops of HF (AR, > 99%) were added into the digestion tube, which was
then placed into a microwave digestion instrument (CEM, USA) for digestion at 1900
w and 200 °C. Finally, the digested sample was passed through 0.22 p. The content of
iron and selenium in soil samples was determined with inductively coupled plasma
mass spectrometry (ICP—MS, Thermo, USA). For quality control (QC) and quality
assurance (QA), the standard reference material (GBW 07602, Bush twigs and leaves
purchased from Nanjing Alida Biotechnology Co., LTD, China) was digested and
measured following the same procedures. The recovery of iron and selenium element
was 91.6 and 90.8%, respectively. Soil organic carbon (TOC) was determined by a
TOC analyzer (Elementar, Germany). Soil ammonium nitrogen (NH4;N) was

determined by indophenol blue colorimetry.

2.4 Multivariate data analysis

Orthogonal partial least squares-discrimination analysis (OPLS-DA) is considered as
a reliable tool to verify the differences between groups. In this study, the OPLS-DA
was completed by using the Wekemo Bioincloud (https://www.bioincloud.tech). The
variable importance of projection (VIP) is the vector to summarize the total importance
of the variable in OPLS-DA. A variable is considered to be an important one if its VIP
> 1.0 and its VIP value ranks within 20.

Random forest is an ensemble learning method that consists of multiple decision
trees to make accurate and robust prediction. It demonstrates a notable advantage in
handling small datasets. In this study, random forests were employed to identify the
variables that contribute the highest accuracy to classification of different groups (Se
NPs, Ion, and CK). The contribution of variables to the overall classification accuracy
was measured via the Mean Decrease in Accuracy (MDA).?® The detailed calculation

method can be found in previous studies.?? 30
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2.5 Artificial neural networks (ANNS) programing

ANNSs are information processing systems that attempt to use computational models
to mimic human biological nervous system.?! The multilayer perceptron ANN was used
in this study. The multilayer perceptron ANN consists of an input layer, one or more
hidden layers, and an output layer. The number of hidden layer nodes (Z,) was

calculated by using the following equation 32
2WZi+Z,<Z,<2Z:+1 (1)

where Z;and Z,are studied conditions and performance measures numbers,
respectively. The weights are values that convey the interaction between inputs on each
other. At each layer, all nodes are interconnected and the transformation of data is
performed by nonlinear techniques. To predict the rice yield (grain number) and quality
(Se content in fruit) using ANN, two main different sets of variables (soil properties
data set and plant physiological data) were used as inputs of the network. The
abbreviations of inputs and outputs are listed in Table S1. For further model
performance evaluation, the dataset was randomly split into approximately 50% for
training, 20% for testing, and 30% for validation. The visualization of raw data

distribution was performed using ‘tabplot’ package in R software (Fig. S1-S4).
2.6 Model performance evaluation

To evaluate the performance and predictive capability of the ANN model, we
considered the following statistical parameters, including coefficient of determination
(R?), standard deviation (SD), mean squared error (MSE), and mean absolute error
(MAE). The MSE measures the amount of error in models. The MAE of a model refers
to the average of the absolute values of the errors of all records, which only indicates
the average size of the errors independent of the direction.

They were calculated using the following formulas:
DENCEDY

EINCEEN

n ~ 2
D=5, G-y " O

R?=1-— (2)

1 ~. 2
MSE= ;X' ,(vj—y) 4
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1an ~
where n is the number of data. y; is observed value of the j data, ):j is the predicted

value of the jth, and ;] is the average of the observed values.
3 Results and discussion
3.1 Effect of Se NPs on the soil-plant system

The plant physiological activities (PPA) and soil properties (SP) after soil
applications of Se NPs were shown in Fig. S5 and Fig. S6. The rice yield (i.e. GN_D120)
and quality (Se F) after exposing Se NPs were shown in Fig. S7. The descriptive
statistics of PPA and SP data are presented in Table S2-S3. The distribution of data at
different time stages (D30, D60, D90, and D120) was visualized in Fig. S1-S4.
Specifically, compared with CK, the Se NPs were significantly increased GN_D120
and Se_F by 1.33- and 3.46-fold, respectively. Besides, compared with ionic Se, the Se
NPs also exhibited certain improvements with 1.21- and 1.21-fold in GN_D120 and
Se F. Hence, the soil application of Se NPs significantly improved the yield and quality
of crop, which were consistent with previous findings.33 34 Hence, soil application of
Se NPs can alter soil properties and enhance photosynthesis, ultimately leading to
increased rice yield and improved quality, including higher Se content.

The OPLS-DA results (Fig. 1) help explore the differences and similarities among
various treatments in soil-plant system. The global OPLS-DA model showed a clear
separation of all groups (Fig. 1a). The local OPLS-DA analysis showed a decrease in
overlap over time and complete separation on day 120 (Fig. 1b—d). This suggests that
the impact of Se NPs on PPA and SP is dependent on time. Several studies corroborate
this conclusion. For instance, research has shown that Fe NPs enhance Fe availability
in soils, leading to enhanced growth of sorghum and its photosynthesis.3> Se NPs have
been found advantageous for various soil properties, such as providing a synergistic
effect of soil mechanical processing, humic substances, and polymicrobial biofilms on
soil fertility. 3¢

A random forest analysis was performed to determine the variables contributing the

most to the variance in different treatment groups (Fig. S8). At D30 and D60, the top
8
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four variables included three SP and one PPA, with soil Se content (S_Se) being the
most significant (Fig. S8a—b). Interestingly, as the plants grew, PPA showed a
prominent role in predicting the group (Fig. S8c—d), indicating a shift from SP to PPA
as the most significant variables over time. This shift may suggest changes in the impact
of Se NPs on plant growth changes over time. These results agree with the findings of
other studies, in which some studies have demonstrated that the capacity of NPs to
improve vital soil properties, such as nutrient availability. 37 As a result, the crop yield
and nutrient value can be significantly increased. 38

Network analysis was used to distinguish the importance of each variable within the
group. To conduct a more comprehensive analysis, variables with moderate relationship
(absolute value of Spearman’s correlation > 0.5, p < 0.05) were included in the network.
As displayed in Fig. S9, the absence of directional arrows suggests a potential
correlation or interdependence among the variables, which requires further

investigation to better understand their relationship.
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Fig. 1. Score plots from orthogonal partial least-squares discrimination analysis (OPLS-
DA) results of the samples. a) All samples were plotted from the global matrix. b) Day
30 samples were plotted. ¢) Day 60 samples were plotted. d) Day 90 samples were

plotted. ¢) Day 120 were plotted. The X-axis represents the scores of the main
9
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1
2
3 . . . )
4 components in the orthogonal signal correction (OSC) process, whereas the Y-axis
5 .
6 represents the scores of the orthogonal components in the OSC process.
; 3.2 Model-based feature analysis
?O The multilayer perceptron ANN was used to predict the growth and yield of rice
1; induced by Se NPs. Pearson correlation analysis was used to investigate the
1 i interdependence of features (i.e. PPA and SP) and outcomes (i.e. rice yield and quality).
15 The results of Pearson analysis (Table S4) showed significant correlation between most
16
17 of the features. Fig. 2 exhibited the machine learning-based feature importance
18
19 regarding rice yield and quality. The first four features during the initial phase of plant
20
21 growth (D30) for rice yield and quality were related to both SPs and PPAs. As time
22
23 went on, PPAs becoming progressively more important. At day 120, the top four
24
25 features were only related to PPAs. These findings suggest that while PPAs ultimately
26
27 (at D120) became more important than SPs, the dynamic processes of SPs still played
28
29 an important role in determining rice yield and quality.
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55 Fig. 2. Machine learning-based feature importance from ANN model in terms of the (a)
53 .. ..
54 GN_D120 prediction and (b) Se_F prediction.
55 3.3 Update ANN model results
56
;73 The “Topliss and Costello rule” indicates that to minimize the risk of chance
59 correlations, the ratio of training set to input features should be larger than 5.3° Hence,
60
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the best performing ANN model was reconceptualized with a reduced set of 4 to 6 input

features to obtain better generalization and higher computational efficiency. 4% 4! The

architecture of the ANN, which consists of an input layer, one or more hidden layers,

and an output layer, is depicted in Fig. 3 and Text S1.
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Fig. 3. Architecture of selected artificial neural network. (a)-(d) are used to predict the

GN_D120. (e)-(h) are used to predict Se F.
The actual and predicted values of the GN_D120 and Se_F are shown in Fig. 4. The

model demonstrated strong capability of the ANN in learning the relationship between

11
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1
2
i input variables and output value (GN_D120 and Se_F). Based on the validation dataset,
5 the R? values of ANN model for yield prediction at D30, D60, D90, and D120 were
6
7 0.785,0.714, 0.830, and 0.893, respectively (Fig. 4a-4d). For quality prediction (Se F),
8
9 the R2 values of ANN model at D30, D60, D90, and D120 were 0.729, 0.867, 0.760,
10 and 0.762, respectively (Fig. 4e-4f).
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54 Fig. 4. ANN simulation correlation in the model training/testing/validation stage of (a)-
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56 (d) GN_D120 values and (e)-(h) Se_F values.
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58 In addition, the other metrics (RMSE, MAE, SD) used to evaluate model
59
60 performance are listed at Table S5-S6. In Taylor diagram, a model with good
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performance should have a high correlation, similar variability (standard deviation
marked as blue dashed line) and a low RMSE (solid gray line). 4> As can be seen from
the Taylor plot (Fig. 5), for both GN_D120 and Se F prediction, the D120 model had
a better performance, while D60 model had a poorer performance. D30 and D90 model
showed an intermediate performance.

Taken together, these results suggest that ANN is an accurate modeling approach for
predicting rice yield and quality. The results of the validation models show that the
ANN algorithm can keep the errors within an acceptable range.** Both the high R? (>
0.7) and the low RMSE (< 11.27 for yield prediction and < 0.11 for quality prediction)
values of the validation models indicate that ANNs are accurate and reliable tools in
practical predictions. The results of this study in terms of the accuracy and reliability
of the ANN model are similar to the results of previous studies on related issues in this

area, which reported low error values and high correlation coefficient. '8 44

* D30 Model

Se_F * DB0 Model
D90 Model

P 05 * D120 Model

(a) o1 02,  GN_120 (b) g 0 o2

0.20
1

02"
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Fig. 5. Taylor diagram presenting a comparison of the (a) GN_D120 and (b) Se F
observations with simulation from the ANN model. The black circular indicates the
reference field while the color dot (red, blue, green, and brown) indicates the modeled
field. The diagram shows the correlation and ratio of the standard derivation.
3.4 Feature exploration based on updated model results

The Sankey diagram (Fig. 6) illustrates the flow of relative importance in predicting
rice yield and quality. Our findings suggest that, initially, SP indicators had a relatively

higher important role in rice yield and quality. However, as the plant grew (from D60

13
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to D90), the importance gradually shifted to PPA, indicating that the effects of Se NPs
spread from the soil environment to the plant system.

Specifically, the ANN model (Fig. 6a) identified soil E., E;, pH, and NH4" contents
as factors affecting rice yield. Similar but not identical, soil TOC, E;, pH, and NH,*
were identified as responsible for rice quality (Fig. 6b). The E. levels in soil are crucial
for plants receiving the right amount of nutrients and water for optimal growth.*’ In this
study, the E. value in the soil initially decreased and then increased throughout plant
growth, following a parabolic trend (Fig. S2). The decrease in soluble salt content of
the soil during rice growth could be attributed to the flooding period and nutrient uptake.
The subsequent increase in E, levels may be due to fertilizer application.*® Furthermore,
at day 30 and day 60, the E. value were identified as input variables of rice yield
prediction, indicating a potential link between E. and rice yield. As shown in Fig. S10,
compared with CK, the E level in the Ion group was increased, which indicated that
the rice might be in a stressed condition. One possible explanation for this phenomenon
is that the NP can regulate the soil E. value in a suitable range for rice growth.*” As
note by Garcia-Gomez et al. (2015), the introduction of Se ions (SeO32-) may facilitate
the incorporation of the dissolved salt, ultimately leading to an increase in E. value.*®
In contrast, Se NPs are inherently stable in soil and do not contribute to the increase of
soluble Se.*

Ey, pH, and NH4" were found to be critical for rice yield and quality (Fig. 6). Soil E,,
helps provide a unique environment for supporting microbial processes, making it
crucial for managing water and soil fertility. 3% 3! Compared with CK, NP amendments
increased soil E; value during the flooded period but decreased it during the mature
stage (Fig. S11). These fluctuations in soil E;, resulting from NP treatment can potential
to impact the biomass and activities of the rhizosphere microbiome 2, then influencing
nutrient availability and rice growth 3. Soil pH is another fundamental factor that
affecting microbial and enzyme activity. 3 Soil E, and pH are logically inversely
correlated, as oxidation usually leads to acidification 33. Our results of E, and pH align
with previous studies, which showed that a decrease in pH typically accompanied by

an increase in soil E;.%> The change in soil pH could alter the behavior and fate of NPs
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in the soil, and further impacting their uptake by plants . For instance, E;, and pH can
impact various elements, including nitrogen assimilation by plants.>” In this study, the
pH decreased with plant growth (Fig. S2). One possible reason is that from the tillering
stage (D30) to the maturity stage (D120), rice roots grow vigorously and secrete large
amounts of acidic substances, leading to a decreasing trend of soil pH. 3 NH4" is a
critical nitrogen source for plant growth, promoting the growth and survival of
beneficial soil microorganisms.’® The ANN model results showed that ammonium
nitrogen influenced rice yield and quality (Fig. 6). During plant growth, the NH,*
content of the soil gradually increased (Fig. S2). This phenomenon may be attributed
to the mineralization process, in which inorganic nitrogen is broken down into NH*
over time.% TOC serve as an important indicator of soil health, affecting crop
production and the regulation of soil ecosystem services. ! In this study, TOC is
particularly important for Se uptake in rice (Fig. 6). According to the control group, the
soil TOC were increased from tillering stage (D30) to heading stage (D60) (Fig. S2).
This could be attributed to the vigorous growth of rice roots during this time, resulting
in the secretion of substantial amounts of root secretions. This secretions enhanced the
interaction of organic matter and minerals, leading to an increase in TOC.%> %3 However,
compared with CK, Se NPs led to a decrease in the TOC content in soil (Fig. S12). This
could be explained by the fact that NPs improved the carbon use efficiency of rice.3% %4

Among PPA index, the photosynthesis-related parameters are more important for
predicting the yield and quality of rice, such as, Chl, Pn, Gs, and Fv/Fm (Fig. 6).
Photosynthesis is a crucial process for plants and strongly affects plant productivity and
yield.®> Herein, Se NPs significantly increased Chl, Pn, Gs, Fv/Fm content compared
with CK or Ion treatment (Fig. S13-S16). This is consistent with our previous results
that NPs can improve crop yield and quality by enhancing photosynthesis. 66 67
Specifically, Chl plays a pivotal role in light absorption %, and its increase in content
suggests that Se NPs could improve light absorption and energy conversion efficiency
in photosynthesis. Pn is crucial for plant maintenance as it measures the rate of CO,
conversion into organic matter. %> Gs regulates the exchange of CO, and water vapor

between leaf and atmosphere, influencing photosynthesis.”® The significant increase in
15
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Pn and Gs content indicates that Se NPs may enhance the rate of carbon dioxide
conversion and facilitate CO, diffusion into plant cells. Fv/Fm is an indicator of energy
conversion efficiency in photosynthesis, which is closely linked to plant growth and
productivity. 7! The increase in Fv/Fm content implies that Se NPs may enhance energy
transfer efficiency in photosynthesis, leading to improved plant growth and
productivity.

Overall, the Sankey diagram revealed that the initial important reaction under Se NP
conditions was SP, rather than PPA. However, as time progressed (from D60 to D90),
the relative importance of SP gradually shifted to PPA, indicating that the effects of Se
NPs spread from the soil environment to the plant system. This shift could be due to Se
NPs initially impacting the soil environment and indirectly affecting the plant system
through changes in soil nutrient availability, microbial activity, and other soil
parameters.’? This process may take time to play out, resulting in a higher relative
importance of SP at the D30 stage. As Se NPs entered the plant, the relative importance
of PPA gradually increased, influencing parameters related to physiological
metabolism and photosynthesis. It is noteworthy that although PPA at D120 showed
significant contribution in predicting groups, the valuable role played by SP during the

early stages of plant growth (D30) should not be disregarded.
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Fig. 6. Sankey flow diagram show the relative importance flow of (a) GN_D120 and
(b) Se_F. The x-axis represents 4 time points (D30, D60, D90, and D120). The total

height of the y-axis represents the full sample (100%).

3.5 Potential and role of developing explainable models in NPs-plant-soil system

As the interest in nano-enabled agriculture rapidly increases, it is vital to carefully
evaluate the risks of using NPs for agriculture.”® Therefore, a thorough understanding
of the interactions of NPs in soil-plant systems is becoming increasingly crucial, as it
provides the basis for safe use of NPs. Employing explainable models is a feasible
solution since they are powerful tools that provide hypotheses from a complex feature

space and feature interactions for experimental scientists. For instance, our study
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indicates that the effects of Se NPs on rice are time-dependent, with SP playing a
primary role and PPA becoming increasingly important over time. As plant growth
progress, the importance of Se NPs shifts from the underground to aboveground parts
of the plant, ultimately affecting both yield and quality. The pathways through which
NPs stimulate crop yield and quality are differentiated, with TOC being crucial for crop
yield and soil E, being crucial for quality. These findings offer valuable insights into
the intricate interactions between nanomaterials, plants, and soil, highlighting the
significance of the dynamic changes in soluble salt content within soil and developing
safe design strategies for nanomaterials. However, to further our understanding of the
effects of PPA and SP values on plant growth, it is necessary to expand the experimental
framework of this study. For instance, it is imperative to investigate the sensitivity of
different plant species to ecotoxicological stress in relation to the SP values of the
respective soils. Moreover, factors influencing the temporal dynamics of SP values
(such as natural weather oscillations and seasonal changes in soil chemistry) ought to
be considered in the experimental setup. Additionally, the chemical properties of NPs
play a significant role in their behavior within the soil-crop system. Factors such as
shape, size, charge, and surface coating have a direct impact on plant uptake and
translocation.”® 7> The dissolution of NPs is also critical, as it affects material stability,
availability, and safety.”® While foliar application has been suggested as an effective
and environmentally friendly method 77, it is worth noting that both foliar application
and soil fertilization have their own advantages depending on the situation.”® Therefore,
the NPs properties, plant properties, and the experiment conditions play a role in
determining the interaction between NPs and plants. Hence, machine learning
techniques like ANN can be utilized to investigate potential correlations among these
variables and identify optimal application methods to save time and effort.”” By
enhancing our understanding of plant-soil interactions, we can develop more informed
management strategies for sustainable and productivity agriculture and ecosystems.
Moreover, with the practice of data-sharing, more data will become available in the
future, enabling improved model performance and better detection of data patterns in

complex systems.
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4 Conclusion

This study demonstrated that Se NPs have a positive impact on the yield and quality
of rice by regulating SP and PPA. An ANN model was developed to reveal that SP
played a primary role, followed by PPA. Moreover, it was found that the pathways for
yield and quality were differentiated, with D60 and D90 being identified as the
equilibrium points for predicting rice yield and quality, respectively. The key SP values
were identified as TOC, NH4", pH, E;, and E_; while the key PPA values were identified
as Chl, Pn, Gs, and Fv/Fm. This study provides a new approach and perspective for
predicting the bioavailability of Se NPs in soil-crop system, which could improve the
ability to assess the contribution of nano-enable agriculture to food security. A
comprehensive understanding of NPs application in soil-plant system will facilitate safe
design solutions for nanoagriculture. Future research should expand beyond laboratory
conditions to field studies. As more data becomes available, the performance of the
training algorithm will improve, and ANNs will be better equipped to identify data

patterns from more complex systems.

Model availability
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