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Environmental significance
Emerging nano-agricultural technologies have the potential to enhance crop yield and 
quality, while reducing environmental pollution compared to traditional formulations. 
However, soil-crop systems exhibit complex interactions of factors that hinder the study 
of nanoparticle (NP) bioavailability. Therefore, this study proposes the use of artificial 
neural networks (ANN) for a systematic evaluation of Se NP applications in the plant-
soil system. Model-based interpretation methods combined with experimental data 
allow for a more comprehensive understanding of the advantages and disadvantages of 
NPs in the soil-plant system. This approach facilitates the implementation of safe design 
options for NPs in agriculture, ensuring the development of NP-based solutions that are 
both effective and environmentally sustainable.
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Abstract

While selenium nanoparticles (Se NPs) can effectively enrich crops yield and quality, 

the limited research on the interactions between Se NPs and soil-crop systems hinders 

their potential use in agriculture. Hence, the soil application of Se NPs (0 [control] and 

0.5mg·kg-1) and Na2SeO3
 (1.11 mg·kg-1) was applied to enhance rice quality and yield. 

The artificial neural network (ANN) approach was used to model and simulate the 

response of soil properties (SP) and plant physiological activities (PPA) under different 

treatments at different time stages (30, 60, 90, and 120 Day). The results indicate that 

Se NPs can enhance photosynthesis, leading to increased yield (1.33-fold) and quality 

of rice (Se-enriched rice, 3.46-fold). The effects of Se NPs on rice growth and 

development were found to be time-dependent. Soil properties, including soil organic 

matter (TOC), ammonium nitrogen (NH4
+), pH, redox potential (Eh), and conductivity 

(Ec), emerged as crucial factors influencing the observed effects. With the progression 

of time, plant physiological activities, including chlorophyll (Chl), net photosynthetic 

rate (Pn), stomatal conductance (Gs), and optimal/maximal photochemical efficiency 

of PS II in the dark (Fv/Fm), exhibited an increasing level of importance. Moreover, 

the processes of Se NPs affecting yield and quality were distinct, with TOC being more 

important for rice yield and Ec being more significant for quality. Therefore, this study 

offers a novel approach to assess the bioavailability of Se NPs in soil-crop systems and 

provides valuable insights into the potential for using Se NPs to enhance rice 

productivity and quality. The use of model-based interpretation methods combined with 

experimental data allows for a more comprehensive understanding of the advantages 

and disadvantages of NPs in soil-plant system and facilitates the implementation of safe 

design options for NPs in agriculture.

Keywords: metal (oxide) nanoparticles, mathematical models, nano-specific 

descriptor, biological effect, Oryza sativa L.
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1 Introduction

In recent years, sustainable agriculture has become crucial in addressing population 

pressure (9.7 billion by 2050).1 The emerging nano-agricultural technologies 

(nanopesticides, nanofertilizers, and nanosensors) have potential to improve crop yield 

and quality while reducing environmental pollution compared with traditional 

formulation. 2-4 For instance, nanopesticides can specifically targeted pests, reducing 

the need for large quantities of pesticides and minimizing the exposure of non-target 

organisms to harmful chemicals.5, 6 Nanofertilizers can increase the efficiency of 

nutrient uptake by plants and reduce fertilizer requirements for the same yield. 7, 8 

Consequently, this can reduce chemicals runoff and environmental damage associated 

with traditional agricultural practices. 9, 10 As such, nano-agricultural technologies have 

the potential to transform traditional agriculture into a sustainable and efficient system 

that capable of meeting the food and nutritional demands of a rapidly growing 

population while minimizing environmental impacts. 11, 12

To explain the mechanisms of NPs promoting plant growth, most previous works 

had focused on exploring the physiological and molecular responses of NPs to plants.13 

Soil-crop systems exhibit complex interactions of factors that hinder the study of 

bioavailability of NPs. Therefore, novel approaches, such as machine learning, are 

necessary to overcome these limitations and enable more systematic research. 14 Recent 

studies have utilized machine learning methods to develop agronomic-based models.15-

17 Given the complexity and diversity of soil-crop systems, artificial neural networks 

(ANN) are a feasible solution. 18 The advantages of ANN include suitability for 

managing uncertain data, applicability to large or small data sets, and allowing to reveal 

nonlinear relationship between various parameters. Previous studies have demonstrated 

the superior accuracy of ANNs compared with traditional modeling approaches in 

learning relationships between variables and targets. For example, Gandhi et al. predict 

the rice crop yield using multilayer perceptron ANN (accuracy, 97.5%; sensitivity, 

96.3%; specificity, 98.1%).19 Some researchers examine the classification of rice leaf 

diseases using attention-based depthwise separable ANN, achieving an accuracy of 

96.45%. 20 Rossi et al. (2019) used ANN identified key physiological factors (i.e. root 
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fresh weight, the net photosynthesis rate, and Fv/Fm ratio) affecting Brassica napus 

plant uptake of co-occurring Cd and CeO2 NPs. 18 Although ANN has been applied in 

agriculture systems, its utilization in investigating the bioavailability of NPs in soil-

crop system is limited. 

Selenium (Se) NPs have attracted great attention among various types of NPs due 

to their unique structural, optical, and electronic properties.21 Compared with traditional 

Se fertilizer, Se NPs have shown more significant advantages in crop Se-enrichment 

and yield. 22 For instance, Li et al. proposed that the Se NPs (20 mg·L−1) could enhance 

the nutrient quality (chlorophyll, +33.7%; soluble sugar, +36.9%; AsA, +48.2%; 

flavonoids, +79.9%; total phenols, +58.7%) of pepper (Capsicum annuum L.) by 

activating the capsaicinoid synthetic pathway0. 23 Cheng et al. demonstrated that foliar 

sprayed Se NPs (10 mg·L−1) could improve the yield (+67.6%) and nutritional quality 

(Se content, 5.4 and 2.6 times in pericarp and pulp) of cherry radish (Raphanus sativus 

L. var. radculus pers).24 At some concentrations, Se NPs enhanced plant root growth, 

while Se ions inhibited callus growth and root regeneration.25 Hence, Se NPs could be 

used for Se enrichment in crops and sustainable agriculture. Moreover, consuming 

selenium-enriched crops provides health benefits to humans. Despite the potential 

benefits, there is currently a lack of systematic evaluations regarding the effectiveness 

of Se NP applications in the plant-soil system. 

In our study, rice was selected as the test crop because it was one of the main grain 

crops in the world. More importantly, more than 1/5 of the rice was planted in the 

severely Se deficient areas thus Se enrichment in rice was imminent. The aim of this 

study was to investigate the bioavailability of Se NP in soil-crop system using ANN. 

The main objectives of this study were (i) to determine the effects of Se NPs on soil 

properties and physiological activities of rice and (ii) to distinguish whether the 

physicochemical activity in soil-crop system that has a more profound effect on the 

yield and quality by using ANNs. By conducting a comprehensive investigation into 

the utilization of Se NPs in the soil-crop system, the findings of this study will 

significantly contribute to the effective implementation of Se NPs for enhancing both 

rice yield and quality.
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2 Methods

2.1. Synthesis of materials

Se NPs were synthesized according to previous reports. 26 SeO2 (0.11 g) and ascorbic 

acid (0.36 g) were ground in a mortar until they turned red. Then, Se NPs were dispersed 

into deionized water (20 mL). Subsequently, polyvinylpyrrolidone was added to the 

mixture in the proportion of 3:20. Eventually, Se NPs were collected after ultrasonic 

treatment for 30 minutes and centrifugation (8000 rpm, 10 mins). The characteristics of 

Se NPs were reported in our previous study.27

2.2. Rice cultivation and determination of physicochemical activity

Rice (Oryza sativa L.) seeds from Anhui Lvyi Seed Industry Co., Ltd. were soaked 

in deionized water for 8 h and then 1% sodium hypochlorite for 10 min. Then, the seeds 

were washed with deionized water until the solution on the surface of the seeds were 

removed, and the seeds were placed in a dark environment to avoid light for 3 days. 

Rice seedlings with uniform germination and growth were selected to be transferred to 

a pot containing 5 kg paddy soil (2 plants per pot), which was filtered through a 5.0 mm 

sieve in advance to make the soil homogeneous. Finally, 0.5 mg of Se NPs were added 

to the pot of the Se NPs treatment group (0.5mg·kg-1), while 1.11 mg of sodium selenite 

(45.0% selenium content) were added to the Se Ions (SeO3
2-) treatment group as a 

control. Each treatment had 5 repetitions. A Fluorcam chlorophyll fluorescence 

imaging system, photosynthesis analyzer (PP systems, targas-1, China) and chlorophyll 

meter (spad-502plus, China) were used to analyze the photosynthetic parameters of rice 

leaves on the 30th, 60th, 90th and 120th days of rice growth. After 120 days, the rice was 

harvested and the fresh weight and dry weight were recorded.
2.3. Determination of soil properties

2.3.1 Soil pH, EC and Eh

Water and soil were evenly mixed in the proportion of 2.5:1, and then shaken at 150 

r/min and 25 ℃ for 24 h. After standing for a week, pH was obtained by measuring the 

supernatant with a pH meter (Mettler, Switzerland). The pH pretreatment method 

remained the same, with the exception that the water-soil ratio was 5:1 for the 

measurement of electrical conductivity (Ec) and redox potential (Eh) indicators. The EC 
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and Eh of the supernatant were measured with a multiparameter (Mettler, Switzerland). 
2.3.2 Soil basic nutrients

A 15 mg soil sample was weighed, and 3 mL HNO3 (GR, ≥ 99%), 3 mL primary 

water and 3 drops of HF (AR, ≥ 99%) were added into the digestion tube, which was 

then placed into a microwave digestion instrument (CEM, USA) for digestion at 1900 

w and 200 ℃. Finally, the digested sample was passed through 0.22 μ. The content of 

iron and selenium in soil samples was determined with inductively coupled plasma 

mass spectrometry (ICP–MS, Thermo, USA). For quality control (QC) and quality 

assurance (QA), the standard reference material (GBW 07602, Bush twigs and leaves 

purchased from Nanjing Alida Biotechnology Co., LTD, China) was digested and 

measured following the same procedures. The recovery of iron and selenium element 

was 91.6 and 90.8%, respectively. Soil organic carbon (TOC) was determined by a 

TOC analyzer (Elementar, Germany). Soil ammonium nitrogen (NH4–N) was 

determined by indophenol blue colorimetry.
2.4 Multivariate data analysis

Orthogonal partial least squares-discrimination analysis (OPLS-DA) is considered as 

a reliable tool to verify the differences between groups. In this study, the OPLS-DA 

was completed by using the Wekemo Bioincloud (https://www.bioincloud.tech). The 

variable importance of projection (VIP) is the vector to summarize the total importance 

of the variable in OPLS-DA. A variable is considered to be an important one if its VIP 

> 1.0 and its VIP value ranks within 20. 

Random forest is an ensemble learning method that consists of multiple decision 

trees to make accurate and robust prediction. It demonstrates a notable advantage in 

handling small datasets. In this study, random forests were employed to identify the 

variables that contribute the highest accuracy to classification of different groups (Se 

NPs, Ion, and CK). The contribution of variables to the overall classification accuracy 

was measured via the Mean Decrease in Accuracy (MDA).28 The detailed calculation 

method can be found in previous studies.29, 30  
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2.5 Artificial neural networks (ANNs) programing

ANNs are information processing systems that attempt to use computational models 

to mimic human biological nervous system.31 The multilayer perceptron ANN was used 

in this study. The multilayer perceptron ANN consists of an input layer, one or more 

hidden layers, and an output layer. The number of hidden layer nodes (Zh) was 

calculated by using the following equation 32:

 (1)2 𝑍𝑖 + 𝑍𝑜 ≤ 𝑍ℎ ≤ 2𝑍𝑖 +1

where Zi and Zo are studied conditions and performance measures numbers, 

respectively. The weights are values that convey the interaction between inputs on each 

other. At each layer, all nodes are interconnected and the transformation of data is 

performed by nonlinear techniques. To predict the rice yield (grain number) and quality 

(Se content in fruit) using ANN, two main different sets of variables (soil properties 

data set and plant physiological data) were used as inputs of the network. The 

abbreviations of inputs and outputs are listed in Table S1. For further model 

performance evaluation, the dataset was randomly split into approximately 50% for 

training, 20% for testing, and 30% for validation. The visualization of raw data 

distribution was performed using ‘tabplot’ package in R software (Fig. S1-S4).
2.6 Model performance evaluation

To evaluate the performance and predictive capability of the ANN model, we 

considered the following statistical parameters, including coefficient of determination 

(R2), standard deviation (SD), mean squared error (MSE), and mean absolute error 

(MAE). The MSE measures the amount of error in models. The MAE of a model refers 

to the average of the absolute values of the errors of all records, which only indicates 

the average size of the errors independent of the direction.

They were calculated using the following formulas:

 (2)R2 = 1 ―
∑𝑛

𝑗 = 1(𝑦𝑗 ―𝑦𝑗)
2

∑𝑛
𝑗 = 1(𝑦𝑗 ―𝑦𝑗)

2

 (3)SD = ∑𝑛
𝑗 = 1（𝑦𝑗 ― 𝑦𝑗）

2

 (4)MSE =
1
𝑛∑𝑛

𝑗 = 1(𝑦𝑗 ― 𝑦𝑗)
2
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 (5)𝑀𝐴𝐸 =
1
n
∑n

𝑗 = 1|𝑦𝑗 ― 𝑦𝑗|

where n is the number of data. yj is observed value of the jth data,  is the predicted 𝑦𝑗

value of the jth, and  is the average of the observed values.𝑦𝑗

3 Results and discussion

3.1 Effect of Se NPs on the soil-plant system

The plant physiological activities (PPA) and soil properties (SP) after soil 

applications of Se NPs were shown in Fig. S5 and Fig. S6. The rice yield (i.e. GN_D120) 

and quality (Se_F) after exposing Se NPs were shown in Fig. S7. The descriptive 

statistics of PPA and SP data are presented in Table S2-S3. The distribution of data at 

different time stages (D30, D60, D90, and D120) was visualized in Fig. S1-S4. 

Specifically, compared with CK, the Se NPs were significantly increased GN_D120 

and Se_F by 1.33- and 3.46-fold, respectively. Besides, compared with ionic Se, the Se 

NPs also exhibited certain improvements with 1.21- and 1.21-fold in GN_D120 and 

Se_F. Hence, the soil application of Se NPs significantly improved the yield and quality 

of crop, which were consistent with previous findings.33, 34 Hence, soil application of 

Se NPs can alter soil properties and enhance photosynthesis, ultimately leading to 

increased rice yield and improved quality, including higher Se content.

The OPLS-DA results (Fig. 1) help explore the differences and similarities among 

various treatments in soil-plant system. The global OPLS-DA model showed a clear 

separation of all groups (Fig. 1a). The local OPLS-DA analysis showed a decrease in 

overlap over time and complete separation on day 120 (Fig. 1b–d). This suggests that 

the impact of Se NPs on PPA and SP is dependent on time. Several studies corroborate 

this conclusion. For instance, research has shown that Fe NPs enhance Fe availability 

in soils, leading to enhanced growth of sorghum and its photosynthesis.35 Se NPs have 

been found advantageous for various soil properties, such as providing a synergistic 

effect of soil mechanical processing, humic substances, and polymicrobial biofilms on 

soil fertility. 36

A random forest analysis was performed to determine the variables contributing the 

most to the variance in different treatment groups (Fig. S8). At D30 and D60, the top 
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four variables included three SP and one PPA, with soil Se content (S_Se) being the 

most significant (Fig. S8a–b). Interestingly, as the plants grew, PPA showed a 

prominent role in predicting the group (Fig. S8c–d), indicating a shift from SP to PPA 

as the most significant variables over time. This shift may suggest changes in the impact 

of Se NPs on plant growth changes over time. These results agree with the findings of 

other studies, in which some studies have demonstrated that the capacity of NPs to 

improve vital soil properties, such as nutrient availability. 37 As a result, the crop yield 

and nutrient value can be significantly increased. 38

Network analysis was used to distinguish the importance of each variable within the 

group. To conduct a more comprehensive analysis, variables with moderate relationship 

(absolute value of Spearman’s correlation > 0.5, p < 0.05) were included in the network. 

As displayed in Fig. S9, the absence of directional arrows suggests a potential 

correlation or interdependence among the variables, which requires further 

investigation to better understand their relationship. 

Fig. 1. Score plots from orthogonal partial least-squares discrimination analysis (OPLS-

DA) results of the samples. a) All samples were plotted from the global matrix. b) Day 

30 samples were plotted. c) Day 60 samples were plotted. d) Day 90 samples were 

plotted. e) Day 120 were plotted. The X-axis represents the scores of the main 
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components in the orthogonal signal correction (OSC) process, whereas the Y-axis 

represents the scores of the orthogonal components in the OSC process.
3.2 Model-based feature analysis

The multilayer perceptron ANN was used to predict the growth and yield of rice 

induced by Se NPs. Pearson correlation analysis was used to investigate the 

interdependence of features (i.e. PPA and SP) and outcomes (i.e. rice yield and quality). 

The results of Pearson analysis (Table S4) showed significant correlation between most 

of the features. Fig. 2 exhibited the machine learning-based feature importance 

regarding rice yield and quality. The first four features during the initial phase of plant 

growth (D30) for rice yield and quality were related to both SPs and PPAs. As time 

went on, PPAs becoming progressively more important. At day 120, the top four 

features were only related to PPAs. These findings suggest that while PPAs ultimately 

(at D120) became more important than SPs, the dynamic processes of SPs still played 

an important role in determining rice yield and quality.

Fig. 2. Machine learning-based feature importance from ANN model in terms of the (a) 

GN_D120 prediction and (b) Se_F prediction.
3.3 Update ANN model results

The “Topliss and Costello rule” indicates that to minimize the risk of chance 

correlations, the ratio of training set to input features should be larger than 5.39 Hence, 
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the best performing ANN model was reconceptualized with a reduced set of 4 to 6 input 

features to obtain better generalization and higher computational efficiency. 40, 41 The 

architecture of the ANN, which consists of an input layer, one or more hidden layers, 

and an output layer, is depicted in Fig. 3 and Text S1. 

Fig. 3. Architecture of selected artificial neural network. (a)-(d) are used to predict the 

GN_D120. (e)-(h) are used to predict Se_F.
The actual and predicted values of the GN_D120 and Se_F are shown in Fig. 4. The 

model demonstrated strong capability of the ANN in learning the relationship between 

Page 12 of 26Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

input variables and output value (GN_D120 and Se_F). Based on the validation dataset, 

the R2 values of ANN model for yield prediction at D30, D60, D90, and D120 were 

0.785, 0.714, 0.830, and 0.893, respectively (Fig. 4a-4d). For quality prediction (Se_F), 

the R2 values of ANN model at D30, D60, D90, and D120 were 0.729, 0.867, 0.760, 

and 0.762, respectively (Fig. 4e-4f). 

Fig. 4. ANN simulation correlation in the model training/testing/validation stage of (a)-

(d) GN_D120 values and (e)-(h) Se_F values.

In addition, the other metrics (RMSE, MAE, SD) used to evaluate model 

performance are listed at Table S5-S6. In Taylor diagram, a model with good 

D30

(e)

Train R2 = 0.709
Test R2 = 0.815
Validation R2 = 0.729

y=x D60
(f)

Train R2 = 0.762
Test R2 = 0.832
Validation R2 = 0.867

y=x

D90
(g)

Train R2 = 0.906
Test R2 = 0.904
Validation R2 = 0.760

y=x D120
(h)

Train R2 = 0.933
Test R2 = 0.962
Validation R2 = 0.762

y=x
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performance should have a high correlation, similar variability (standard deviation 

marked as blue dashed line) and a low RMSE (solid gray line). 42 As can be seen from 

the Taylor plot (Fig. 5), for both GN_D120 and Se_F prediction, the D120 model had 

a better performance, while D60 model had a poorer performance. D30 and D90 model 

showed an intermediate performance. 

Taken together, these results suggest that ANN is an accurate modeling approach for 

predicting rice yield and quality. The results of the validation models show that the 

ANN algorithm can keep the errors within an acceptable range.43 Both the high R2 (> 

0.7) and the low RMSE (< 11.27 for yield prediction and < 0.11 for quality prediction) 

values of the validation models indicate that ANNs are accurate and reliable tools in 

practical predictions. The results of this study in terms of the accuracy and reliability 

of the ANN model are similar to the results of previous studies on related issues in this 

area, which reported low error values and high correlation coefficient. 18, 44

Fig. 5. Taylor diagram presenting a comparison of the (a) GN_D120 and (b) Se_F 

observations with simulation from the ANN model. The black circular indicates the 

reference field while the color dot (red, blue, green, and brown) indicates the modeled 

field. The diagram shows the correlation and ratio of the standard derivation.

3.4 Feature exploration based on updated model results

 The Sankey diagram (Fig. 6) illustrates the flow of relative importance in predicting 

rice yield and quality. Our findings suggest that, initially, SP indicators had a relatively 

higher important role in rice yield and quality. However, as the plant grew (from D60 
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to D90), the importance gradually shifted to PPA, indicating that the effects of Se NPs 

spread from the soil environment to the plant system. 

Specifically, the ANN model (Fig. 6a) identified soil Ec, Eh, pH, and NH4
+ contents 

as factors affecting rice yield. Similar but not identical, soil TOC, Eh, pH, and NH4
+ 

were identified as responsible for rice quality (Fig. 6b). The Ec levels in soil are crucial 

for plants receiving the right amount of nutrients and water for optimal growth.45 In this 

study, the Ec value in the soil initially decreased and then increased throughout plant 

growth, following a parabolic trend (Fig. S2). The decrease in soluble salt content of 

the soil during rice growth could be attributed to the flooding period and nutrient uptake. 

The subsequent increase in Ec levels may be due to fertilizer application.46 Furthermore, 

at day 30 and day 60, the Ec value were identified as input variables of rice yield 

prediction, indicating a potential link between Ec and rice yield. As shown in Fig. S10, 

compared with CK, the Ec level in the Ion group was increased, which indicated that 

the rice might be in a stressed condition. One possible explanation for this phenomenon 

is that the NP can regulate the soil Ec value in a suitable range for rice growth.47 As 

note by García-Gómez et al. (2015), the introduction of Se ions (SeO3
2-) may facilitate 

the incorporation of the dissolved salt, ultimately leading to an increase in Ec value.48 

In contrast, Se NPs are inherently stable in soil and do not contribute to the increase of 

soluble Se.49

Eh, pH, and NH4
+ were found to be critical for rice yield and quality (Fig. 6). Soil Eh 

helps provide a unique environment for supporting microbial processes, making it 

crucial for managing water and soil fertility. 50, 51 Compared with CK, NP amendments 

increased soil Eh value during the flooded period but decreased it during the mature 

stage (Fig. S11). These fluctuations in soil Eh resulting from NP treatment can potential 

to impact the biomass and activities of the rhizosphere microbiome 52, then influencing 

nutrient availability and rice growth 53. Soil pH is another fundamental factor that 

affecting microbial and enzyme activity. 54 Soil Eh and pH are logically inversely 

correlated, as oxidation usually leads to acidification 53. Our results of Eh and pH align 

with previous studies, which showed that a decrease in pH typically accompanied by 

an increase in soil Eh.55 The change in soil pH could alter the behavior and fate of NPs 
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in the soil, and further impacting their uptake by plants 56. For instance, Eh and pH can 

impact various elements, including nitrogen assimilation by plants.57 In this study, the 

pH decreased with plant growth (Fig. S2). One possible reason is that from the tillering 

stage (D30) to the maturity stage (D120), rice roots grow vigorously and secrete large 

amounts of acidic substances, leading to a decreasing trend of soil pH. 58 NH4
+ is a 

critical nitrogen source for plant growth, promoting the growth and survival of 

beneficial soil microorganisms.59 The ANN model results showed that ammonium 

nitrogen influenced rice yield and quality (Fig. 6). During plant growth, the NH4
+ 

content of the soil gradually increased (Fig. S2). This phenomenon may be attributed 

to the mineralization process, in which inorganic nitrogen is broken down into NH4
+ 

over time.60 TOC serve as an important indicator of soil health, affecting crop 

production and the regulation of soil ecosystem services. 61 In this study, TOC is 

particularly important for Se uptake in rice (Fig. 6). According to the control group, the 

soil TOC were increased from tillering stage (D30) to heading stage (D60) (Fig. S2). 

This could be attributed to the vigorous growth of rice roots during this time, resulting 

in the secretion of substantial amounts of root secretions. This secretions enhanced the 

interaction of organic matter and minerals, leading to an increase in TOC.62, 63 However, 

compared with CK, Se NPs led to a decrease in the TOC content in soil (Fig. S12). This 

could be explained by the fact that NPs improved the carbon use efficiency of rice.36, 64

Among PPA index, the photosynthesis-related parameters are more important for 

predicting the yield and quality of rice, such as, Chl, Pn, Gs, and Fv/Fm (Fig. 6). 

Photosynthesis is a crucial process for plants and strongly affects plant productivity and 

yield.65 Herein, Se NPs significantly increased Chl, Pn, Gs, Fv/Fm content compared 

with CK or Ion treatment (Fig. S13-S16). This is consistent with our previous results 

that NPs can improve crop yield and quality by enhancing photosynthesis. 66, 67 

Specifically, Chl plays a pivotal role in light absorption 68, and its increase in content 

suggests that Se NPs could improve light absorption and energy conversion efficiency 

in photosynthesis. Pn is crucial for plant maintenance as it measures the rate of CO2 

conversion into organic matter. 69 Gs regulates the exchange of CO2 and water vapor 

between leaf and atmosphere, influencing photosynthesis.70 The significant increase in 
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Pn and Gs content indicates that Se NPs may enhance the rate of carbon dioxide 

conversion and facilitate CO2 diffusion into plant cells. Fv/Fm is an indicator of energy 

conversion efficiency in photosynthesis, which is closely linked to plant growth and 

productivity. 71 The increase in Fv/Fm content implies that Se NPs may enhance energy 

transfer efficiency in photosynthesis, leading to improved plant growth and 

productivity. 

Overall, the Sankey diagram revealed that the initial important reaction under Se NP 

conditions was SP, rather than PPA. However, as time progressed (from D60 to D90), 

the relative importance of SP gradually shifted to PPA, indicating that the effects of Se 

NPs spread from the soil environment to the plant system. This shift could be due to Se 

NPs initially impacting the soil environment and indirectly affecting the plant system 

through changes in soil nutrient availability, microbial activity, and other soil 

parameters.72 This process may take time to play out, resulting in a higher relative 

importance of SP at the D30 stage. As Se NPs entered the plant, the relative importance 

of PPA gradually increased, influencing parameters related to physiological 

metabolism and photosynthesis. It is noteworthy that although PPA at D120 showed 

significant contribution in predicting groups, the valuable role played by SP during the 

early stages of plant growth (D30) should not be disregarded.
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Fig. 6. Sankey flow diagram show the relative importance flow of (a) GN_D120 and 

(b) Se_F. The x-axis represents 4 time points (D30, D60, D90, and D120). The total 

height of the y-axis represents the full sample (100%).

3.5 Potential and role of developing explainable models in NPs-plant-soil system

As the interest in nano-enabled agriculture rapidly increases, it is vital to carefully 

evaluate the risks of using NPs for agriculture.73 Therefore, a thorough understanding 

of the interactions of NPs in soil-plant systems is becoming increasingly crucial, as it 

provides the basis for safe use of NPs. Employing explainable models is a feasible 

solution since they are powerful tools that provide hypotheses from a complex feature 

space and feature interactions for experimental scientists. For instance, our study 
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indicates that the effects of Se NPs on rice are time-dependent, with SP playing a 

primary role and PPA becoming increasingly important over time. As plant growth 

progress, the importance of Se NPs shifts from the underground to aboveground parts 

of the plant, ultimately affecting both yield and quality. The pathways through which 

NPs stimulate crop yield and quality are differentiated, with TOC being crucial for crop 

yield and soil Ec being crucial for quality. These findings offer valuable insights into 

the intricate interactions between nanomaterials, plants, and soil, highlighting the 

significance of the dynamic changes in soluble salt content within soil and developing 

safe design strategies for nanomaterials. However, to further our understanding of the 

effects of PPA and SP values on plant growth, it is necessary to expand the experimental 

framework of this study. For instance, it is imperative to investigate the sensitivity of 

different plant species to ecotoxicological stress in relation to the SP values of the 

respective soils. Moreover, factors influencing the temporal dynamics of SP values 

(such as natural weather oscillations and seasonal changes in soil chemistry) ought to 

be considered in the experimental setup. Additionally, the chemical properties of NPs 

play a significant role in their behavior within the soil-crop system. Factors such as 

shape, size, charge, and surface coating have a direct impact on plant uptake and 

translocation.74, 75 The dissolution of NPs is also critical, as it affects material stability, 

availability, and safety.76 While foliar application has been suggested as an effective 

and environmentally friendly method 77, it is worth noting that both foliar application 

and soil fertilization have their own advantages depending on the situation.78 Therefore, 

the NPs properties, plant properties, and the experiment conditions play a role in 

determining the interaction between NPs and plants. Hence, machine learning 

techniques like ANN can be utilized to investigate potential correlations among these 

variables and identify optimal application methods to save time and effort.79 By 

enhancing our understanding of plant-soil interactions, we can develop more informed 

management strategies for sustainable and productivity agriculture and ecosystems. 

Moreover, with the practice of data-sharing, more data will become available in the 

future, enabling improved model performance and better detection of data patterns in 

complex systems.
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4 Conclusion

This study demonstrated that Se NPs have a positive impact on the yield and quality 

of rice by regulating SP and PPA. An ANN model was developed to reveal that SP 

played a primary role, followed by PPA. Moreover, it was found that the pathways for 

yield and quality were differentiated, with D60 and D90 being identified as the 

equilibrium points for predicting rice yield and quality, respectively. The key SP values 

were identified as TOC, NH4
+, pH, Eh, and Ec; while the key PPA values were identified 

as Chl, Pn, Gs, and Fv/Fm. This study provides a new approach and perspective for 

predicting the bioavailability of Se NPs in soil-crop system, which could improve the 

ability to assess the contribution of nano-enable agriculture to food security. A 

comprehensive understanding of NPs application in soil-plant system will facilitate safe 

design solutions for nanoagriculture. Future research should expand beyond laboratory 

conditions to field studies. As more data becomes available, the performance of the 

training algorithm will improve, and ANNs will be better equipped to identify data 

patterns from more complex systems. 

Model availability 

The PMML type file used to perform our calculations are available at 

https://github.com/Jingz11/ANN_Se-NPs_Rice.
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