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Gradients of voltage, pressure, temperature, and salinity can transport objects in micro-
and nanofluidic systems by well known mechanisms. This paper explores the dynamics of
particles in a viscosity gradient with numerical simulations. The different stochastic rules
used to integrate the random motion of Brownian particles affect the steady-state distribution
of particles in a diffusivity gradient. Importantly, the simulations illuminate the important
role that the boundary conditions play, disallowing a steady-state flux when the boundary
conditions mimic those of a closed container, but allowing flux when they mimic electrodes.
These results provide a possible interpretation for a recent series of measurements in which
a steady ionic current flowed between electrodes separated by a nanofluidic channel with a
liquid viscosity gradient.

1 Introduction
In experimental work to be reported elsewhere, we stud-
ied ionic transport inside nanofluidic devices in which we
set up a controlled viscosity gradient by pumping fluids of
known viscosity past either end of a channel with no ap-
plied voltage, pressure, or salinity gradient. Currents on
the order of 10 to 100 pA flowed in the direction of lower
viscosity through the 200 µm-long and 150 µm-wide chan-
nels filled with liquids with viscosities that varied from 1 to
5 mPas. The nanofluidic devices enabled a thorough char-
acterization of the current’s dependence on experimental
parameters like the viscosities of the liquids, the length of
the channel, the surface charge density, and the bulk salin-
ity. The currents increased linearly with the gradient of
the inverse viscosity and the channel’s surface charge den-
sity but were insensitive to the bulk salinity. These findings
point to the counterions in the Debye screening layer of a
channel’s inner surface as the carriers of the ionic currents
and the viscosity gradient as the source of the counterions’
net motion. Here, we theoretically investigate whether a
steady ionic current can be explained by the Brownian mo-
tion of counterions in a viscosity gradient.

Einstein famously showed that the Brownian motion of
an object is fundamentally linked to its viscous drag in
a fluid because the same atomic-scale bumps that cause
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Brownian motion also randomize the motion of a drifting
particle and eventually bring it to rest1,2. It is not pos-
sible to know the details of the atomic scale bumps, but
one can model a Brownian motion as a string of stochastic
processes that resembles a random walk3,4. The stochastic
step size is positively related to the diffusivity, D, which is
inversely related to the viscosity, η .

The mathematician Kiyosi Itô invented a method for in-
tegrating stochastic processes5,6. He generalized the Riemann-
Stieltjes integral, whereby one divides a function into tiny
intervals and sums the area under the curve based on the
value of the function in each interval. A smooth function
can be sampled anywhere within the interval because the
possible choices all converge to the same value in the limit
of small intervals. However, a Brownian motion is not
smooth on any scale, and no matter how small the inter-
val, the integral depends on the arbitrary choice of where
within each interval one evaluates the function. Itô’s con-
vention is to evaluate the function at the beginning of each
interval5. Ruslan Stratonovich7,8, Donald Fisk9, and Peter
Hänggi10,11 later developed alternatives to Itô’s integral,
each giving a different but completely self-consistent for-
mulation of stochastic calculus. The Stratonovich (–Fisk)
integral evaluates the function in the middle of each inter-
val and preserves the chain rule of ordinary calculus, while
the Hänggi (or isothermal) integral evaluates the function
at the end of each interval.

The differences between the integration conventions are
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Fig. 1 Stochastic displacement models. Illustrations show leftward
and rightward steps of random walks corresponding to (a) the Itô,
(b) the Stratonovich rule, and (c) the isothermal rule.

physically meaningful in the case of a Brownian particle
moving in a liquid viscosity gradient because that particle’s
stochastic step size depends on the viscosity, and hence on
its location12–15. Figure 1 illustrates how the Itô, Stratonovich,
and isothermal conventions affect the stochastic step size in
the presence of a viscosity gradient. A particle will exhibit
no average drift in a viscosity gradient if it obeys Itô’s cal-
culus, since its steps will have the same size regardless of
the direction. If it evolves according to the isothermal con-
vention, it will drift toward lower viscosity as it takes larger
average steps in that direction. From another perspective,
the question of integration convention boils down to how
one should generalize Fick’s Law of diffusion for a concen-
tration ρ of particles, J =−D∇ρ(x), in cases where D varies
in space4. The Fokker-Planck generalization, which corre-
sponds to the Itô integration rule, puts the gradient opera-
tor outside the diffusivity and gives J =−∇(D(x)ρ(x)). This
results in a contribution to the flux that depends explicitly
on the diffusivity gradient, the term −ρ(x)∇D(x). The Fick
generalization, which corresponds to the isothermal inte-
gration rule, leaves the gradient operator inside the diffu-
sivity and gives J =−D(x)∇ρ(x). This results in no explicit
dependence of the flux on the diffusivity gradient.

In our nanofluidic experiments, we measured a current
of counterions flowing in the direction of decreasing vis-
cosity (i.e., increasing diffusivity). This seemed difficult
to square with the −ρ∇D flux term in the Fick generaliza-
tion (which points in the opposite direction) or the ∇D-
independent flux of the Fokker-Planck generalization. It

led one of us to initially believe he might have reversed the
leads on the ammeter, or in some other way inverted the
current. Instead, as we will show below, it is possible to
find a flux without an explicitly ∇D-dependent term in the
flux expression. The key to explaining the sustained cur-
rents we measured lies in the boundary conditions. Com-
monly, studies of inhomogeneous diffusion focus on some
closed domain which particles cannot enter or leave15–18.
Such closed boundary conditions require a flux-less steady
state13. On the other hand, periodic boundary conditions,
which better represent the ability of electrodes to absorb
and release ions at distant locations, have no such restric-
tion. Along related lines, Marchesoni showed theoretically
how the viscosity-induced drift of particles under the isother-
mal convention could be harnessed to design a Maxwell
demon that transmits information in a preferred direction
between boundaries that act as sources and sinks of par-
ticles19. Also, De Haan and Slater used simulations to
show that a viscosity gradient causes a polymer, starting
halfway inside a nanopore, to escape preferentially on the
low-viscosity side20.

2 Simulation design
We studied diffusion in a viscosity gradient with a simple
model for the motion of particles. The basis for our model
was the work of Volpe and Wehr, which uses the stochastic
differential equation21,

dxt =
√

2D(x)dWt ≡ σ(x)dWt , (1)

where dxt = xt −xt ′ is the change in position between times
t and t ′, D is the diffusivity, dWt = Wt −Wt ′ is a random
variable with mean zero and variance t − t ′. In these sim-
ulations, the continuous path of a particle is broken into
discrete steps, xn, occurring with a regular time interval ∆t.
It is convenient to use σ(x)≡

√
2D(x), which represents the

size of each random step. The discrete form of equation 1
is

∆x = xn+1 − xn = σ(x)(±
√

∆t). (2)

The random variable dWt in equation 1 has been repre-
sented in equation 2 by a discrete random variable ±

√
∆t

(where the ± represents the random choice), which has
variance ∆t. We set ∆t = 1 and used a spatial domain 100
units wide. Typically, in simulations like this one, when a
particle would pass through a boundary at x = 0 or x = 100,
it is instead reflected back into the domain21. Figure 3a
shows a diagram of a particle whose final position would
have sent it past the boundary by a distance a. Instead, the
particle is placed a distance a inside the domain. This rule
is known as a reflective boundary condition21.

For a system without a diffusivity gradient, the applica-
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Fig. 2 Simulated diffusion of 105 particles with reflective boundary
conditions and spatially-constant diffusivity. a) Five sample particle
trajectories. b) The distribution of particles after 10, 100, and 1000
time steps. Dashed lines show theoretical expectation according to
equation 3.

tion of equation 2 is uncomplicated. We simply generate a
random choice, either

√
∆t or −

√
∆t, multiply it by σ , add

the result to xn, and repeat. Figure 2a shows five sample
trajectories for particles with D = 1. Particles are just as
likely to go in either direction. The particles start tightly
clustered but spread out over time. By 1000 steps, they
look randomly distributed. The purple trajectory in Fig. 2a
shows a particle bumping against the wall at x = 100. Fig-
ure 2b shows the distributions of 105 particles with uniform
diffusivity D = 1 after 10, 100, and 1000 time steps. The
particles were released from an initially Gaussian distribu-
tion centered at x = 50 with a standard deviation 1. The
sharply peaked distribution spreads symmetrically about
x = 50, relaxing to a half-max width of about 10 after 10
time steps and 35 after 100 steps. By step 1000, the dis-
tribution was nearly flat. We compared the simulated dis-
tributions with the analytic solution for point-source free
diffusion: a Guassian function whose width increases with
time,

ρ(x, t) =
N√

4πDt
e−x2/4Dt , (3)

where N is the number of particles. Our simulation matches
equation 3 well after 10 and 100 steps, but shows an over-
abundance of particles everywhere after 1000 steps. This is
because equation 3 is a solution for diffusion in free space,
but our simulation will not let particles leave the domain.

Introducing a diffusivity gradient complicates the model
in an important way. Each particle begins a step at a po-
sition xn and ends at xn+1 so we have to choose where in
that interval to evaluate function σ(x); any location from
xn to xn+1 is equally valid. We could use the Itô convention,

evaluating the diffusivity at the beginning of the step:

xn+1 = xn ±σ(xn)
√

∆t. (4)

We could use the Stratonovich convention, evaluating the
diffusivity in the middle of the step:

xn+1 = xn ±σ

(
xn+1 + xn

2

)√
∆t. (5)

Finally, we could use the isothermal convention, evaluating
it at the end:

xn+1 = xn ±σ(xn+1)
√

∆t. (6)

The Itô convention, represented by equation 4, is the
easiest to implement in a simulation because we know the
current position of each particle and can straightforwardly
computer the value of σ(xn). Equations 5 and 6 present
an apparent catch-22. They require us to know where the
particle will land to find the step size, but, of course, we
must know the step size to compute where the particle will
land. We will show how to find xn+1 in a self-consistent
manner by first noting that equations 4, 5, and 6 can be
expressed as special cases of a more general equation in
which a continuous parameter α represents the choice of
where to evaluate σ(x),

xn+1 = xn ±σ(xn +α∆x)
√

∆t. (7)

The parameter α runs from 0 to 1, and equations 4, 5, and
6 are special cases with α = 0, 1/2, and 1 respectively. We
Taylor expand equation 7 to first order about the point xn

to find an equation for xn+1 based on xn and the gradient in
the diffusivity,

σ(xn +α∆x)≈ σ(xn)+α
dσ(x)

dx
∆x. (8)

Substituting in equation 2 gives

σ(xn +α∆x)≈ σ(xn)±ασ(xn)
dσ(xn)

dx

√
∆t (9)

and applying to equation 7 gives a way to calculate xn+1 in
terms of xn for any value of α,

xn+1 = xn +ασ(xn)
dσ(xn)

dx
δ t ±σ(xn)

√
δ t. (10)

In terms of D(x), this would be,

xn+1 = xn +α
dD(xn)

dx
δ t ±

√
2D(xn)δ t. (11)

Consider a step subject to the isothermal rule as given by
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Fig. 3 a) A particle hopping into a reflective boundary condition. b)
A particle hopping into a boundary condition designed to emulate
an electrode.

equation 7 with α = 1. The diffusive third term in equa-
tion 7 updates the position based on σ(xn), as prescribed by
the Itô convention. By adding the second term, sometimes
called the spurious or noise-induced drift, we recover the re-
sults of the isothermal convention4,21,22. In other words, a
trajectory in the isothermal convention is equivalent to one
in the Itô convention with an added drift term21,22.

3 Results of simulations with diffusivity gradients

3.1 Using reflective boundary conditions
In their paper, Volpe and Wehr studied the Itô, Stratonovich,
and isothermal integration conventions using simulations
and demonstrated how this choice affects the steady-state
particle distribution, finding a monotonically decreasing
particle density when using the Itô convention, and a flat
one when using the isothermal convention21. We set our
simulation parameters to match those of Volpe and Wehr’s,
including σ(x) = 0.2+0.02x, a formula estimated from Fig.
4 of21.Importantly, we used the same reflective boundary
condition shown in figure 3 that Volpe and Wehr did. The
simulation contains 105 particles with an initial Gaussian
distribution with mean 50 and standard deviation 1, sam-
pled at intervals up to 106 time steps, enough to reach the
steady state.

Our results closely match those of Volpe and Wehr. Fig-
ure 4a shows the distribution of particles in a simulation of
diffusion using the Itô convention. After 10 and 100 steps,
the initial distributions widened and skewed slightly to the
left. By t = 103, the tails of the distribution reached the
boundaries, and the distribution is skewed noticeably left.
It is clear the system has reached steady state by 104 steps
because no further change is visible by 105 steps. Particles
have piled up against the left boundary. After reaching the

Fig. 4 Simulated diffusion of 105 particles with reflective boundary
conditions using different integration conventions. Evolution of
the particle distribution using a) the Itô convention and b) the
isothermal convention.

steady state, we measured no significant flux across x = 50.
Likewise, Fig. 4b shows diffusion under the α = 1 or

isothermal convention. The distributions look roughly Gaus-
sian until 102 steps. After 103 steps, the distribution has
reached the boundary at x = 100, but not the one at x = 0.
By 104 steps, the system reached a steady state with a flat
distribution and no significant flux through x = 50.

The absence of flux in these cases is not a surprise. In
a closed container like the one simulated here, flux cannot
exist anywhere in steady state. This constraint, along with
spatial differences in hop length, allows us to understand
the asymmetric steady state distribution resulting from the
Itô rule in figure 4a, as well as the flat distribution resulting
from the isothermal rule in figure 4b. Figure 5a shows, for
an arbitrary test point x′, the farthest points to the left and
right from which particles are capable of hopping to or past
x′ for the Itô convention. The region on the right is always
larger than that on the left because the diffusivity increases
toward the right so hops originating from that direction are
longer. Figure 5a also shows the equilibrium particle distri-
bution, as calculated by our simulation and shown in fig-
ure 4a. The regions under the ρ curve shaded with orange
and blue and are proportional to the number of particles
that can possibly pass x’ from the left and right respectively.
Since particles jump left and right with equal probabilities
in our model, the areas of these regions are proportional
to the average number of particles that will cross x’ in each
direction in a given time step. Any difference in these ar-
eas indicates that a net flux will flow away from the larger
region. The system must reach an equilibrium where the
particle distribution always decreases toward the right in a
way that compensates for the difference in hop length and
brings the shaded areas into equality.

Figure 5b again shows the region to the left and right
of an arbitrary point x′ inside which particles are capable
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Fig. 5 Simulated equilibrium particle densities in the a) Itô conven-
tion and b) isothermal convention. Dotted lines show the farthest
positions, x+ and x−, from which particles can cross a test point,
x′, from the left and right respectively. The areas of the shaded re-
gions below the curve are proportional to the approximate number
of particles that can cross x′ from the left (orange) and the right
(blue) in one step.

of hopping past x′, but this time for the isothermal rule.
The hop lengths are based on the hop’s end position, so
the sizes of these regions are equal. In this closed system,
the flux must eventually reach zero everywhere. For the
shaded regions to be equal for every choice of x′, the equi-
librium distribution must be flat, which is what we see in
figure 4b. Equation 10 suggests another perspective from
which to view the isothermal convention of stochastic mo-
tion. As hopping with hop-length determined by the start-
ing position, with a superimposed drift proportional to the
gradient in the diffusivity.

Which stochastic integration convention gives the cor-
rect physical description of ions in a liquid? The isother-
mal convention is strongly preferred on thermodynamic
grounds: Only the isothermal convention gives a uniform
particle distribution in a closed domain at thermal equilib-
rium, so it alone respects the Boltzmann distribution13.

3.2 Using electrode boundary conditions
The reflective boundary conditions used above are a poor
model for our experiments, where electrodes at either end
of the mixing channel can absorb and release ions instead
of reflecting them. When an ion in a nanochannel arrives at
an electrode it can be absorbed and effectively re-emitted

Fig. 6 Simulated diffusion of 105 particles with electrode boundary
conditions using the isothermal convention. a) Evolution of the
particle distribution. b) Diffusivity as a function of x.

at the opposite electrode. This wraps the domain into a
circle and breaks the requirement that the flux be zero. We
studied the following boundary condition as a toy model
for electrodes: Any particle that would pass a boundary
in the simulation is counted and moved to the opposite
boundary. Figure 3b illustrates a particle that would hop
past the boundary instead being placed inside the domain
at the opposite boundary.

Figure 6a shows the evolution of the simulated particles
distribution using the isothermal convention. This simula-
tion was the same as the one in figure 4b, but with the
electrode boundary conditions described above. Figure 6b
shows the diffusivity function used in the simulation. By
step 104, the system reached the steady state. This time,
the distribution is not flat. The concentration is highest on
the left and decreases monotonically to the right.

Figure 7a illustrates the regions in which particles can
reach or pass x’ in one step, along with the distribution
of particles found in the isothermal experiment with elec-
trode boundary conditions. The left shaded region under
the curve is larger than the right shaded region, meaning
that we expect net right-ward flux. In the steady state, this
flux must be constant for every choice of x′, including at
the boundaries. This constraint determines the magnitude
of the flux. Figure 7b shows the regions inside which par-
ticles can reach the boundaries at L = 0 and L = 100. The
difference in the areas of these regions represents the flux
through the boundary, which must be equal to the flux ev-
erywhere else in the steady state.

4 Comparison with experiment
Our simulations show the effects of the integration con-
vention and boundary conditions, but how do they com-
pare to our experiments? We performed simulations to
qualitatively match our experiments. In those experiments,
we varied the viscosity on both sides of our nanochannel,
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Fig. 7 Simulated equilibrium particle density in the isothermal
convention with electrode boundary conditions. a) Dotted lines
show farthest positions from which particles can reach or cross a
test point, x′, from the left and right. The areas of the shaded
regions are proportional to the number of particles that can reach
or cross x′ from the left (orange) or right (blue) in one step. b)
Dotted lines show the farthest positions from which particles can
reach or cross the boundaries at L = 0 and L = 100. Area of the
shaded regions is proportional the number of particles with a chance
to hit the boundary at x = 0 (orange) or x = 100 (blue) in one step.

Fig. 8 a) The evolution of an initially flat particle distribution
with the isothermal rule and electrode boundary conditions. b)
The fractional absolute difference in flux at the center and at the
boundaries for simulations with domain sizes of 100 and 200.

the length of our nanochannel, the pH of the solution, and
the bulk salt concentration. In the simulations that follow,
we tried to match the features of our experiments more
closely; for example, accounting for a channel length L
that could vary from 50 to 200 in units of micrometers.
We only used the isothermal integration rule and electrode
boundary conditions. In the simulations discussed above,
we used linear functions for σ(x) to match the conditions
used by Volpe and Wehr21. In the simulations reported be-
low, we used a linear diffusivity gradient to describe the in-
side of the nanochannel, where two different liquids would
intermix. We also used a flat initial particle distribution to
hasten the arrival at the steady state.

The result, we noticed, was that the simulator would
initially register flux at the boundaries, but no flux at the
center. After a relatively long delay, the flux at the center
would catch up. Figure 8a shows the evolution of a flat
particle distribution toward the steady state. The initially
flat distribution at the midpoint of the channel explains the
lack of flux there. The gradient in ρ(x) seems to build in
from the boundaries. Figure 8b shows the absolute differ-
ence between the center and boundary fluxes (as a fraction
of the boundary flux) for a range of times as the system ap-
proaches the steady state. Two different simulations, with
domain sizes of 100 and 200, are compared. Initially, the
fractional flux difference is 1, because all of the flux is at
the boundary. At about step 2000 for the L= 100 simulation
and step 10000 for the L = 200 simulation, that difference
starts to drop. Eventually, the difference becomes negli-
gible as the fluxes converge to the same number and the
system enters the steady state. We used analysis like this
to guide the lengths of our simulations.

To compare with our viscosity-varying experiments, we
performed simulations with a variety of diffusivity profiles.
We simulated 105 particles according to the isothermal rule
for 2× 105 times steps, counting flux for the last 5× 104

steps. After the system reached equilibrium, we started
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Fig. 9 Flux in simulations with several diffusivity ratios using the
isothermal rule and electrode boundary conditions. a) Dependence
of flux on D(x = L)−1. b) Diffusivity profiles, color coded to match
points in (a).

Fig. 10 Flux in simulations with several domain lengths using the
isothermal rule and electrode boundary conditions. a) Dependence
of flux on L. b) Diffusivity profiles, color coded to match points in
(a).

counting the flux at the boundaries and at x = L/2.
Figure 9a shows the simulated flux as a function of the

inverse diffusivity at x = L with the viscosity at x = 0 fixed
at η(x = 0) = 10. Figure 9b shows the diffusivity profiles
used for each data point. We have used inverse diffusivity
as the independent variable here to represent viscosity and
make the plot easier to compare with our experimental ob-
servations. The agreement is clear: ions flow toward lower
viscosity. We also note that the curve flattens out at higher
values of D−1.

Figure 10a shows the simulated flux as a function of the
simulation domain size. The particle number density, N/L,
and diffusivities at the boundaries, D(x = 0) and D(x = L),
were kept constant. Figure 10b shows the diffusivity gradi-
ents used, where the color corresponds to the color of the
data points in figure 10a. As the domain gets longer, the
gradient decreases and so does the drift speed. The dot-
ted line in figure 10a shows the expected flux dependence,
1/L. This matches the linear dependence of the current on
the viscosity gradient observed experimentally.

5 Conclusions
Simulations have illuminated the mechanisms of diffusive
ion transport in a gradient of liquid viscosity. The boundary

conditions turn out to be essential. The reflective bound-
ary conditions that simulate a closed container make it im-
possible for a steady-state flux to exist. However, bound-
ary conditions which represent the ability of electrodes to
absorb and release ions allow a steady-state flux. Using
the isothermal convention and electrode boundary condi-
tions, particles exhibit a noise-induced drift in the direction
of lower viscosity that produces a flux, and this flux has
the important features of ionic currents measured in our
nanochannels. Finally, we note that a viscosity-driven cur-
rent of counterions does not violate any thermodynamic
principle. We experimentally maintain the viscosity gra-
dient in our nanochannels by replenishing the liquids at
either end of the nanochannel, and this holds out of equi-
librium. As the liquids intermix, the free energy of mixing
is available to drive a steady current.
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