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Molecular simulations inform biomass dissolution in ionic liquids 
in pursuit of benign solvent-system design
Preston Griffina and Jakub Kostal*a 

When we look for a poster child of green chemistry ‘in action’, we do not need to look further than the deconstruction of 
lignocellulose using ionic liquids (IL) to valorize this renewable resource into useful chemicals. However, there is a caveat: 
successful development of new chemistries cannot be achieved without systems-based design tools that consider 
performance in conjunction with potential toxicity. Here, we show that a combination of computational approaches, based 
on quantum mechanics (QM) calculations and Monte Carlo (MC) simulations, can be leveraged to construct a useful 
framework for screening existing and designing new ILs capable of safe and selective dissolution of lignocellulosic biomass. 
With the overwhelming number of IL cation-anion combinations, in silico methods are uniquely suited for this challenge so 
long as they retain mechanistic relevance to the underlying processes. Our computational approach ensures this criterion 
by relying on well-correlated linear models of interaction energetics between IL and key biomass building blocks. Functional 
considerations are supplemented with frontier molecular orbital calculations to determine safety toward aquatic species 
based on previously established and broadly validated guidelines.

Introduction 
Climate change is primarily linked to the increased use of 

fossil fuels. In 1900, with a population of 1.7 billion, the world 
employed 5,973 terawatt-hours (TWh) of fossil fuels.1,2 By 2019, 
with an increased population of 7.8 billion, fossil fuel usage 
skyrocketed to 136,000 TWh from coal (32%), oil (39%) and gas 
(32%).1,2 In the United States, fossil fuels make up over 80% of 
the fuel composition and are the primary chemical feedstock 
that contributes to climate change.1,2 A decreased dependence 
on petrochemical feedstock could come from effective 
utilization of biomass; lignocellulosic biomass is particularly 
attractive, as it is the most abundant and available biomass on 
Earth.3 While cellulose and hemicellulose have found numerous 
industrial applications, lignin usage has been almost negligible 
by comparison,4–8 owing to its more variable and complex 
structure. In 2004, the pulp and paper industry alone generated 
50 million tons of lignin, with only 2%-3% used in further 
applications.9 While lignin may be difficult to utilize, it has 
considerable economic potential. The Pacific Northwest 
National Laboratory, in collaboration with the National 
Renewable Energy Laboratory, reported that successful 
implementation of lignin conversion technologies to produce 
value-added chemicals could enhance current lignin revenue by 
more than $11 billion.10 

Lignin is a heterogenous polyaromatic polymer, primarily 
consisting of paracoumaryl alcohol, coniferyl alcohol and 

sinapyl alcohol.3,11 These alcohols are linked through carbon-
carbon or ether bonds, with the three most common linkages 
being the β-1 linkage (ca. 6%–10%), 5–5′ linkage (ca. 10%–25%), 
and β-O-4 linkage (ca. 30%–80%).3,4,11,12 Other linkages such as 
β-5, β-β, 4-O-5, and dibenzodioxocin may be present in 
significant percentages, as composition can vary widely 
depending on the biomass source.4,13–15  This variability poses 
challenges in designing efficient systems for biomass 
deconstruction.4,9 In biomass valorization, dissolution is the first 
key step, where noncovalent interactions between polymer 
chains are broken. Here, ionic liquids (ILs) offer many 
advantages over traditional solvents including tunability to 
optimize performance and a potentially lower risk to human 
and environmental health, in part due to their low volatility.16 

In designing new ILs that can dissolve biomass safely and 
efficiently, we must understand the mode of function (i.e., 
performance) and the mode of action, MOA (i.e., toxicity). 
Considering the former, lignin and cellulose dissolution follow 
similar trends. The IL anion is the driving force for separating 
polymer strands, where hydrogen bonds with lignin/cellulose 
replace intermolecular interactions within the polymer, yielding 
an entropically as well as enthalpically more favorable 
state.4,7,17–23 The cation has been postulated to have a greater 
effect in lignin than in cellulose dissolution owing to π-π 
interactions.18,19,21,22,24 The strength of IL-lignin interactions was 
estimated by Janesko and Zhang et al in computational studies 
using density function theory (DFT) calculations.18,21 While DFT 
helped establish key mechanistic considerations in lignin 
dissolution, other principle- (as well as data-driven) approaches 
have been developed to either further our understanding of the 
deconstruction process or to help predict outcomes for new 
systems. These techniques, adapted for modeling IL 
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thermodynamics, span perturbed-chain statistical associating 
fluid theory (PC-SAFT),25 group contribution methods,26 
quantitative structure–property relationships (QSPRs),27 MC 
and MD simulations,28, 29 COnductor-like Screening MOdel for 
Real Solvents (COSMO-RS),30 as well as modern statistical tools 
based on machine learning (ML).31 However, none provide a 
broadly predictive framework of both IL performance and 
safety that can aid in the rational design of novel and selective 
ILs.16,32

In considering safety, while many ILs are environmentally 
benign, some have been shown to be toxic, persistent and 
bioaccumulative. The sheer number of cation-anion 
combinations and the diversity of their chemical structures 
make broad safety statements about this chemical class 
impossible and (economically and ethically costly) animal 
testing impractical. Just as mechanistic understanding is key in 
design strategies for biomass dissolution, it is essential in 
designing environmentally benign ILs. For this chemical class, 
narcosis, i.e., interactions (usually of the cation) with cellular 
membranes, is the most common MOA. To that end, past 
studies showed that reducing hydrophobicity of alkyl chains was 
key to lowering IL toxicity.33-37 In exploring this structure-activity 
relationship, Coleman and Gathergood proposed that adding 
polar functional groups, especially protic moieties, to alkyl side 
chains significantly decreases the likelihood of IL toxicity.34 
Despite the cation’s primary role in narcosis, Cho et al and 
Santos et al showed that some anions, such as fluorinated ones, 
drive toxicity in imidazolium and cholinium-based ILs, which are 
generally regarded as safe.35,37 Critically, a cation, which is 
known to be nontoxic in one compound, combined with an 
anion that is nontoxic in another compound, can still yield a 
toxic IL. Thus, it is important to analyze ILs as pairs, rather than 
individual ions, as shown in our previous work.16

Here we extend our previous efforts in designing ILs for 
cellulose dissolution to lignin in an attempt to propose an 
integrated computational framework for safe (and selective) 
biomass processing. Our approach considers both efficacy and 
safety of ILs, the latter via application of previously-validated 
guidelines for chemicals with minimal ecotoxicity.32 
Perturbations to the health of aquatic ecosystems, such as 
microorganisms, invertebrates, plants and fish, are often the 
first marker of chemical’s broader risk to humans and the 
environment.33–37 Additionally, acute aquatic toxicity 
encompasses a wide range of MOAs and can inform chronic 
effects using adjustment factors.38–42 

Considering performance, our approach for lignin 
dissolution is based on Kraft lignin, which represents ca. 85% of 
the total lignin produced. Kraft lignin is one of the most 
recalcitrant lignin types due to acid treatment in the pulp paper 
manufacture. The abundance of Kraft lignin also alleviates some 
of the underlying structural-variability concerns. The aim was to 
create practical and quantitative guidelines that would inform 
design of new ILs at the ‘drawing-board’ stage of new product 
development, i.e., when screening structures of potential 
candidates. Such approach is common in the drug discovery, for 
example, where initial in-silico screening reduces the cost and 
complexity of downstream analysis, which may include more 

comprehensive experimental testing. Thus, it is important to 
view the present analysis as part of a larger protocol versus a 
standalone tool for IL development.

Methods
Dataset

Data used to develop our model was compiled from four 
experimental studies, which measured solubility in a total of 37 
structurally diverse ILs (Figure 1).7,43–45 These studies were 
selected based in (i) measurements of Kraft lignin, (ii) well-
documented protocols of the solubility measurements, (iii) 
reliability of the experimental protocol based on recognized 
best practices for solubility measurements, and (iv) cation-
anion diversity. Despite best efforts, we note the well-
documented challenges with data variability, reproducibility 
and uncertainty related to biomass solubility measurements.39 
A full list of ILs with corresponding experimental and predicted 
metrics is provided in Table S1. The largest training subset by 
Liu et al43 consisted of 18 unique IL pairs based on cholinium 
cations and amino-acid anions (Table S1), which are particularly 
intriguing owing to their proposed low ecotoxicity16 and 
abundance of experimental solubility data for lignin, 
hemicellulose, and cellulose. The latter was leveraged here to 
gauge selectivity of ILs in lignin vs. cellulose dissolution, based 
on information mined from additional reports.47-50 For modeling 
purposes, solubility units were converted to g/kg (used by 
majority of existing studies). 

Figure 1. Basic structures of representative IL cations and anions used in this study. The 
complete list of ILs is available in Table S1.

Model description

In this study, we expanded on the tiered methodology 
developed and reported to facilitate IL design for cellulose 
dissolution.16 In our previous work, the first tier focused on 
hybrid quantum mechanics/molecular mechanics (QM/MM) 
calculations, used in conjunction with Monte Carlo simulations 
to assess energetics of noncovalent interactions between 
cellulose (treated as the solvent) and IL pairs (treated as the 
solute to take advantage of QM description). For lignin, our 
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approach was analogous in the partitioning of the system into 
solute and solvent, with subsequent evaluation of interface 
energetics. However, it reflected additional complexity of the 
polyphenol structure of lignin and the resulting diversity of 
intermolecular interactions. 

A density-functional model developed by Janesko was the 
first to characterize both IL-cellulose and IL-lignin interactions in 
silico.21 Their study identified π-stacking and hydrogen bonding 
interactions with imidazolium-based ILs as important enthalpic 
drivers of lignin dissolution. More recently, Zhang et al. drew 
similar conclusions, albeit from a larger model based around the 
β-O-4 linkage, commonly found in lignin.18,21 In developing our 
models, we drew on these computational studies as well as 
reports by Crestini et al. and Lancefield et al.,51,52 which 
examined the molecular structure and formation of Kraft lignin, 
showing high abundance of β-O-4, stilbenes and 
secoisolariciresinols interunit bonds. From these three 
substructures, the β-O-4 linkages are the most prevalent (ca. 
45-85% by total mass). Given that observed interactions 
between lignin and IL are affected by different methoxy and 
hydroxy substituents on lignin aromatic rings, 4 different 
models were explored here (Figure 2). Our structures 
incorporate the β-O-4 linkage, used in combinatorial base-
alcohol adaptations of the Zhang computational model, or the 
guaiacyl glycerol-β-guaiacyl ether (GG). 4,18,21 Due to lack of 
functionalization, stilbenes in Kraft lignin are not expected to 
play a significant role in dissolution. As for secoisolariciresinols, 
moieties key in π-stacking and hydrogen bonding are already 
well-represented by the GG-derived models in Figure 2. It 
should be noted, however, that byproducts such as acylglycerol 
(AG) or enol ether (EE) have been observed in lignin and were 
not explicitly considered in this study to prevent model 
overfitting.51, 52

1

2

3

4

Figure 2. Four computational models used to represent differential functionalization on 
guaiacyl glycerol-β-guaiacyl ether (GG) in Kraft lignin. 

Technical approach

It is reasonable to propose that both types of interactions, 
π-stacking and hydrogen bonding, observed by Zhang et al and 
Janesko,18,21 are key to lignin dissolution, and are well-captured 

by our QM/MM/MC approach. Analogous simulations have 
been successfully used to characterize cellulose solubility in 
ILs,16 as well as quantify often complex molecular interactions 
in other applications, such as computational drug discovery.53 
Thus, exploring the subtle variations in the phenol substitutions 
statistically to fit predicted dissolution metrics was considered 
an effective way to optimize our computational model’s 
performance. This strategy of performance being ‘tuned’ not by 
changing descriptors (i.e., how we model IL-biomass 
interactions) but by optimizing the composition of the biomass 
components was not previously explored, and rests on the 
robustness and explicitness of the theoretical approach. To that 
end, our method, aside of its predictive value, can be potentially 
valuable in informing the relative functionalization of biomass’ 
building blocks in one source vs. another. 

Analogous to our previous study on cellulose dissolution, 
prior to QM/MM/MC simulations, the geometry of each IL pair 
was optimized using PM7-SMD based on general IL dielectric.54–

56 During subsequent simulations, translational and rotational 
degrees of freedom of individual cations and anions were 
sampled, constrained at a fixed distance apart (reflecting 
ground-state geometry from PM7-SMD energy minimizations) 
to prevent dissociation, which is known to occur in highly dilute 
solutions.57 Each of the 4 models outlined in Figure 2 was 
described using the all-atom OPLS force field. The CM3 charges, 
scaled by a factor of 1.14 in Coulombic terms, were used to 
assess lignin-IL interactions.58,59 Simulations were based on an 
NVT-NPT ensemble at 1 atm and temperature equal to the 
reported experimental temperature (Table S1), and used 10-Å 
cutoffs for nonbonded interactions. Solute-solvent systems 
consisted of the IL treated as a solute in a periodic solvent box 
of 267 lignin molecules (ca. 35 x 35 x 35 Å in size) built with the 
BOSS 4.9 software.59 For each IL-lignin model, a short NVT 
simulation of 5 × 105 sample configurations was used to quickly 
equilibrate the lignin ‘solvent’, followed by an NPT simulation of 
2 × 106 configurations for full-system equilibration and 5 × 106 
configurations of averaging to compute relevant properties and 
system energetics.

Ecotoxicity model

To assess aquatic toxicity of ILs, we relied on a previously 
developed and validated approach,16,32 which captures both 
acute and chronic effects across all relevant MOAs (modes of 
action) in standard test species (i.e., fish, crustaceans, and 
algae). Briefly, energies of frontier molecular orbitals (FMOs) 
were used to derive the band gap (a measure of general acid-
base reactivity), which was applied along with the octanol-
water partition coefficient, log Po/w (a measure of 
bioavailability) to gauge whether the current ILs were 
associated with low probability of hazard to aquatic species, 
according to a protocol reported in Griffin et al.16 Log Po/w was 
estimated in linear response calculations from aqueous  
QM/MM/MC according to a previously published protocol.16,59

Statistical model
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The Python programming language was used to build 
multivariate linear models (MLR). In these models, computed 
interaction energetics between lignin components and ILs 
based on the Coulomb and Lennard-Jones (LJ) potentials were 
fitted to the reported solubility metrics. Models were generated 
using an ordinary least squares regression, fitting a linear model 
with coefficients optimized to minimize the residual sum of 
squares between target values in the data set (i.e., solubility) 
and predicted target values (solubility informed from 
Coulomb/LJ energies). Individual MLRs were then combined 
into a single model for lignin solubility in ILs, and coefficients 
were re-optimized to maximize fit across all four datasets.  The 
logic behind harmonizing the sensitivity of the response was to 
minimize training-set bias, given that the effect of interaction 
energetics on solubility should be comparable across studies. 
This is especially pertinent for small datasets (i.e., Glas et al and 
Rashid et al),7,44 and because the composite MLRs cannot be 
validated. To that end, the current models are predictive of 
lignin solubility within the confines of the present data sources, 
establishing mechanistically defensible quantitative 
relationships, which can be easily augmented and replicated 
across other studies. Thus, to offer a practical answer the 
question “What is the predicted solubility of lignin in a new IL 
using this approach?”, one can either select the most 
appropriate model from the current datasets (i.e., based on IL 
type and lignin source); compute the mean using all four 
datasets; or develop their own study-specific MLR following our 
protocol that ‘plugs into’ the composite model here.     

Results and Discussion
Lignin dissolution model

Prior to developing MLRs, we investigated univariate 
correlations between computed IL-lignin energetics (for both 
Coulomb and LJ interactions) and observed solubility. We noted 
a broad distribution of R2 values across our 4 different models 
and experimental studies (Figure 3, model correlations per 
study in Figure S1).  

Coulomb

Lennard-
Jones

Coefficient of determination, R2

Figure 3.  Distribution of R2 values for univariate correlations between predicted 
energetics and solubility, across all 4 models and experimental datasets (viz. Methods). 
Average R2 value is slightly higher for models correlating Coulomb interactions (0.44) 
than Lennard-Jones, LJ (0.36). The white dot inside each violin plot represents the 
median R2 value, and the grey bar represents the interquartile range (i.e., middle 50%).

From Figure 3, Coulomb energetics correlated marginally 
better with solubility than LJ interactions, with a higher median 
and interquartile range of R2 values. This finding is consistent 
with Coulomb forces being reflective of the largely electrostatic 
π-stacking and hydrogen bonding interactions in lignin 
dissolution. While we noted some differences in the 
experimental protocol across the 4 studies, it is more practical 
to posit that lignin source and different ILs used in each study 
are reflective of the distributions observed in Figure 3. To that 
end, it was necessary to develop MLR models that would 
capture variability of lignin composition, while accounting for 
different types of interactions dominating different solvent 
systems, i.e., electrostatic as well as van der Waals interactions, 
the latter being important for ILs with larger hydrophobic 
regions.

The resultant MLR is a composite model that captures 
variability in lignin across experiments, utilizing computed 
Coulomb and LJ energetics of the four computational structures 
(Figure 2, breakdown by study provided in Figure S2). As noted 
in Methods, representative model structures are weighted 
within each experimental subset to optimize the fit between 
computed energetics of IL-lignin interactions and observed 
solubility. This approach allowed us to develop separate MLR 
for each study (i.e., lignin) type (Figure S2), which were then 
combined into a composite linear model for either Coulomb 
(Figure 4, top) or LJ interactions (Figure 4, bottom).  

Figure 4. Linear correlations between the predicted solubility values from the Coulomb 
model (TOP) y = 0.91x + 19.2711, R2 = 0.91, SE = 58.19, p-value = 4.88x10-21, RMSE = 56.7; 
Liu et al (Sol = 0.95Ca – 0.41Cb + 0.66Cc – 0.16Cd), Pu et al (Sol = 2.40 Ca + 3.4Cb – 5.93Cc 
+ 0.48Cd),  Glas et al (Sol = 0.97Ca – 7.07Cb + 0.51Cc + 12.73Cd), Rashid et al (Sol= -3.13Ca 
+ 3.63Cb +3.31Cc -12.87Cd). The LJ model (BOTTOM) y = 0.84x + 32.55, R2 = 0.84, SE = 
27.5, p-value =1.068x10-16, RMSE = 54.68; Liu et al (Sol = 0Ca + 0.37Cb + 2.37Cc – 0.58Cd), 
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Pu et al (Sol = -6.46Ca – 19.68Cb +10.18Cc + 9.53Cd), Glas et al (Sol = -5.31Ca + 51.0Cb 
+6.36Cc – 49.59Cd), Rashid et al (Sol = 14.37Ca – 10.61Cb – 2.07Cc – 0.03Cd). Ca = Lignin 
Model 1, Cb = Lignin Model 2, Cc = Lignin Model 3, Cd = Lignin Model 4 (Figure 2, top to 
bottom); Liu et al = blue dots, Pu et al = orange dots, Glas et al = green dots, Rashid et al 
= red dots.

From Figure 4, both composite MLRs are reasonably well 
correlated: Coulomb (R2 = 0.91) and LJ (R2 = 0.84). A K-fold 
internal validation showed consistency between predictive 
power and robustness of the initial fit, with average q2 of 0.88 
(Coulomb) and 0.83 (LJ) for K = 40 and 0.87 (Coulomb) and 0.80 
(LJ) for K = 10. To further ensure the model is not derived due 
to chance, a 10-fold Y-randomization was performed, yielding 
an average correlation coefficient of 0.283, and the highest of 
0.475. The applicability domain (AD) of the two compositive 
MLRs was evaluated using the leverage approach,60 
constructing a Williams plot of standardized residuals vs. 
leverage values (Figures S3). From Figure S3, all compounds in 
the dataset are within the AD of the Coulomb and LJ MLRs, 
without undue structural influence on the models. The highest 
leverage values observed were 0.24 and 0.27 for the Coulomb 
and LJ models, respectively, which are below the 0.35 threshold 
value for the two models.60 It is notable that the compounds 
with highest leverage also have low standard residual values, 
and so are important for the model fit but are not outliers.

From Figure 4, the high RMSE (above 50 g/kg for both 
Coulomb and LJ models) can be interpreted through the lens of 
fitting high-resolution energy information onto low-resolution 
solubility data, which is exacerbated by the composite MLR 
optimization. Additionally, computational-model limitations 
may be a contributing factor to the large residuals. Aside of 
omitting acylglycerol (AG) or enol ether (EE) byproducts, the 
current model does not account for differences in IL viscosity as 
ILs are modelled quantum mechanically as individual solutes in 
the biomass ‘solvent’. The LJ (van der Waals) MLR is particularly 
susceptible to this, as can be observed from the relatively poor 
correlations with dissolution metrics in the dataset by Pu et al 
(Figure 4, orange dots), which features large temperature 
variations. For example, lignin solubility in both [Hmim][CF3SO3] 
and [Mmim][MeSO4] is erroneously predicted to decrease with 
increasing temperature in the LJ MLR (Table S1). In contrast, the 
Coulomb MLR is less affected due to the relatively greater 
strength of these interactions for most ILs. The greater general 
robustness of this model is also supported by our understanding 
of role that short-range electrostatics play in the lignin 
dissolution process. Lastly, the Coulomb MLR is sensible from a 
modelling standpoint, as LJ parameters need to be developed 
for new solvents, whereas atomic charges, which drive Coulomb 
interactions, can be computed on the fly using QM. ILs with 
larger hydrophobic regions, where van der Waals interactions 
play an important role, may be an exception, as supported by 
the slightly better fitted LJ model for the Glas et al dataset, 
which contains some of the largest and most polarizable ILs in 
the present study (green dots in Figure 4).

Integrating cellulose and lignin models

Our previously developed models for cellulose dissolution in 
ILs16 and our current MLRs for lignin indicate that whereas van 
der Waals interactions appear to better differentiate the 
former, the latter is more robustly predicted by Coulomb 
energetics. To that end, a partition coefficient can be expressed, 
log PL/C (Equation 1), which denotes the relative solubility of 
lignin vs cellulose in any particular IL at a given temperature:

   (1)𝑙𝑜𝑔 𝑃𝐿
𝐶 = 𝑙𝑜𝑔( [𝐿𝑖𝑔𝑛𝑖𝑛]

[𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒])𝐼𝐿 ― T

Log PL/C allows us to identify ILs that are selective for either 
biomass component, which is valuable for the design of new 
solvent systems. Here, predictive models are critical in filling 
experimental data gaps, as measured values in the literature are 
typically available for either lignin or cellulose but not always 
for both.17,46  Furthermore, due to the variability and low 
resolution of these measurements in chemico,46 one might 
prefer to adopt an in-silico model validated for the specific lignin 
source vs. relying on external studies. Table S1 shows how 
calculated solubility values can be used to supplement 
literature values to derive log PL/C metrics. 

From Table S1, general trends in log PL/C confirm existing 
knowledge: imidazolium based ILs paired with an anion capable 
of hydrogen bonding either favor cellulose or are near-
equivocal in their partition coefficients (viz. the dataset by Pu et 
al). Conversely, high log PL/C values were observed for cholinium 
and pyridinium ILs, where the former can favorably interact 
with alcohols in lignin (viz. guaiacyl glycerol-β-guaiacyl ether 
models in Figure 2), and the latter can form  interactions 
with lignin’s aromatic base alcohols. The lowest preference for 
lignin among cholinium ILs was noted for glutamate and 
aspartate, which are both small and capable of strong hydrogen 
bonding. Interestingly, the two highest log PL/ values 
correspond to the [BMPyr] (i.e., 1-butyl-1-methylpyrrolidinium) 
cation, which is likely too large to effectively dissolve cellulose. 

We should note that the current exploration does not 
comprehensively capture log PL/C‘s dependence on 
temperature, though a general trend of increasing relative 
preference for lignin over cellulose with increasing temperature 
can be observed (Table S1). For example, [Bmim][MeSO4] 
appears to switch preference in dissolving cellulose at 25 °C to 
favoring lignin at 50 °C, though the difference is small.  Similarly, 
[Hmim][CF3SO3] prefers cellulose at 50 °C and is near equivocal 
at 70 °C. Both [Mmim][MeSO4] and [Py][Ac] favor lignin but the 
relative preference for lignin over cellulose dissolution 
increases with higher temperate. It is reasonable to postulate 
that the more disordered state of lignin facilitates the phase 
change at higher temperatures, increasing the thermodynamic 
driving force regardless of the IL.  

Design guidelines for (selective) biomass dissolution

Our previous work showed a strong correlation between LJ 
interactions and cellulose dissolution, as well strong 
correlations between certain physiochemical properties 
(polarizability and aqueous solubility) of ILs and computed IL-
cellulose LJ energetics, which allowed us to link design-ready 
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properties with solubility. It is well known that hydrogen 
bonding and the size of the IL play an important role in both 
lignin and cellulose dissolution mechanisms,61–67 where notably 
large cations (e.g., tBMA, BA, DDA, TBA, etc.) are unable to 
dissolve cellulose, regardless of the anion present. However, 
size as a measure of polarizability can also increase 
solubility.16,67  What is assumed in most theoretical studies is 
that the composition and structure remain constant, which is 
not the case for lignin. As such, physiochemical properties 
observed in one study might be less valuable depending on the 
difference in lignin and/or ILs used. To that end, we observed 
no meaningful correlations between physicochemical 
properties and log PL/C (and none that would correlate to lignin 
dissolution metrics) here. While the apparent lack of (atomistic) 
structure-property relationships upsets facile design of new 
solvents through rational modifications of existing systems,68 it 
highlights the complexity of the lignin-dissolution process and 
the need for molecular interaction-based models, such as the 
source-specific MLRs developed here. Furthermore, we 
envision that future studies, relying on the current linear 
models, can target the development of useful QSPRs to aid in 
rational design, by quantifying the substituent effect (around 
common IL cores) on computed Coulomb and LJ energetics and, 
by extension, on the solubility of lignin in ILs.  

To incorporate a criterion of safety into our models for 
biomass dissolution, we applied the previously developed 
cutoffs for minimal ecotoxicity, which posit that ILs with log Po/w 
< 3 and the band gap, -LUMO > 6 are likely safe toward 
aquatic species (Table S1).16 The log Po/w criterion, a proxy for 
general bioavailability, is especially useful here, since ILs with 
low lipophilicity are unlikely to passively diffuse through 
membranes, and so their acid-base reactivity (EHOMO-LUMO) is of 
lesser concern. From Table S1, consistent with toxicological 
studies, cholinium/amino-acid based ILs fall into this category. 
Conversely, aromatic (i.e., imidazolium and pyridinium) ILs 
showed greater likelihood of ecotoxicity based on either lower 
HOMO-LUMO gaps or higher log Po/w. Substituents on the 
aromatic rings do matter, and the larger the alkyl groups, the 
greater the likelihood of toxicity due to higher log Po/w (e.g., 
[Mmim] vs. [Bmim] methylsulfate in Table S1). While the 
present cutoffs were derived and validated for a binary 
outcome (i.e., safer chemical space vs. ‘the rest’), our previous 
work using the US EPA’s categories of concern indicates that 
increase in hazard probability with respect to log Po/w/EHOMO-

LUMO  is incremental, and so relative changes in either metric are 
informative in designing safer chemicals.32 For aforementioned 
reasons, this is particularly true for log Po/w, where compounds 
with low values (i.e., readily water soluble) and low EHOMO-LUMO 
(i.e., reactive) are of lesser concern than those with both higher 
EHOMO-LUMO and log Po/w, which may be less reactive but 
possibly activated to electrophilic toxicants via metabolic 
transformations upon absorption.32

Conclusions
The design of high-performing chemicals with minimal 

toxicity remains a formidable challenge, yet it is a vital 

component of systems-based solutions in green chemistry.  
Point in case, while deconstruction of biomass using ILs is a 
green chemistry ‘success story’, showcasing the use of non-
volatile solvents and renewable materials as chemical 
feedstocks, progress is hindered unless we understand 
mechanistic drivers of toxicity and performance that can inform 
design of tomorrow’s systems. Here and in our previous work,16 
we showed that by approaching biomass dissolution 
computationally, via both explicit modeling of molecular 
interactions and physicochemical property calculations, we can 
elucidate these drivers, and develop useful design tools. One 
caveat worth repeating is that no in silico model should be held 
to a higher standard than the quality of its underlying data, and 
in the case of biomass dissolution, available data is of variable 
quality with low resolution and dubious reproducibility. To that 
end, principle-driven models relying on modeling of 
mechanistically-relevant molecular interactions may have the 
upper hand over data-driven models, which require large (i.e., 
less curated) datasets and thus are more likely to optimize 
performance by including artifacts of data variability and 
uncertainty in model training.
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