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Decoding Silent Speech Commands from Articulatory Movements 
Through Soft Magnetic Skin and Machine Learning 

Penghao Dong, a Yizong Li, a Si Chen, a Justin T. Grafstein, a Irfaan Khan b and Shanshan Yao*a

Silent speech interfaces have been pursued to restore spoken 
communication for individuals with voice disorders and to facilitate 
intuitive communications when acoustic-based speech 
communication is unreliable, inappropriate, or undesired. 
However, the current methodology for silent speech faces several 
challenges, including bulkiness, obtrusiveness, low accuracy, 
limited portability, and susceptibility to interferences. In this work, 
we present a wireless, unobtrusive, and robust silent speech 
interface for tracking and decoding speech-relevant movements of 
the temporomandibular joint. Our solution employs a single soft 
magnetic skin placed behind the ear for wireless and socially 
acceptable silent speech recognition. The developed system 
alleviates several concerns associated with existing interfaces 
based on face-worn sensors, including a large number of sensors, 
highly visible interfaces on the face, and obtrusive interconnections 
between sensors and data acquisition components. With machine 
learning-based signal processing techniques, good speech 
recognition accuracy is achieved (93.2% accuracy for phonemes, 
and 87.3% for a list of words from the same viseme groups). 
Moreover, the reported silent speech interface demonstrates 
robustness against noises from both ambient environments and 
users’ daily motions. Finally, its potential in assistive technology 
and human-machine interactions is illustrated through two 
demonstrations – a silent speech enabled smartphone assistant 
and drone control.

1. Introduction
Spoken communication, being one of the most intuitive means of 
communication, plays a vital role in conveying information among 
humans and human-machine interactions (HMI). However, it is 

susceptible to physiological constraints and environmental 
interferences. 1 Physiologically, speech generation involves multiple 
organs such as the lungs, larynx, tongues, lips, teeth, jaws, and ears, 
which are responsible for phonation, articulations, resonance, and 
auditory perceptions, respectively. 2, 3 Any disruption to these organs 
can impact speech or hearing abilities and potentially lead to voice 
disorders or hearing impairments4, thus diminishing communication 
efficiency in both human-human and human-machine scenarios. On 
the other hand, environmental factors such as noisy surroundings 
(e.g., acoustically harsh workplaces, crowded gatherings, or 
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New concept
In this study, we introduce a ground-breaking concept in the 
field of silent speech interfaces. Central to our concept is the 
utilization of a single soft magnetic skin discreetly positioned 
in the ramus-temporal junction area, which enables socially 
acceptable silent speech recognition through precise decoding 
of articulatory movements. The fabricated magnetic skin 
exhibits conformability to the human skin while providing a 
robust magnetic signal strength. Consequently, it achieves 
great sensitivity to even subtle deformations of the skin. 
Compared to current methodologies, our innovative approach 
effectively overcomes concerns associated with face-worn 
sensor interfaces, minimizing sensor quantity, reducing facial 
visibility, and eliminating obtrusive interconnections between 
sensors and data acquisition components. By employing 
machine learning-based signal processing techniques, we 
achieve remarkable speech recognition accuracy, with 93.2% 
accuracy for phonemes and 87.3% accuracy for a list of words 
from the same viseme groups. Notably, our proposed silent 
speech interface demonstrates exceptional robustness against 
ambient noises and users' daily motions. Furthermore, we 
showcase the potential applications of this novel concept in 
assistive technology and human-machine interactions through 
two practical demonstrations: a silent speech enabled 
smartphone assistant and drone control. 
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background noise from televisions), situations requiring quiet or 
privacy (e.g., hospitals, public areas, or private communications), and 
environments lacking an acoustic medium (e.g., underwater or in the 
space) often impose limitations on voice-based speech 
communication. 5, 6 

The silent speech interface, which eliminates the need for 
acoustic speech sounds, emerges as an alternative method to 
overcome physiological and environmental challenges for vocalized 
speech. This technique enables speech communication by detecting 
and interpreting subvocalized articulatory movements. 7, 8 Methods 
for silent speech recognition can be broadly classified into two 

Fig. 1 Overview of the wireless silent speech interfaces based on soft magnetic skin. a) Conceptual overview of the silent speech interface. b) Photograph of a 
subject wearing the silent speech interface. c) Structure of the magnetic skin. d) Photograph showing the softness of the magnetic skin. e) Illustration showing 
the magnetization direction of the magnetic skin. f) DIC image of a face region painted with black dots. g) 3D constructed model of the facial skin where the 
region of interest is indicated by the yellow outline. h,i) DIC images showing the displacement (h) and major strain (i) profiles when the subject is silently 
speaking the phoneme /o/. j) One trial signal of the phoneme /m/. k) Feature calculations in both the time and frequency domains. l) LDA classifications based 
on the calculated features. m) Comparison of different silent speech interfaces based on soft skin-worn sensors.
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categories: Contactless approaches and contact-based approaches. 
Contactless approaches are mainly explored through camera-based 
visual signals9-15, ultrasound signals16-23. Camera-based visual 
solutions require external video tracking devices, and users must 
remain within the camera's line of sight. Despite efforts to develop 
compact shoulder-mounted devices9 to enhance portability, visual 
solutions still face challenges in terms of lighting conditions and 
angles between users and cameras, thereby limiting their 
practicality. For ultrasound-based solutions, ultrasonic imaging 
devices were employed to construct 2D lip and tongue images. 17, 24, 

25 While these systems overcome the issue of visible light intensity, 
they encounter a similar alignment issue between the device and 
targeted articulators. As a more portable and user-friendly 
ultrasound-based solution, the speaker of the cell phone was used to 
emit ultrasound signals, and the microphone was employed to 
capture reflected signals from the lips 16, 18-22. This method is not 
hands-free and is susceptible to multipath interferences caused by 
bodily movements and surrounding objects.

Contact-based approaches involve attaching sensors to subjects' 
tongue, facial or neck skin, speech motor cortex, or inside the ear 
canal to detect signals induced by articulator movements (Table S1, 
ESI†). These approaches include systems that utilize physiological 
signals (e.g., Electromyography (EMG), electroencephalography 
(EEG), and electropalatography (EPG)) and articulatory movement-
induced signals (e.g., strain, pressure, acceleration, angular velocity, 
and magnetic signals). EEG methods26-28 can interpret speech 
information but are susceptible to interferences, especially when 
subjects experience cognitive distractions or mental deviations. 
Silent speech interfaces based on inertial measurement units (IMU) 
attached to the temporomandibular joint3, 29 or the chin and neck 
skin30, proximity sensors attached to the ear canal18, 31, and rigid 
magnets to the tongue and facial skin32-34 can achieve high portability 
and accuracy. These systems implement rigid components and highly 
visible interfaces on the skin. 

Soft electronics have greatly contributed to contact-based 
approaches due to their conformable contact with the tissue surface, 
which allows for high accuracy and sensitivity. EPG utilizes a high-
density electrode array placed on the hard palate35. Though 
effective, it is an invasive method and requires wiring to connect EPG 
electrodes in the mouth to an external circuit. EMG-based systems5, 

36-41 are very promising, and researchers have developed soft 
conformal dry EMG electrodes42, 43 to improve their signal quality and 
long-term wearability. However, EMG-based interfaces often require 
multiple electrodes placed on the face or the neck, increasing system 
complexity and reducing user acceptance. An ionic hydrogel-based 
pressure sensor was developed to track throat pressure and 
translate signals to speech using Morse code 44. Another approach 
involves translating sign language to speech by measuring finger 
strain. 45 This system has good wearing comfort and offers high 
accuracy. However, they are not based on natural speech. Recently, 
another approach is attaching soft resistive or triboelectricity-based 
strain sensors to the facial skin46-52 for measuring skin strains induced 
by lip and jaw movements. More efforts are needed to improve 
speech recognition accuracy of this approach and alleviate the 
obtrusiveness of sensors and interconnects placed on the facial skin. 
Overall, the soft skin-worn sensors have superior wearing comfort 
and/or sensitivity than conventional rigid electronics, these silent 

speech systems face several critical challenges, including a large 
number of sensors, obtrusive and socially inappropriate interfaces on 
the skin, low accuracy, poor robustness to interferences, inability to 
handle natural language. In addition to Fig. 1a-l for describing our 
work, the comparison is summarized in Fig. 1m.

In this work, we present an unobtrusive, wireless, and robust 
silent speech interface that addresses the above challenges through 
innovations in materials, structural design, sensing location, and 
signal processing algorithms. Our system tracks speech-relevant 
magnetic signals induced by the movement of the 
temporomandibular joint and decodes these signals into speech. 
Efforts were made to overcome the limitations of traditional 
magnetic signals-based speech recognition interfaces: (1) The silent 
speech interface utilizes only one piece of soft magnetic skin placed 
behind the ear and no cumbersome wires or cables between sensors 
and data acquisition components, allowing for a wireless, 
unobtrusive, user-friendly system for daily use. (2) With the 
optimized polymer matrix, magnetic particle loading ratio, and 
magnetization direction, the magnetic skins possess skin-like 
softness and can precisely track subtle skin movements in all three 
axes without affecting natural skin movements. (3) Displacement and 
strain changes in the temporomandibular joint area were measured 
using the digital correlate image (DIC) technique to facilitate the 
selection of optimal sensing locations. (4) The signal processing was 
facilitated by machine learning (ML) methods, which enable the 
recognition of phonemes, word pairs with similar pronunciations, 
and sentences/phrases with high accuracy. (5) With a reference 
magnetometer and advanced signal processing algorithms, the 
developed silent speech interface exhibited robustness against 
environmental acoustic noises, lighting conditions, and daily motion 
induced interferences, which are top concerns for acoustic-, visual-, 
and many sensor-based systems. Building upon the silent speech 
interface, two demonstrations, including a silent speech enabled 
smartphone assistant and drone control, were developed. These 
systems demonstrate the potential of the developed silent speech 
interfaces in assistive technology and human-machine interactions.

2. Results and Discussions
2.1. Overview of the Wireless Silent Speech Interface Based on 
Soft Magnetic Skin
Fig. 1a provides the conceptual overview of the wireless silent speech 
interface. The interface consists of a magnetic skin affixed to the skin 
area between the ramus and temporal bone, a working Bluetooth 
magnetometer attached to the temporal bone on one side of the 
head behind the ear, and another reference Bluetooth 
magnetometer attached to the temporal bone on the other side of 
the head (Fig. S1, ESI†). Soft magnetic skin is a composite material 
composed of small magnetic particles embedded in a soft polymer 
matrix. 53-56 The magnetic skin is on the skin beside the ramus, which 
is the junction of the mandible and sternocleidomastoid muscle. 
When a subject (Fig. 1b) attempts to speak by opening the mouth, 
the working magnetometer remains stationary, while the movement 
of temporomandibular joints causes displacement and strain 
changes in the magnetic skin. Consequently, the magnetic flux 
density captured by the magnetometer changes, which is highly 
correlated with the speech content. The reference magnetometer is 
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included to minimize unwanted environmental and motion-induced 
noises, such as signal changes induced by geomagnetic fields and 
walking. The weight of one magnetic skin is approximately 0.2 g and 
one Bluetooth magnetometer is about 16 g. Thus, the weight of the 
total system is around 32.2 g (two magnetometers and one magnetic 
skin).

As depicted in Fig. 1c, the magnetic skin is composed of magnetic 
particles dispersed in a matrix of silicone polymers. The softness 
enables it to conform to the contour of human skin and enhances its 
sensitivity to skin deformations (Fig. 1d). The magnetic skin (18 mm 
 12 mm) consists of three units (6 mm  12 mm each) with three 
different magnetization directions (Fig. 1e). The diverse 
magnetization directions within one single magnetic skin provide 
strong signals in all x, y, and z directions, thereby offering more 
valuable information for silent speech analysis. The DIC technique 
(Fig. 1f-1i) is employed to analyse the displacement and strain 
changes during speech and determine the optimal location for the 
device placement. A three-dimensional model of the human facial 
skin is constructed (Fig. 1f-g). This allows for the measurement of 
displacement (Fig. 1h) and strain (Fig. 1i) by tracking the position and 
shape changes of small dots painted on the face. The region enclosed 
within the yellow line (Fig. 1g) was selected for analysis due to its 
unobtrusiveness. Attaching the speech interface within this region is 
much more socially acceptable compared to the area surrounding 
the lips. 

Figures 1j-l outline the brief process of ML-based silent speech 
recognition. The tri-axis working magnetometer effectively captures 
magnetic flux densities in three directions. To enhance the signal 
quality, the captured signals are first denoised using the signals 
acquired by the reference magnetometer. These signals are then 
differentiated with respect to time, yielding three additional signal 
channels. Thus, six channels of time series signals can be acquired. 

Based on six channels of signals, which are  and (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) (𝑑𝐵𝑥/𝑑𝑡,
, multiple features related to speech recognition  𝑑𝐵𝑦/𝑑𝑡,  𝑑𝐵𝑧/𝑑𝑡)

can be calculated and labelled for the following supervised learning. 
Linear discriminant analysis (LDA) is employed here to classify 
different silent speech contents based on the calculated features and 
labels (Fig. 1l). 

2.2. Design, Fabrication, and Characterization of the Soft Magnetic 
Skin
The fabrication process of the magnetic skin is depicted in Fig. 2a, 
and magnetization directions are shown in Fig. 2b-e. In brief, the 
magnetic skin consists of the magnetic layer and the adhesive layer. 
The magnetic layer is composed of NdFeB magnetic particles and the 
silicone polymer matrix. The mixture was first poured onto a glass 
substrate and heated to cure. The resulting composite thin film was 
then magnetized by an impulse magnetizer. Finally, three pieces of 
thin films with the same or different magnetization directions were 
assembled by a thin layer of Ecoflex Gel. The Ecoflex Gel also serves 
as the adhesive layer for attaching the sample to the skin.

The design goal of the magnetic skin is to achieve skin-like 
softness and optimal sensitivity and signal amplitude in the x, y, and 
z directions. We optimized the design of the magnetic skin in the 
following aspects: 1) Selection of the silicone polymer; 2) Weight 
ratio between the silicone polymer and magnetic particles; 3) 
Magnetization directions. The silicone polymer serves as the matrix 
of the magnetic skin and plays a crucial role in the softness of the 
magnetic skin. Two different silicones are employed to fabricate the 
polymer matrix. Ecoflex 00-30 is introduced into Liveo MG 7-9900 
with a weight ratio of 4:1 to render the elastomer free-standing while 
maintaining superior stretchability and softness. 

To determine the optimal weight ratio of magnetic particles to 
the silicone polymer, the strain-stress curve (Fig. 3a) and magnetic 

Fig. 2 Fabrication process and magnetization directions of the magnetic skins a) Schematic illustration showing the fabrication process of the magnetic skin 
with different magnetization directions. b-e) Schematic illustrations of magnetic skins composed of units with different magnetic directions: b) XYZ sample, c) 
XXX sample. d) YYY sample. e) ZZZ sample.
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flux density (Fig. 3b) were measured at different weight ratios. As can 
be expected, increasing the proportion of magnetic particles leads to 
an increase in the magnetic flux density. But in the meantime, the 
elastic modulus of the magnetic layer is increased. When the weight 
ratio (magnetic particles to silicone polymer) reaches 7:1 and 8:1, the 
magnetic skin becomes brittle, with fracture strains at 33% and 22%, 
respectively (Fig. 3a). The elastic modulus of the epidermis layer of 
human skin is approximately 1 MPa. 57 Considering that the elastic 
modulus of the sample at the ratio of 6:1 is approximately 0.84 MPa, 
this weight ratio is used for the following experiments to achieve a 
stretchable and skin-like magnetic skin, without sacrificing much of 
the magnetic flux density.

Magnetic skins composed of units with different magnetization 
directions (Fig. 2b-e) can provide different signal amplitudes in the x, 
y, and z directions. The ideal scenario is to obtain decent signal 
amplitudes in all three directions, which provides comprehensive 
information on speech-induced movements. Performances of 
samples composed of units with different magnetization directions 
(Fig. 3c-k) were tested using the setup shown in Fig. 3l and Fig. S2, 
ESI†. The magnetic skin was attached to a skin replica that was 
stretched from 0% to 10% strain along the y direction to mimic the 

skin deformation at the junction area of the mandible and 
sternocleidomastoid muscle during speech. The influence of the 
stretchability of the magnetic skin on the measured magnetic flux 
density was first evaluated. In the first set of experiments (Fig. 3c, 3e, 
3g, and 3i), as-prepared stretchable magnetic skins with different 
magnetization directions were tested. When stretching the skin 
replica, the magnetic skin experiences both displacement and strain 
changes, leading to variations in the magnetic flux density. In the 
second set of experiments (Fig. 3d, 3f, 3h, and 3j), the stretchability 
of the as-prepared magnetic skin was constrained using a non-
stretchable tape attached below it. When stretching the skin replica, 
the magnetic skin experiences only displacement change, while its 
strain is minimized by the strain-limiting layer. Notably, the signal 
amplitudes of magnetic skins undergoing both displacement and 
strain changes are larger than that of samples experiencing only 
displacement changes, indicating the advantage of stretchable 
magnetic skins. Among magnetic skins with different magnetization 
directions, the XXX sample shows minimal signal changes in the z 
direction (Fig. 3c and 3d), while YYY and ZZZ samples display 
extremely small signal amplitudes in the x direction. Only the XYZ 
sample demonstrates a decent signal amplitude in all three 

Fig. 3 Characterizations and optimizations of the magnetic skin. a,b) Stress-strain curves (a) and magnetic flux densities (b) for samples with different weight 
ratios between the polymer and magnetic particles. The error bar in (b) is due to the magnetic flux density differences between the edges and central points of 
the magnetic skin. c-g) Magnetic flux density changes when the skin replica was stretched with a strain between 0 to 10% along the y axis three times. Magnetic 
skins composed of units with different magnetic directions were tested: c) XXX sample, d) XXX sample with strain-limiting tape, e) YYY sample, f) YYY sample 
without strain, g) ZZZ sample, h) ZZZ sample without strain, i) XYZ sample, j) XYZ sample without strain. k) Magnetic flux density changes of the sample with 
rigid magnets. l) Photograph of the setup for measuring magnetic flux density changes showing in c) - k). Changes of magnetic flux density in c) - k) are normalized 
by dividing all values by 100 T and taking the absolute value.
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directions, although with a slightly reduced maximum amplitude 
compared to other samples. As depicted in Fig. S3, ESI†, the magnetic 
signals obtained from the magnetic skin (XYZ sample) exhibit good 
repeatability during over 1100 cycles of stretching/releasing at 10% 
strain. The adhesive layer maintains consistent adhesion to the skin 
replica during repeated stretching and releasing cycles. No 
delamination and fracture of the magnetic skin were observed 
visually or from signal changes. It is worth noting that the skin 
deformations during speech within the ramus area are typically 
within 5%, a strain level lower than the applied strain during testing. 
In addition, rigid permanent magnets (z-direction magnetized) 
assembled into a similar size to the magnetic skin (Fig. S4, ESI†) were 
tested for comparison. The signals measured from rigid magnets are 
much higher in amplitude in the y direction (Fig. 3k) compared to that 
from soft magnetic skins, due to a larger thickness and magnetic 
material density. However, the rigid magnet is unable to conform to 
the human skin, leading to a lower recognition accuracy compared 
to the magnetic skin (discussed in detail in Section 2.4).

2.3. Optimization of Sensing Location and Speech Dictionary for 
Verification
The location to attach the magnetic sensor is optimized using the DIC 
technique. The process of speech generation can be divided into 
three sub-processes related to the lung, vocal cord, and articulator. 

3, 29 Initially, the air is inhaled by the lungs. The subsequent air 
pressure generated by the lungs causes the vocal cords to vibrate and 
produce sound. The sound is then shaped into recognizable speech 
through the movement of articulators such as the tongue, lips, teeth, 

and jaw. The process for silent speech is similar except that the vocal 
cord does not vibrate, resulting in the absence of audible sound 
production. The articulatory movements remain active during silent 
speech. Studying the movement of the tongue and teeth typically 
requires implantable devices. Additionally, the skin area around the 
lips is unsuitable for developing a socially acceptable device for daily 
use. Therefore, the skin area related to jaw movement was selected 
for our silent speech interface. The DIC technique was employed to 
measure displacement and strain changes to identify the region with 
the largest movements. This step is especially important for 
detecting jaw movement, as the skin deformation and displacement 
are more subtle compared to the skin around the lips. 

Fig. 4 presents the displacement and major strain of the 
phoneme ‘/o/’ and word ‘pay’ over time as examples. The images 
from 0 s to 1 s illustrate the process of mouth opening and closing. 
Two regions exhibit significant deformations and strains: the 
temporomandibular joint area and the ramus area (Fig. 1a and Fig. 
4). The skin in the temporomandibular joint area experiences larger 
deformations due to joint rotation during silent speech. Similarly, the 
skin on the ramus, which is a part of the mandible, shows substantial 
deformations as the ramus rotates around the joints, moving toward 
the back of the head. In addition to determining the position of the 
magnetic skin, the placement of the magnetometer must also be 
considered. To minimize the noise caused by skin deformations, the 
magnetometer is attached to the skin above the temporal bone, 
close to the ear (Fig. S1, ESI†). The skin in that area is relatively 
unaffected by articulatory movements since the temporal bone is 
part of the skull. When ranking skin deformations from high to low, 

Fig. 4 DIC images of a subject showing the displacement and strain during the speech from the beginning to the end. The displacement (a) and major strain (b) 
of four frames when speaking the phoneme /o/. The displacement (c) and major strain (d) of four frames when speaking the word ‘pay’.
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the order is as follows: ramus area close to the chin, ramus area close 
to the ear, temporomandibular joint area, and the remaining area. 
The magnetic skin is attached to the ramus area close to the ear 
(between the ramus and the temporal bone shown in Fig. S1, ESI†). 
The ramus area close to the chin was not selected because it is too 
far from the magnetometer (placed on the temporal bone), resulting 
in a significant attenuation of the magnetic signal due to increased 
distance. The size of the magnetic skin was determined as 18 mm × 
12 mm (length × width) to sufficiently cover the ramus area close to 
the ear. The magnetic skin is aligned parallel to the magnetometer 
along its length, allowing for the closest possible distance between 
the magnetometer and the magnetic skin. 

The recognition of different phonemes is of great significance for 
silent speech recognition, given that English is a language composed 
of a sequence of phonemes. A phoneme is a unit of sound that 
distinguishes the pronunciation of words. 58 To evaluate the 
effectiveness of our silent speech interface, the nine most frequently 
used phonemes in the English language, 3 namely /m/, /k/, /i/, /a/, 
/j/, /p/, /u/, /n/, and /o/, were selected for the study. Additionally, a 
very challenging list of words (Table S2, ESI†) was chosen to further 
test the capabilities of the developed silent speech interface. The list 
contains word pairs with similar pronunciations. For instance, 
although "pay" and "bay" contain different phonemes /p/ and /b/, 
these two phonemes have similar pronunciations as they belong to 
the same viseme group (known as the Bilabial viseme). 5 The term 
"viseme" refers to a visual speech unit that includes phonemes with 
identical visual representations. 47 Essentially, when a subject 

attempts to articulate "pay" and "bay," the lip gestures and muscle 
movements will be quite similar, leading to comparable jaw 
movements. Moreover, in this word list, several words from different 
viseme groups contain the same element. For example, the words 
"pay", "bay", "kay", "gay", "way" all have "ay" as the ending 
phoneme. Successfully recognizing subtle differences in this word list 
is a difficult task for speech recognition. 

2.4. Silent Speech Recognition by Machine Learning
Silent speech data was collected from five subjects (3 males and 2 
females). Each phoneme was repeated fifty times by each subject to 
generate the training data. Detailed signal processing using ML 
methods can be seen in the experimental section. The results for 
different subjects are presented separately, as given in Fig. 5 and Fig. 
S5-S16, ESI†. This section elaborates on the results for subject 1. 
Statistical analysis for all five subjects can be seen in Table S3, ESI† 
and the Experimental section. Fig. 5a and 5b present a trial signal 
measured from the XYZ magnetic skin for all nine phonemes, 
including both the magnetic flux density signals and the signals after 
differentiation. The signals acquired from magnetic skins with other 
magnetization directions are shown in Fig. S5a-f, ESI†, which only 
have strong amplitudes in one or two directions. Signals from the XYZ 
magnetic skin exhibit good amplitude in all three directions. The 
resulting confusion matrix for the nine phonemes (Fig. 5c) 
demonstrates that the LDA model can effectively classify the 
phonemes, achieving an overall classification accuracy of 92.7%. The 
micro-average Receiver Operating Characteristic (ROC) curve is 

Fig. 5 Results of silent speech recognition (subject 1). a) Time series signals of nine phonemes. The signals are normalized by dividing all values by 30 T. b) 
Time-series signals of the nine phonemes after differentiation. The signals after differentiation are normalized by dividing all values by 150 T/s. c) Confusion 
matrix for the nine phonemes using the LDA classifier. d) Micro-average ROC curve for nine phonemes. e) Confusion matrix for a list of words containing word 
pairs with similar pronunciations (from the same viseme group) using the LDA classifier. f) Micro-average ROC curve of words with similar pronunciations.
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commonly used to evaluate the performance of a classification 
model by aggregating the true positive rate and false positive rate 
across all classes into a single metric59. Our system achieves a 
remarkable value of 0.994 (Fig. 5d), indicating the model's 
exceptional ability to discriminate between classes. Moreover, the 
optimal operating point at (0.02, 0.96), corresponding to the 
threshold that maximizes the overall classification performance 
across all classes59, further illustrates the model's high accuracy and 
reliability. It should be noted that the algorithm utilized in this study 
is user dependent due to the users’ different ways of speech 
generation. Efforts were made to examine the accuracy of the model 
across various subjects. Sequential incorporation of data from 
subjects 2, 3, 4, and 5 into the training set was executed while using 
the data set from subject 1 as the testing data. The resulting 
recognition accuracy is notably low (Table S4, ESI†). One potential 
solution to achieve a universal model is to include a much larger 
training data from significantly more subjects and use deep learning 
techniques for speech recognition.

In addition to phonemes, a challenging list of words containing 
words from eleven visemes groups5, as discussed in Section 2.3, was 
also selected to test the developed silent speech interface. Each 
word was repeated fifty times. The resulting confusion matrix for 
these words (Fig. 5e) and micro-average ROC curve (Fig. 5f) 
demonstrate that the employed algorithms can successfully 
recognize the words with an accuracy of 85.6%. This speech 
recognition accuracy is comparable to the previous system based on 
8-channel EMG sensors placed around lips and on the neck and 
tested using the same list of words. 5 This demonstrates that the 
selected sensing area (the ramus area near the ear) contains rich 
information of speech articulation, comparable to the commonly 
used EMG methods. In despite of similar accuracies, only a single 
magnetic skin is needed in this work and the sensor placement 
location is much more socially acceptable. Additionally, the word list 
is expanded to 54 words (containing 20 words with similar 
pronunciations) to assess the performance as the word count 
increases. The silent speech recognition accuracy for 54 words is 
85.7% (Fig. S6-S7, ESI†), with only a marginal increase of 0.1%. The 
classification accuracy can be affected by several factors, including 
the increased number of classes and the difficulty level of the 
classification task. Here only signals from a single magnetic skin were 
used and the sensor placement is much more socially acceptable. 

These results demonstrate the effectiveness of the silent speech 
interface in recognizing both phonemes and words. 

Furthermore, a comparison was made between the classification 
results obtained using the magnetic skin and the rigid magnet with a 
similar size (as mentioned in section 2.2 and Fig. S4, ESI†). Despite 
that the signal strength of the rigid magnet (Fig. S5g-h, ESI†) is 
stronger than that of the magnetic skin, the speech recognition 
accuracy for nine phonemes is only about 75.6% (Fig. S8, ESI†), which 
is 17.1% lower than that of the magnetic skin. Due to its rigidity, the 
magnet could not conform to the skin topology and capture the 
subtle skin deformations during the speech, thereby resulting in 
reduced accuracy. 

The developed silent speech interface also exhibits good 
robustness against interferences. In an environment with ambient 
noises of 80 dB, the classification accuracy is about 93.3% for the nine 
phonemes (Fig. S9, ESI†). Besides, under a dark environment, the 
classification accuracy is maintained (92.8%) (Fig. S10, ESI†). The 
variation is small, within 0.6%. Although these three sets of data 
were acquired from the same subject and the signals are highly 
similar, the subject could not control his/her speech muscle 
movements exactly the same when signals were obtained for the 
normal condition, noisy environment, and dark environment. 
Consequently, it is reasonable to have small variations when 
processing these three datasets for speech recognition. Similarly, 
during daily motions, such as walking at a speed of 0.8 m/s, the 
interface achieves an accuracy of approximately 87.8% (Fig. S11a-b, 
ESI†), after a calibration process using the data from the reference 
magnetometer attached beside the other ear. Without the 
calibration process, the speech recognition accuracy is only 54.4% 
due to the motion-induced interference (Fig. S11c-d, ESI†). The 
Kabsch algorithm60 was utilized to perform calibration. The rotation 
matrix between the working and reference magnetometers was first 
calculated and then the motion-related signals captured by the 
reference magnetometer were subtracted from signals detected by 
the working magnetometer. In this way, the influence of motion-
induced interferences can be significantly reduced. The detailed 
calibration process is shown in the Experimental section and 
Supporting information. These experiments conducted under 
normal, noisy, dark, and motion conditions collectively illustrate the 
insensitivity of the developed silent speech interfaces to acoustic 
noises, lighting conditions, and daily motions, which are top concerns 

Fig. 6 Flowchart of data acquisition, signal processing, and application development.
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for acoustic-based, visual-based, and many sensor-based speech 
recognition methods. 

Experiments were conducted to examine the device variations. 
Two distinct magnetometers were consecutively affixed at the same 
position, measuring the magnetic flux density alteration as the 
magnetic skin underwent stretching. As depicted in Fig. S12a, ESI†, 
the signal variations were found to be minor, and the largest 
difference is approximately 1 T (2% variation) in the y direction. In 
order to assess the influence of device variations on the recognition 
accuracy, we obtained silent speech signals using different 
magnetometers and magnetic skins. Another set of phonemes (/m/, 
/k/, /i/, /a/, /j/, /p/, /u/, /n/, /o/) data was acquired and added to the 
training set for subject 1. The final confusion matrix is presented in 
Fig. S12b, ESI†, revealing an accuracy of 93.1%, a value slightly higher 
than the original accuracy of 92.6%.

2.5. Applications in Phone Assistant and Drone Control

Two demonstrations were developed to illustrate the potential of 
the developed wireless silent speech interface in assistive technology 
and human-machine interactions. Fig. 6 presents the flow chart of 
the development process, and detailed descriptions can be found in 
the experimental section. In the first demonstration (silent speech-
based phone assistant, shown in Fig. 7a, b, d, e, g, and i), the silent 
speech is utilized as an alternative input modality to replace the 
voiced speech to assist in the cell phone control. The silent speech 
assistant is based on the Android system, and six sentences/phrases 
(Fig. 7d and 7e) were pre-trained to interact with the phone as 
examples. The confusion matrix (Fig. 7g) and ROC curve (Fig. 7i) 
demonstrate the remarkable performance of the silent speech 
interface in recognizing diverse sentences/phrases, achieving an 
overall accuracy of 96.7%. The entire application is in real-time. 
When the user speaks the specified sentences/phrases silently, the 
intended speech information is interpreted from the acquired 
magnetic signals by the pre-trained ML model and sent to the 
Android phone. The corresponding tasks are then executed on the 

smartphone. With the silent speech assistant, users can perform 
various operations on their smartphones, such as playing music or 
opening apps (see Supporting Video 1). 

In the second demonstration (silent speech-based drone control, 
shown in Fig. 7b, c, f, h, and j), silent speech interfaces are used for 
human-machine interactions. A Tello drone is used as an example to 
receive the commands delivered by silent speech and execute 
corresponding movements. Drones have been widely used in various 
inspection tasks and voice control has been implemented to enable 
intuitive and hand-free communications between the operator and 
the drone. 61 Eight commands (shown in Fig. 7f) for drone control 
were pre-trained. The confusion matrix (Fig. 7h) and the ROC curve 
(Fig. 7j) indicate a good accuracy of 93.5%. Supporting Video 2 shows 
the process of drone control by the silent speech interface. 

3. Conclusions
In conclusion, this study presents a wireless, unobtrusive, robust, and 
accurate silent speech interface through comprehensive 
explorations of materials, structural design, sensing location, ML 
Methods, and noise reduction algorithms. The cost of a single 
magnetic skin is approximately $0.6 and the Bluetooth 
magnetometer for data acquisition is around $130 each. The costs 
can be further reduced for mass production. An average recognition 
accuracy of 93.2% was achieved for phonemes and 87.3% for a list of 
words containing words from the same viseme group. Two proof-of-
concept applications were developed that demonstrate the system’s 
capability to decode silent speech signals in real time and enable 
interactions with external devices. The silent speech interface 
provides a novel communication interface, which can find broad 
applications in assistive technology for voice disorders, robot control, 
and human-machine collaborative systems. 

4. Experimental Section

Fig. 7 Two demonstrations based on magnetic skin-enabled silent speech interfaces. a) Demonstration 1: Silent speech assistant for smartphone control. b) 
Schematic of a user wearing the silent speech interface. c) Demonstration 2: Silent speech interaction for drone control. d) Selected sentences/phrases for 
demonstration 1. e) Time series signals of the selected sentences/phrases for demonstration 1. f) Time series signals of the selected commands for 
demonstration 2. g) Confusion matrix of selected sentences/phrases for demonstration 1. h) Confusion matrix of selected commands for demonstration 2. i) 
Micro-average ROC curve corresponding to (g). j) Micro-average ROC curve corresponding to (h).
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Materials
NdFeB magnetic particles (MQP-15-7-20065) were provided by 
Magnequench. The toluene solvent was purchased from Sigma-
Aldrich. The silicone adhesive (LiveoTM MG 7-9900) was provided by 
Knowde. The silicone elastomer (EcoflexTM 00-30) and release agent 
(Easy ReleaseTM 200) were obtained from Smooth-On. The clown 
white and custom body paint were obtained from Mehron and TCP 
Global, respectively. All materials were used as received. 
Fabrication of the Magnetic Skin
Fig. 2 depicts the fabrication process of the magnetic films. 0.20 g 
silicone adhesive part A, 0.20 g silicone adhesive part B, 0.05 g 
silicone elastomer part A, 0.05 g silicone elastomer part B, and 1.5 g 
Toluene were first mixed using the mixer (AR-100, Thinky) at 1000 
rpm for 30 s. Subsequently, 3.0 g NdFeB micro magnetic particles 
were introduced to the mixture and mixed at 1000 rpm for an 
additional 30 s. The release agent was then uniformly sprayed onto 
a glass substrate (5.08 cm by 7.62 cm) followed by a drying period of 
5 minutes at the ambient temperature. Next, a 3 g portion of the 
mixture was poured onto the prepared glass substrate and allowed 
to dry naturally for 30 minutes to evaporate the toluene. After the 
toluene had completely evaporated, the sample was cured at 80 °C 
for 1 hour. Afterward, three pieces of the sample with a length of 6 
mm and a width of 5 cm were cut off. The three sample pieces were 
then placed into two distinct 3D-printed molds (Fig. S17, ESI†) with 
different orientations, after which they were magnetized along the 
x, y, and z directions using an impulse magnetizer (IM-10-30, ASC 
Scientific). The impulse magnetizer employed a 1.25" coil that 
yielded a resulting magnetic flux density of 2.6 T. Finally, the three 
sample pieces were arranged on the glass substrate and bonded 
together using silicone adhesive.
Measurement of the strain-stress curve
Measurement of the strain-stress curve was conducted using a 
material testing system (858 Mini Bionix II, MTS) operating at a 
constant speed of 10 mm/min. The load cell embedded within the 
system offers a resolution of 0.001 N. The magnetic skin was applied 
with 50% strain. Simultaneous recording of distance and tensile force 
was performed at a frequency of 100 Hz. The stress values were 
obtained by dividing the tensile force by the cross-sectional area of 
the magnetic skin. The strain values were calculated by dividing the 
distance by the length of the magnetic skin.
Comparisons of magnetic flux densities for samples with varying 
material ratios
A series of samples with varying weight ratios (1:1, 1:2, 1:3, 1:4, 1:5, 
1:6, 1:7, and 1:8) between the silicone mixture and magnetic 
particles were prepared. From each sample, pieces measuring 5 mm 
× 5 mm × 0.9 mm were cut. Subsequently, magnetic flux densities of 
all sample pieces were measured using a magnetometer 
(Metamotions, Mbientlab). The size of the magnetic skin is larger 
than the magnetometer chip. Therefore, multiple locations were 
measured, including the edges and central points of the magnetic 
skin. The magnetic flux density at the central point is larger than that 
at the edges. The results shown in Fig. 3b indicate the mean value 
and the error bar.
Measurement of changes in magnetic flux density under strains
The Dragon Skin 20 elastomer (Smooth-On) was selected to fabricate 
the skin replica due to its similar elastic modulus compared to the 
human skin. 62 Parts A and B were mixed in a 1:1 ratio using a mixer 

(AR-100, Thinky) operating at 1000 rpm for 30 s followed by curing 
at 80 °C for 1 hour. The resulting cured Dragon Skin elastomer was 
then cut into a rectangular piece measuring 90 mm × 25 mm. During 
the investigation of magnetic flux changes, the magnetic skin was 
affixed onto the Dragon Skin elastomer, which was subjected to 
stretching using a customized tensile stage (Fig. 3l and Fig. S2a, ESI†) 
at a controlled speed of 0.75 mm/s until reaching a strain of 10%. 
Meanwhile, a magnetometer (Metamotions, Mbientlab) was used 
for measuring the magnetic flux change (Fig. S2b, ESI†). To reveal the 
effect of stretchability on the magnetic flux changes, after testing the 
as-prepared stretchable magnetic skins, tapes (TransporeTM 3M) 
were attached to the magnetic skin and placed on the skin replica to 
limit its stretchability. The skin replica was once again stretched to 
achieve a strain of 10%, while the magnetometer simultaneously 
recorded the magnetic flux changes. Another experiment was 
conducted to assess the repeatability of the magnetic skin with an 
optimized ratio of 6:1, under a 10% strain. Over 1100 cycles of 
stretching/releasing were conducted using the same setup as shown 
in Fig. 3l.
DIC analysis of the movement patterns of the temporomandibular 
joint region
The 3D-DIC system (Trilion) was used to obtain the motion of the 
temporomandibular joint region. The hardware setup of the 3D-DIC 
system is illustrated in Fig. S18a, ESI†. Two cameras were positioned 
at an approximate angle of 30° before calibration. Thirteen pairs of 
photographs of the calibration pad (Fig. S18b, ESI†), taken at various 
angles, were acquired using the cameras. The distance between the 
DIC system and the calibration pad was approximately 1 m. These 
photographs were subsequently imported into the commercial 
software GOM Correlate for calibration.
To capture images of the subject's skin surface of interest 
(temporomandibular joint region), the area was cleaned with water 
and gently dried with paper towels. Fig. S19 and S20, ESI† show the 
skin painting process. Clown white makeup (Mehron) was applied to 
the target skin area using a paintbrush (Amazon Basics), as 
demonstrated in Fig. S20a, ESI†. Afterward, a mask (Fig. S19, ESI†) 
was cut by a mechanical plotter (Cameo 4, Silhouette). The mask 
pattern, generated using a MATLAB toolbox63, consisted of 40 × 40 
holes with random shapes, spanning a 10 cm square. The random 
shapes could help the DIC system track skin motion more effectively. 
The mask was then affixed to the skin area of interest and secured 
using tapes (Fig. S20b, ESI†). Next, black custom body paint makeup 
(TCP Global) was sprayed onto the skin surface with a white 
background using an airbrush (Model G222, Master Airbrush). 
Following the removal of the mask, a marker pen (Sharpie) was used 
to add dots and fill any remaining blank areas (Fig. S20c, ESI†) to get 
the final appearance (Fig. S20d, ESI†). All makeup products employed 
on the skin were FDA-approved, biocompatible, and easy to clean, 
ensuring their safety and compatibility with human skin. 62 During the 
experimental setup, the subject was seated in a chair while 
maintaining the head position aligned with the previously placed 
calibration pad. The subject silently spoke various phonemes, words, 
and sentences, while the DIC system captured photos at a frequency 
of 4 Hz. Following the photo collection, all images were imported into 
the GOM Correlate software to calculate the displacement and strain 
data for the skin area of interest.
Signal acquisition and processing of silent speech
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All signal processing was performed using the Python programming 
language. The collected signals were transmitted wirelessly to a 
laptop via Bluetooth. The signal processing procedure is outlined as 
follows: (1) Zero baseline: The change of the magnetic flux density is 
the key to recognition. Hence, zero-baseline manipulations were first 
conducted by subtracting the average of the first ten data points to 
get the time series data ΔB. (2) Blip glitch removal: The blip glitch is 
a common noise problem of time series data. The signals were first 
traversed to find each blip glitch. One blip glitch was identified by 
comparing the change between two data points. When detected, a 
blip glitch data point was replaced with the value of the preceding 
data point. (3) Average filtering: An average filter that averaged the 
adjacent three data points was applied to the signal. This process 
served to smooth out the signal and reduce noise. (4) Interference 
removal: Interferences include the geomagnetic field and motion 
artifacts. The geomagnetic field was assumed evenly distributed 
around the subject. A magnetometer placed behind the subject's 
right ear captured interference signals, while another magnetometer 
behind the subject's left ear detected both magnetic skin signals and 
interferences. As shown in Fig. S1, ESI†, the coordinate of the 
working (left) magnetometer was denoted as X, Y, and Z, while the 
coordinate of the reference (right) magnetometer was denoted as x, 
y, and z. The rotation matrix between the two coordinates can be 
determined by Equations S1 – S5. Hence the noise caused by 
interferences can be cancelled (Fig. S21, ESI†) by using Equation S6. 
A detailed description can be found in the ‘Method for eliminating 
signal interferences’ section of the Supporting Information. (5) 
Differentiation: Differentiation was performed by calculating the 
rate of change of the signal over time, resulting in another set of data 
for subsequent analysis. The average filter can help to reduce the 
noise. (6) Signal segment: Each phoneme, word, and sentence was 
repeated 50 times so the segment program helped extract the data 
of each trial. (7) Feature extraction: Thirteen features in the time 
domain and eight features in the frequency domain, as listed in Table 
S5, ESI†, were calculated. (8) Classifier: The LDA algorithm was 
applied to classify silent speech. Five-fold validation was employed 
for the evaluation of the classifier. The calculated feature data and 
label data were input into the algorithm to obtain the results.
Demonstration of phone assistant
After training the LDA classification model, the model was utilized for 
real-time identification of the collected signals. A phone assistant 
using the silent speech interface was developed. To establish a 
connection between an Android phone (Moto G) and a Windows 
laptop (Dell Latitude 7410), both devices were connected to the 
same WIFI network. Then the software Android Studio was used to 
enable the wireless data transfer between the phone and the laptop. 
The Android debug bridge (ADB) 64 command-line tool was integrated 
into the Python program running on the laptop. After the collected 
signals were converted into sentences or phrases by the pre-strained 
ML model, the ADB tool would transmit the corresponding command 
line to the phone. The phone would then perform the corresponding 
task, as requested by the command line. Supporting Video 1 presents 
a demonstration of the phone assistant enabled by silent speech 
recognition.
Demonstration of drone control
Similar to the phone assistant application, the captured signals were 
decoded in real-time by a pre-trained ML model for drone control. 

The drone (Ryze Tech Tello) was connected to a Windows laptop (Dell 
Latitude 7410) via WIFI service. The Python package DJITelloPy65 was 
employed for the program running on the laptop. When the model 
classified the specific command words from the acquired magnetic 
skin signals, these words were transmitted from the laptop to the 
drone using a designated command line enabled by DJITelloPy. The 
drone would subsequently execute the corresponding movement as 
controlled by the command line. Supporting Video 2 presents a 
demonstration of the drone control application.
Statistical Analysis
All characterization measurements were performed five times for 
each sample piece, and the average value was selected to represent 
the final result. For silent speech recognition, magnetic signals were 
collected from five subjects, comprising 3 male and 2 female 
subjects, with ages ranging from 20 to 30 years old. The authors have 
complied with all relevant ethical regulations. Study procedures 
were conducted in accordance with the guidelines provided by Stony 
Brook University. Prior to participation, informed consent was 
obtained from all subjects. Fig. 5c-f and Fig. S13-S16, ESI† provide a 
comprehensive summary of the confusion matrices and ROC curves 
for five individual subjects. The recognition accuracy (Table S3) for 
the nine phonemes was measured to be 93.2% ± 2.62%. For a 
dictionary containing word pairs from the same viseme group, it was 
determined to be 87.3% ± 2.14%. These recognition accuracies are 
presented as the mean ± standard deviation. The statistical analysis 
was conducted using the MATLAB software.
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