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New Concepts Statement

Materials discovery is currently in a state of renaissance of importance,
thanks to the acceleration possible through the application of machine learn-
ing tools. This paper presents a novel materials discovery algorithm that is
based on a Bayesian optimization framework. The key novelty of our method,
PAL 2.0, is the construction of a physics-based prior mean for the Gaussian
process surrogate model. We achieve this in two steps: First, using XGBoost
to select the physical descriptors most correlated to the target property be-
ing optimized. Second, we use those selected physical descriptors as the input
encoding vector to a neural network model that predicts the target property.
This combination of XGBoost with neural networks provides a physics-based
prior model of the material space to inform a Gaussian process model. The two
most compelling contributions of PAL 2.0 are that we demonstrate superior op-
timization performance by finding the optimal target within the lowest number
of iterations when compared to state-of-the-art models such as a representative
off-the-shelf Bayesian optimization package, SMAC, as well as one-hot-encoded
Gaussian process models for material discovery, and that we provide a predictive
physics-based model for the material space capable of offering valuable chemical
insights. Overall, PAL 2.0 offers great potential to advance the field of materials
discovery, offering researchers and practitioners a powerful and easy-to-use tool
to accelerate the development of materials for critical applications in energy,
health, and sustainability.
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The lack of efficient discovery tools for advanced functional materials remains a major bottleneck to
enabling advances in the next-generation energy, health, and sustainability technologies. One main
factor contributing to this inefficiency is the large combinatorial space of materials (with respect to
material compositions and processing conditions) that is typically redolent of such materials-centric
applications. Searches of this large combinatorial space are often influenced by expert knowledge and
clustered close to material configurations that are known to perform well, thus ignoring potentially
high-performing candidates in unanticipated regions of the composition-space or processing proto-
col. Moreover, experimental characterization or first principles quantum mechanical calculations of
all possible material candidates can be prohibitively expensive, making exhaustive approaches to
determine the best candidates infeasible. As a result, there remains a need for the development of
computational algorithms that can efficiently search a large parameter space for a given material
application. Here, we introduce PAL 2.0, a method that combines a physics-based surrogate model
with Bayesian optimization. The key contributing factor of our proposed framework is the ability to
create a physics-based hypothesis using XGBoost and Neural Networks. This hypothesis provides a
physics-based “prior” (or initial beliefs) to a Gaussian process model, which is then used to perform a
search of the material design space. In this paper, we demonstrate the usefulness of our approach on
three material test cases: (1) discovery of metal halide perovskites with desired photovoltaic prop-
erties, (2) design of metal halide perovskite-solvent pairs that produce the best solution-processed
films and (3) design of organic thermoelectric semiconductors. Our results indicate that the novel
PAL 2.0 approach outperforms other state-of-the-art methods in its efficiency to search the material
design space for the optimal candidate. We also demonstrate the physics-based surrogate models
constructed in PAL 2.0 have lower prediction errors for material compositions not seen by the model.
To the best of our knowledge, there is no competing algorithm capable of this useful combination
for materials discovery, especially those for which data are scarce.

1 INTRODUCTION
Discovery of new and advanced materials with desirable prop-
erties is pivotal for driving technological advancements that can
address contemporary challenges in global health, energy, and
sustainability. The discovery process invariably involves a search
for the optimal material composition (a combinatorial optimiza-
tion problem) and synthesis conditions (a continuous variable op-
timization problem). A major bottleneck in finding optimal mate-
rial compositions and processing conditions is the lack of efficient
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b Department of Materials Science and Engineering, Johns Hopkins University, 3400
North Charles Street, Baltimore, 21218, Maryland, USA
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discovery tools that can search very large material spaces, which
sometimes contain on the order of 100,000 materials. A tradi-
tional Edisonian experimental search for optimal materials relies
on expert knowledge, focusing on materials closely aligned with
configurations known to perform well. Further, molecular simu-
lations, by offering insights into microscopic behaviors and accu-
rately predicting macroscopic properties, could potentially obvi-
ate the need for expensive experimental measurements.1–3 How-
ever, molecular simulation approaches, of which density func-
tional theory (DFT) and molecular dynamics (MD) are two prime
examples, can also be prohibitively expensive for an exhaustive
search of the large combinatorial search space that often charac-
terizes material systems. As such, there remains a need to design
tools that can accelerate materials discovery by exploring only a
fraction of the possible combinatorial space. For research lab-

Journal Name, [year], [vol.],1–11 | 1

Page 2 of 12Materials Horizons



Optimization algorithms

Genetic Algorithms
Bayesian Optimization with GP

SMAC
Random

Predictive Modeling

Chan et al.
Rosen et al.

Feature Engineering

SISSO
SISSO-DT

Gryffin

PAL 2.0

Design choices 
with dissimilar

properties

Encoding based on property 
descriptors

Ta
rg

et
 v

al
ue

Design choices with 
similar properties

C4

C1

C3

C2

Element design choice (C)

One Hot 
Encoding

Ta
rg

et
 v

al
ue

All design 
choices are 
equidistantC1

C3
C2

C4

PAL

10 11

5
4

8
9

Fig. 1 LHS: Schematic depiction of the categories of methods currently
used for material modeling and discovery, showing some example ap-
proaches. PAL 2.0 lies at the intersection of physics-informed and pre-
dictive models used in material discovery methods. RHS:[Top] Represen-
tation of the commonly used “one-hot-encoding” for design choices and
[below] a similarly inspired representation of the concept of “similarity”
obtained by using physical descriptors instead.

scale studies, there is also a need to have a machine learning tool
that is adept at handling small data sets, often containing less
than 50 data points, for which a neural network approach is un-
tenable.

Computational tools that can accelerate material discovery gen-
erally fall under one of the following three paradigms: (i) fea-
ture engineering, (ii) predictive models for molecular properties,
and (iii) optimization algorithms, Fig. 1. Feature engineering
refers to the extraction of correlations between variables using
raw data. Such methods enable us to gain physical and chemi-
cal insights into material systems that can then inform material
discovery tools. For example, in Ref 4, the authors used a mod-
ified version of the SISSO5 method to extract features that as-
sist in classification of solid-state materials into classes such as
perovskites, spinels and rare-earth intermetallics. On the other
hand, availability of large data sets through sources like the Ma-
terials Genome Initiative6,7 and high-throughput quantum chem-
istry frameworks has led to the development of several neural
network and machine learning models for molecular property
prediction.8,9 Such models can be used to predict properties of
unknown materials and hence inform the material discovery pro-
cess. However, while feature engineering and predictive model-
ing offer tools for material discovery, the challenge of navigating
potential molecular combinations persists. That is where the third
paradigm of methods lies that we call “optimization algorithms”
or, more commonly, material discovery methods. These methods
provide efficient search and optimization strategies to navigate
the often overwhelming combinatorial space of materials candi-
dates.

A brute-force approach to finding the optimal elemental com-
bination of a material for a given target (e.g., the best solar cell
efficiency) involves randomly and exhaustively exploring the ma-
terial space. This approach does not leverage information from
previously explored candidates nor expert domain knowledge to
improve its search strategies. Additionally, it is typically infeasible
unless examining smaller combinatorial spaces. Likewise, evolu-
tionary methods, like Genetic Algorithms12, have also been used

for categorical domain optimization. However, such evolutionary
methods are locally exploitative and therefore, can get trapped in
locally (rather than more globally) optimal regions.

In recent years, Bayesian Optimization (BayesOpt) has become
a widely adopted algorithm for global optimization of black-box
and functions that are expensive to evaluate.13–16 It has been
used to optimize a wide range of problems, including automatic
algorithm configuration, automatic machine learning toolboxes,
and optimization of combinatorial spaces for materials and drug
discovery.10,17–24 A BayesOpt algorithm essentially requires two
sets of functions: (i) a “surrogate model” for the objective func-
tion and (ii) an “acquisition function” that is updated, based on
the surrogate model, to provide a recommendation for the next
candidate to explore. Some typical examples of surrogate mod-
els include Gaussian Processes,25 random forests26 and Bayesian
Neural Networks.27 The most commonly used acquisition func-
tions include probability of improvement,28 expected improve-
ment,29 and upper confidence bound.30

The application of BayesOpt in material discovery requires ad-
ditional considerations. Unlike categorical optimization in ma-
chine learning and hyperparameter optimization, the notion of
similarity and representation of candidate choices becomes im-
portant in material science applications. Commonly used “one-
hot-encoding” representations for chemical and material domains
fail to capture the true physical and chemical similarity between
candidate choices, as depicted schematically in Fig. 1 (top right).
The drawback arises from using binary variables to depict a de-
sign choice such that all design choices are equally similar to each
other since they all differ by one Hamming distance. Another
representation for materials involves providing compositional in-
formation and structural information in terms of graphs.17 How-
ever, training models to accurately encode structural data require
large training data sets that are frequently unavailable. In reality,
there is an obvious similarity between materials that have simi-
lar chemical and physical properties. Optimization strategies that
can leverage physical and chemical information to determine sim-
ilarity between candidate choices are expected to accelerate the
material discovery process, as was demonstrated by Hase et al.10

through the innovative Gryffin method.

In this paper, we have developed a new materials discovery
algorithm, Physical Analytics pipeLine 2.0 (PAL 2.0), in which
we leverage domain knowledge, appearing in the guise of chemi-
cal and physical properties, to develop surrogate models that are
then used within a BayesOpt framework. A description of the con-
struction and workflow of PAL 2.0 are discussed in the following
sections and in the SI.

2 RESULTS

2.1 Physical Analytics pipeLine, PAL 2.0

Addressing the directions highlighted above, we present a new
BayesOpt algorithm, Physical Analytics pipeLine 2.0 (PAL 2.0) in
this work that is intended to be a successor to our earlier ver-
sion.11 PAL11 was specifically developed to optimize the solution
chemistry of solution-processed metal halide perovskites by find-
ing optimal pairing of solvent and metal halide perovskite com-
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positions that are the precursors to producing high-quality thin
films1,31–33 and reduce the appearance of crystalline intermedi-
ates.2 PAL is based on a Gaussian Process (GP) model with a lin-
ear prior mean function. In PAL, the combinatorial space of the
perovskite constituents is encoded using one-hot-encoded vectors
and the solvent is represented by its dielectric constant and den-
sity, where the descriptors are chosen based on expert domain
knowledge. Although PAL used physics-based GP models, the
method is specific to the material system and relies on expert
knowledge to choose the physical descriptors that optimally en-
code the input space.

The new approach, PAL 2.0, presented in this paper, is a gener-
alization of that original version of PAL.11 Both involve a Bayesian
Optimization framework that uses a physics-informed Gaussian
Process (GP) model. However, there are three key improvements
and novel capabilities of PAL 2.0 compared to its progenitor PAL
version. The new proposed framework involves: (i) descriptor
selection for the search space based on decision trees, (ii) con-
struction of a physics-based prior mean function using neural net-
work (NN) models, and (iii) construction of a GP model using
the NN prior mean function and subsequent use of this model
in BayesOpt. Mathematical details of the model construction are
provided in the Methods section (Sec. 4) and the overall work-
flow of the method can be seen in Fig. 2. Note that details of the
nomenclature used in this work are given in the SI (Sec. S1).

As mentioned earlier, every material can be characterized in
terms of its physical and chemical properties, but a priori knowl-
edge of which properties are more important in optimizing the
target variable is often lacking. By using XGBoost as part of the
PAL 2.0 framework, we pick out the physical descriptors that are

most representative of the material domain, making the search
essentially unbiased toward expert knowledge, which, in many
cases, is unknown. The algorithm typically finds a small num-
ber of important properties that correlate with the chosen target
(rather than just one) and, importantly, can autonomously deter-
mine their relative weighting in a manner that even an expert
might be unable to do. In the PAL 2.0 workflow, the physical de-
scriptors chosen by XGBoost become the input variable set for the
Gaussian Process (GP) surrogate model.

When fitting GP models on scarce data such as those encoun-
tered in materials discovery, the main challenge is to obtain suit-
able prior knowledge and encode it into the model either through
the kernel function or the mean function. In the machine learning
literature, research has mainly focused on approximating the ker-
nel function of the GP model using NNs34. Training deep kernel
functions, however, poses two main constraints: (i) they require
large training datasets and (ii) they have to be positive definite
in order to define an inner product on the material search space.
The mean function, in comparison, has no such constraints and
therefore, can be trained more easily to create a predictive GP
prior. Furthermore, the assumption that all prior information can
be encoded in the kernel function of the GP model when using a
zero mean function (m(xD) = 0) does not always hold. For exam-
ple, if the optimization landscape is such that in some regions we
have a non-zero objective function value and in other regions the
objective function value is zero, we can easily prescribe a prior to
the mean function that will encode this information exactly but
we cannot ensure the same with a kernel function. Therefore, ob-
taining an informed prior mean function allows more flexibility
and guarantee in encoding prior knowledge. The contribution of
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our method is to create such a physics-based prior mean function
using Neural Networks (NN). Having a predictive and accurate
description of the optimization landscape allows the acquisition
function to quickly find the optimal material in a few iterations.
As a result, the NN ‘prior mean function’ ultimately boosts the
performance of the Bayesian Optimization step, as seen in the
results.

We demonstrate the performance of the PAL 2.0 methodology
on three material data sets relevant to energy applications.

1. Organic Semiconductors:

(a) Target: Electron affinity of the semiconducting poly-
mer.

(b) Objective: Maximize electron affinity.

(c) Possible combinations: 64.

2. Mixed B-site Perovskites8:

(a) Target: Band gap of perovskite crystal.

(b) Objective: Minimize band gap.

(c) Possible combinations: 244.

3. Perovskite molecule-solvent binding energy11:

(a) Target: Intermolecular binding energy of perovskite
molecule and solvent.

(b) Objective: Maximize Perovskite-Solvent binding en-
ergy.

(c) Possible combinations: 240.

We also stress test the method by assessing the effect of vary-
ing amounts of initial training datasets and by running PAL 2.0
on a very large dataset of approximately 70000 COF structures
that find applications in methan storage35. These stress tests are
added in the SI (see Sec. S6). In the subsequent sections, we
describe each data set, the data set source and the BayesOpt per-
formance of different methods. For each dataset, the prediction
accuracy of the surrogate models (GP-0 and GP-NN) is compared
using mean squared error which is computed as:

MSE =
1
n

n

∑
k=1

((yk)− (ŷk))
2 , (1)

where n is the total number of data points over which the error
is being computed, yk is the true target property value and ŷk is
the predicted target property value. It is worth noting here that
for all the results discussed in the succeeding sections, both the
surrogate models (GP-0 and GP-NN) are trained using the same
number of initial training points and the input variables to both
models are the descriptors selected using XGBoost.

2.2 Discovery of doped p-type organic semiconducting poly-
mers

Organic semiconductors, composed of small molecules or poly-
mers, offer flexible, lightweight, and adaptable optoelectronic
properties distinct from their inorganic counterparts like silicon.

Within this class, p-type organic materials, which are made by
introducing acceptor impurities into the framework of the semi-
conductor, specialize in transporting positive charge carriers, or
holes. In this study, we explore the electronic properties of doped
p-type organic semiconducting polymers, which have applica-
tions in organic light-emitting diodes (OLEDs), organic solar cells
(OSCs), and thermoelectrics, and can be manufactured via highly
scalable solution processing protocols.36,37 For doping to occur in
solution, the conducting polymer and dopant must experience a
dative bond-based interaction (forming a “doped complex”) in a
solvent medium. Thus, there are three distinct chemical species
in the solution: the polymer, dopant, and solvent. Processing via
a solution-based approach can create a large combinatorial space
generated from a chemically diverse set of polymer, dopant, and
solvent design choices.

We analyzed a DFT-generated small subset of this design space
of four design choices for each species, leading to 64 unique
combinations of the resulting p−doped semiconducting material.
This data originates from a detailed study on three polymer seg-
ments, each differentiated by its Lewis basicity, backbone func-
tionality, and solid-state microstructural attributes.38 Within this
data set, PAL 2.0 was leveraged to identify which properties, if
any, from a set of physical constants available from open-source
databases39 and DFT calculations, are most important when op-
timizing a polymer-dopant-solvent system for the Electron Affin-
ity (EA) of the doped complex. We selected the electron affin-
ity as the target metric because p−doping is known to enable
charge transfer if there is a sufficient offset between the polymer’s
HOMO/Ionization Potential (IP) and the dopant’s LUMO/EA40.
Details on the DFT methods used to calculate the electron affinity
for each combination are given in the SI (Sec. S3 A).

PAL 2.0 achieved an optimal target value while only exploring,
on average, roughly 30% of the design space, a modest improve-
ment over existing optimization algorithms (see Figure 3). The
fraction of the space explored is determined as

% explored =
# of materials explored during BO

Total number of materials in the dataset
, (2)

in Fig. 3 (C). The numerator in the above equation includes the
percentage of data used for initial training of the surrogate mod-
els. The reader can find a detailed description of other optimiza-
tion algorithms in Sec. S2. The results shown describe a distri-
bution of the space explored to find the optimal material over
200 BayesOpt trials. These trials used randomly initialized input
data from 6 combinations, representing 10% of the entire space.
Our results also identified that the dopant’s LUMO property had
an overwhelmingly relative importance to the model, while the
polymer’s HOMO did not. This is consistent with the finding in
Mukhopadhyaya et al.38 that the EA of the dopant dictates that of
the entire polymer-dopant complex. It is likely that solvent prop-
erties were not selected for this target because the solvent screen-
ing effects would be minimal over the polymer-dopant bond dis-
tance, usually less than 3 Å. Further, it is possible that the num-
ber of thienothiophene rings present in a repeat segment of the
polymer, designated as "Polymer-TT" in Figure 2, is selected as be-
ing of minor importance because thienothiophene is an effective
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Lewis acid, which would help in the electron-accepting abilities
of a polymer-dopant complex.

2.3 Discovery of optimal metal halide perovskite combina-
tions

Metal Halide Perovskites (MHPs) have garnered attention due
to their exceptional electronic and optical characteristics. These
properties position them as useful materials in applications like
photovoltaic devices, LEDs, and X-ray detectors. A notable advan-
tage of perovskites is the tunability of their composition and pro-
cessing methods, which has yielded solar cell efficiencies exceed-
ing 25%.41,42 Furthermore, they can be processed at room tem-
perature using commonly available elements. Within the realm of
solar cells, the adaptability of perovskites presents both promise,
due to the witnessed boost in efficiencies and stabilities, and
challenges stemming from the multitude of design choices. We
leverage PAL 2.0 to identify perovskite compositions that (i) pos-
sess strong photovoltaic capabilities, and (ii) pair with solvents to
yield the best quality of solution-processed thin films.

2.3.1 Discovery of metal halide perovskites with photo-
voltaic properties

The bandgap is a crucial property for metal halide perovskites due
to its direct influence on their optoelectronic properties and per-
formance in various applications. In this example, we highlight
PAL 2.0’s role in identifying perovskite combinations with the low-
est bandgap from a recent data set comprising of mixed B-site
perovskite species produced via DFT by Mannodi-Kanakkithodi et
al.8

The data set features 244 unique formulations, sourced from
specific mixtures of three halide ions, four A-site cations, and six
B-site cations. In terms of halides, the selection is made up of
the routinely utilized chloride, bromide, and iodide ions. For the
B-site, while the most commonly adopted species are lead (Pb)
and tin (Sn), the data set also incorporates options to consider
germanium (Ge), calcium (Ca), barium (Ba), and strontium (Sr).
On the A-site front, the options consist of formamidinium (FA),
methylammonium (MA), cesium (Cs), rubidium (Rb), and potas-
sium (K). The design choices for each feature are depicted in Fig-
ure 4. The “property basket” consists of the descriptor choices
selected by Mannodi-Kanakkithodi et al., which were utilized in
predicting the bandgap of the mixed perovskite species.8 Since
the perovskites consist of B-site alloys, properties for the B-site
are given as a weighted average of the elemental physical prop-
erties. The weights are given by the elemental composition at the
B-site.

To pinpoint the combination with the lowest bandgap (MA, Pb,
I), PAL 2.0 (GP-NN) proved highly efficient. On average, it ex-
plored just 11% of the available design space after 200 BayesOpt
trials (see Figure 4). In contrast, the random search on average
explored 50% and aGP model with a 0-prior mean choice (GP-0)
searched 15% of the space. These trials used randomly initialized
input data from 24 combinations, representing 10% of the en-
tire space. Our feature engineering approach identified the elec-
tron affinity of the A-site cation as the most important descriptor
in representing the design choices of this feature. For the B-site

cation, the electron affinity and ionization energy of the ion were
identified as important descriptors, but their importance paled
in comparison to the electronegativity - which was identified as
the most important differentiator between B-site cation design
choices. Lastly, for the halide ions, ionic radius and density were
identified as the most relevant properties.

2.3.2 Design of metal halide perovskite and solvent pairs for
high-quality solution-processed thin films

In the solution processing of metal halide perovskites, the
choice of solvent medium plays a pivotal role in determining
the formation, morphology, and performance of the resulting
films.1,32,33,43,44 In this application, our goal was to optimize the
design of solution-processed films at a molecular level by maxi-
mizing the intermolecular binding energy between the perovskite
components and the solvent medium. This binding energy has
been shown to influence the properties of the resulting thin film
at a macroscopic scale.1,31,33,45 We leveraged the data set from
Herbol et al. 11 for lead-based MHPs to identify solvent and
perovskite constituent pairs that yield the highest intermolecular
binding energy.

The examined data set consists of five key features: the
solvent molecule, choice of A-site cation (A), and choices of
the three halide ions (X, Y, Z). Together with a central lead
ion, these form the Pb-A-XYZ perovskite structure. The A-site
design choices includes cesium (Cs), methylammonium (MA),
and formamidinium (FA), while halide options consist of io-
dide (I), bromide (Br), and chloride (Cl). We provided eight
solvent options based on a list of commonly used solvents for
perovskite processing. They include: Tetrahydrothiophene 1-
oxide (THTO), dimethyl sulfoxide (DMSO), dimethylformamide
(DMF), N-methyl-2-pyrrolidone (NMP), Gamma-butyrolactone
(GBL), acetone, methacrolein (METHA), and nitromethane (NI-
TRO).

We selected properties for each feature (X/Y/Z-Halides, A-site
Cation and Solvent) based on prior physical knowledge of their
potential impact on the binding energy (our target variable). We
explored four basic properties for the halide features: electroneg-
ativity, electron affinity, ionization energy, and ionic radius of the
halide. For the A-site cations, we considered the ionic radius,
the enthalpy of formation, the dipole moment and the number
of potential hydrogen bonding atoms of the A-cation. Finally,
for the solvent feature, we considered six properties: the Gut-
mann donor number (DN),1,44,45 Lewis acceptor number (AN),46

lithium cation affinity (LCA),47 dielectric constant,48 dipole mo-
ment and molar volume (MV) of the solvent molecule.

Using PAL 2.0’s GP-NN, we identified the combination with the
highest binding energy (Br, Cl, Cl, FA and THTO) by exploring
11% of the available design space. Comparatively, it took GP-
0 with filtered property descriptors 13% percent of the design
space to locate the optimum combination. A OHE GP-0 model
took 16 percent of the space to do so (with large variability in
its convergence results), see Figure 5. Other methods, like SMAC
and HyperOpt explored over 20-40% of the design space before
they were able to locate the best combination. Additionally, these
benchmark methods had large variability in their results over the
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BayesOpt trials.

For property descriptors, there were no standout properties se-
lected to represent the halide and cation features, each selected
property having a similar level of importance. On the other hand,
two standout properties (dielectric constant and donor number)
were identified for the solvent feature to differentiate between the
various solvent design choices. The choice of these properties is
significant since the simulations that created this dataset are run
with an implicit solvent thereby making the dielectric constant an
important differentiator for the solvent choices. Additionally, the
ability of PAL 2.0 to discern significant features for the solvent
through its XGBoost component exemplifies the system’s capa-
bility to surpass expert selection. The initial version of PAL, as
presented in Herbol et al.11, utilized a physics-based prior reliant
on expert-derived factors such as the dielectric constant and sol-
vent density. In contrast, PAL 2.0 independently recognized and
attributed significance to these same features, underscoring the
advanced feature selection capabilities of XGBoost and its effec-
tiveness in this context.49 Leveraging this capability, PAL 2.0 as-
tutely pinpointed the Gutmann donor number (DN) as a critical
property—a measure acknowledged for its efficacy in isolating
potent solvents for the solution processing of metal halide per-
ovskites.1,31,45,48,50–53

3 DISCUSSION
In this paper, we have described the construction of a Physical
Analytics pipeLine algorithm, PAL 2.0, that builds on a Gaussian
Process-based Bayesian optimization framework to accelerate op-
timization of the large combinatorial spaces that are inherent in
many material discovery problems.

The novelty of our work lies, firstly, in the incorporation of im-
portant physical descriptors selected by the XGBoost algorithm to
enhance the physical realism of our surrogate model. Secondly,
in the construction of a physics-based prior mean using a neu-
ral network approach. The net result of these novel approaches
is to leverage physical domain knowledge specific to the system
of interest. However, it should be noted that another advantage
is that the descriptor selection done by PAL 2.0 dispenses with
the need/requirement to be an expert with an understanding of
which descriptors/features are the most informative for the sys-
tem. A semi-expert user is free to provide a list of descriptors that
might be important and the method will -autonomously- choose
the most appropriate ones from that list. As a result, PAL 2.0
is able to find the optimum target objective faster (i.e., in fewer
iterations) than many state-of-the-art optimization methods, in-
cluding SMAC,54Hyperopt,55 and Genetic Algorithms.12

The performance of PAL 2.0 is demonstrated on three mate-
rial data sets which include doped p-type organic semiconductors
and perovskites. Both these classes of materials show immense
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Fig. 4 Performance of the GP-NN model on the material discovery of metal halide perovskite solar cell materials. (A) Material Design Space, (B)
Physical Property representation of material design features shown in (A), (C) Predictive accuracy of GP-NN model against state-of-the-art GP models
commonly used in material discovery, (D) Superior Bayesian optimization performance of the GP-NN model (orange box) compared to state-of-the-art
models (indicated by needing less of the parameter space to explore before successfully reaching its target, and (E) Selection of important (well-
correlated) physical properties selected by the algorithm from the property space in (B).

promise for the next generation of solar cells, but the algorithm
itself is completely materials-agnostic and indeed can be used for
applications well outside the realm of materials. Any application
for which the parameter set is either large enough to discourage
a systematic search or the data are sparse and/or expensive (i.e.,
tackling both ends of the data set size), and the features that are
most closely correlated with the objective are largely unknown
is a suitable candidate for exploration using PAL 2.0. In each
of the material cases we studied here, we have shown that PAL
2.0 outperforms all other methods we tested. Within the PAL 2.0
framework, the GP-NN model that combines some neural network
assistance in concert with BayesOpt exhibits the best convergence
and predictive capabilities.

Furthermore, the surrogate model constructed by PAL 2.0 pro-
vides valuable chemical insight into the material system, which
can be transferred to learning domains outside of the training
set. For example, in the doped p-type semiconducting polymers,
of all the descriptors provided, LUMO was selected by the method
as the most important physical descriptor when optimizing for
EA. This is consistent with previous findings which show that the
dopant’s EA is most correlated to its LUMO40 and that the EA
of the dopant dictates the EA of the entire polymer-dopant com-
plex.38 Additionally, earlier studies research have underscored
the significance of the Gutmann donor number (DN) and dielec-
tric constant as pivotal descriptors for distinguishing solvents in

the solution processing of metal halide perovskites.1,31,45,48,50–53

These findings show that the physics-based surrogate model, em-
bedded with necessary property descriptors, could be a great
starting point to find material candidates in similar domains with
scarce data.

In summary, the PAL 2.0 approach exhibited the following ad-
vantages:

1. It outperforms or, at the very least, is competitive with,
the optimization performance of other BayesOpt approaches
that we tested.

2. It has the ability to select physically relevant descriptors for
the surrogate model and their relative weighting

3. The test errors (MSE values) of the GP-NN surrogate model
are lower than other models, implying that GP-NN is more
predictive,

4. Having a model that is predictive opens up the possibility of
optimization in different ranges of target values for different
applications where data are scarce, and finally,

5. Can initiate material discovery for a material system with as
few as 25 observations from experiments or computation.

4 MATERIALS AND METHODS
This section provides details of the PAL 2.0 methodology.
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4.1 PAL 2.0 Methodology

PAL 2.0 is a physics-based Bayesian Optimization framework. The
PAL 2.0 logic flow is shown in Algorithm 1.

Algorithm 1 PAL 2.0 methodology

Require: Initial data samples and physical descriptors list for
each design choice

1: Estimate most important set of descriptors (D) using XGBoost
2: Estimate hyperparameters of the prior to the GP mean func-

tion, i.e. the neural network model (m(xD))
3: Estimate hyperparameters of the prior for the kernel function

of the GP model
4: Compute the posterior probability distribution based on the

prior (m(xD) and k(xD,x′D)) and initial data samples
5: repeat
6: Select new observation (x(t)D ) based on the acquisition

function
7: Obtain objective function value at (x(t)D ), f (x(t)D )

8: Update posterior with (x(t)D )
9: Every ‘n’ iterations, update the GP model hyperparameters

10: until ‘N’ candidates are explored
11: return Best material explored

Each step of the algorithm is discussed in the following subsec-
tions.

4.1.1 Descriptor selection

The first step in our methodology involves descriptor selection for
individual design features from the set of descriptors provided by
the user. This step is vital as the goal is to enable the method
to facilitate material discovery in a physics-driven manner, with
the descriptors establishing that link. In machine learning, three
common approaches guide the descriptor selection process: wrap-
pers, embedded methods and filters.56 The wrapper approach em-
ploys the designated regression or learning algorithm, such as
Gaussian Process Regression (GPR), to uncover the significance
of features. In contrast, filters are independent of the regression
and learning algorithms, filtering out features before the regres-
sion task. This filtering is performed using statistical measures
such as Fisher’s scores57 or information gain.58 A Fisher score is
the gradient (or derivative) of the log likelihood function. Infor-
mation gain quantifies the knowledge obtained about one random
variable through the observation of another. Embedded meth-
ods integrate the strengths of wrappers and filters: they possess
the iterative nature of wrappers while maintaining the process-
ing speed of filters, but with superior accuracy. In this work, we
employ the embedded method approach using Extreme Gradient-
Boosting (XGBoost).49 One major advantage of using XGBoost
over other commonly used methods, such as LASSO (Least Abso-
lute Shrinkage and Selection Operator),59 or filtering based on
Pearson correlation coefficients,60 is that, through pruning of the
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decision trees, we are able to extract a ranked list of the most
important descriptors for a given target material property.

4.1.2 Physics-informed Prior Mean Function Construction

Suppose we represent the objective function by f (xD), where xD

is a vector representing the design choices based on the physical
descriptors (D) chosen by XGBoost. The surrogate model in the
Bayesian Optimization framework approximates f (xD). In this
work, we consider that f (·) is drawn from a GP with a prior mean
function m(xD), and a covariance function, k(xD,x′D). The poste-
rior probability distribution on the mean function (µ i) and covari-
ance (vi) of the GP model is evaluated based on new observations
(x(t)D ) and the prior using the following equations,

µ
i = m(xD)+ k(xD,x

(t)
D )(k(xD,x

(t)
D )+η

2I)−1(y(xD)−m(xD))

vi = k(x(t)D ,x(t)D )− k(xD,x
(t)
D )(k(xD,x

(t)
D )+η

2I)−1k(xD,x
(t)
D )T(3)

A popular prior mean function choice is the 0-mean function,
m(xD) = 0. This prior mean function is useful when we have very
few, or no, observations of our system. It helps in preventing ad
hoc assumptions and biases that might be included in the model
by forcing a functional prior mean function choice. However, in
the case of material discovery, we often start with some observa-
tions of the space. In this work, we leverage these observations
to pick out the most relevant physical descriptors, as discussed in
Sec. 4.1.1, and construct a prior mean function for the GP model.
The novelty of our approach lies in the construction of a physics-
based prior mean function (m(x)) using Neural Networks (NNs)
for the GP model. The NN prior mean function takes the selected
descriptors (D) as the input vector and predicts the optimization
target as the output. We use a mean squared error loss func-
tion and the Adam optimizer61 to train the NN. Additionally, we
use L1 and L2 regularization on the weights of the NN to pre-
vent overfitting the model. Once the NN is trained, we obtain the
prior mean function for the GP. The NN is trained using the
initial set of observations and then kept fixed through the mate-
rial discovery process. We refer to this physics-based GP model
as the “GP-NN” model. An advantage of employing a NN prior
mean function over a 0-prior mean function is the ability to har-
ness available information through a model trained on the input
data. Additionally, the NN prior creates a predictive model of the
space with just a few observations and therefore, improves the
BayesOpt performance of the GP-NN surrogate model. However,
the limitation of such a model is that it requires some amount of
initial data to train off of.

Finally, we consider that two materials are similar if their phys-
ical descriptors (D) are similar. Here, we measure the similarity
using a 5/2 Matérn kernel. Formally, a 5/2 Matérn kernel is used
to estimate the covariance (k(x(1)D ,x(2)D ) for the property descrip-
tors representing the material design choices (see equations 4).

kMatern(5/2) (x1,x2) = σ
2
m

(
1+

√
5r+

1
3

5r2
)

e−
√

5r,

r =

√
∑

D
i=1 li

(
x(1)D,i − x(2)D,i

)2
,

(4)

where x(1)D and x(2)D represent two property descriptors vectors for
the material design choices. Here σm and l represent the smooth-
ness and length scale hyperparameters of the kernel that are
optimized for each t Bayesian optimization iteration (see Algo-
rithm 1), while r measures the Euclidean distances between the
two feature vectors. The hyperparameters of our GP-NN model
(from the mean function and covariance) are optimized using a
“maximum likelihood estimate” approach62 in concert with the
Adam optimizer.61

4.1.3 Acquisition Function and Bayesian Optimization

We used the commonly deployed “expected improvement” (EI)
acquisition function15 to determine the next promising sets of
experiments to conduct for each reaction. We have found EI to
work well in the past for our studies of metal halide perovskite
systems.11,63 We utilized PyTorch’s Bayesian optimization frame-
work (BOTorch)64 to conduct these experiments. The overall
work flow for the PAL 2.0 methodology is shown in Fig. 2.
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