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NestedAE: Interpretable Nested Autoencoders for Multi-
Scale Material Modeling†

Nikhil Thota,‡b Maitreyee Sharma Priyadarshini‡ab and Rigoberto Hernandez∗abc

We introduce an interpretable machine learning architecture,
NestedAE, for multiscale materials using nested supervised
autoencoders. We benchmarked the performance of NestedAE
on two databases: (1) a synthetic dataset created from nested
analytical functions whose dimensionality is therefore known a
priori, and (2) a multiscale Metal Halide Perovskite (MHP) dataset
that is a combination of an open source dataset containing atomic
and ionic properties, and a second dataset containing device
characterization using current density-voltage (J-V) analysis. The
NestedAE architecture was found to have higher noise robustness
and lower reconstruction losses when compared to a vanilla
autoencoder (AE). Its application on the MHP dataset revealed
links between crystal scale properties and device performance in
agreement with earlier experimental observations.

New Concepts
Multiscale modeling and characterization of materials is of
paramount importance in ensuring device performance and ro-
bustness. The ensuing multivariate figures of merit are proving to
be necessary in next-generation technologies capable of address-
ing global challenges in health, sustainability and energy. In this
paper, we introduce a neural network architecture—viz a Nested
Autoencoder (NestedAE)—to correlate and predict material prop-
erties at many length scales using information from multiple data
sources. Each physical scale of the material is represented by
an autoencoder. The key contributing factor and novelty of the
network architecture is the flow of “important” information from
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one scale to another through the latent space of each autoencoder.
While machine learning techniques have been used to connect the
atomic-scale properties of Metal Halide Perovskites (MHPs) with
macroscopic device properties, we find that incorporating prop-
erties through intermediate (or middle) scales provides a richer
description of the materials, and expect that its inclusion will be
useful in the future design of these and other materials.

1 Introduction

The need to address the alarmingly high carbon footprint of fossil
fuel based energy sources is driving the development of reliable,
efficient and economically viable renewable energy sources.1 So-
lar cells based on Metal Halide Perovskites (MHPs) are a popular
choice for addressing this challenge. Unfortunately, a full char-
acterization of the multiscale behavior of these materials is not
yet available, but data science techniques offer a promising route
enabling design with or without it.

In general, multiscale materials modeling has become a vital
tool in the discovery of functional materials, the characteriza-
tion of the physical processes governing material behavior, and
the design of materials with targeted properties across different
length scales.2–5 Physics-based (or bottom-up) approaches are
typically built up from well-understood models at the finest (or
finer) scales through exact or approximate coarse-graining meth-
ods.6–8 Top-down approaches typically rely on the identification
of coarse-grained variables interacting through effective—that is,
optimized or semi-empirical—equations of motion to describe the
behavior at a given scale and infer the necessary properties of the
materials at the finer-grained scales.9,10 Here, we provide one an-
swer to the question of whether machine learning techniques can
address such hierarchies of scales in a complex material system
without requiring an a priori assumption about the direction of
the scales—e.g., top-down or bottom-up.

Machine learning algorithms have been used to predict many
properties of MHP materials such as formability, perovskite sta-
bility, bandgap, and Power Conversion Efficiency (PCE).11–13 In
this context, Variational Autoencoders (VAEs) have received a lot

Journal Name, [year], [vol.],1–8 | 1

Page 1 of 8 Materials Horizons



of attention in the past couple of years due to their ability to
construct latent spaces defined by prior probability distributions
which are often supervised for the material or molecule property
targeted for prediction.14 Equipped with an appropriate sampling
strategy, one can begin traversing and sampling points from re-
gions of the latent space, and then decode them back to the orig-
inal feature representation space. VAEs have been showcased in
designing molecules,15 Perovskite Solar Cell (PSC) bandgap pre-
diction16,17 and PSC PCE prediction.18

In this work, we develop an alternate strategy for design-
ing materials—and MHPs in particular—using a Nested Autoen-
coder (NestedAE) framework in which we connect a a series of
Autoencoders (AEs) representing different scales. The successive
transfer of information from one AE to the next has previously
been used to build deep neural networks by transferring informa-
tion from one AE to the next.19 In this pretraining strategy, deep
neural nets are built layer-wise in such a way that each added
hidden layer is trained to reconstruct the inputs coming from the
layer before it, and thus essentially acts as an AE. By initializ-
ing weights of the hidden layers closer to the local optimum, this
greedy layer-wise unsupervised training was found to yield better
accuracy at classification tasks similar to the ones we are target-
ing.19–21 Another way to improve the training of deep neural net-
works for such a classification task is to jointly train each hidden
layer for both classification and reconstruction. By reducing the
dimensionality of the hidden layers, one can arrive at compact
representations of the inputs.22

The NestedAE method is distinct from the previous approaches
noted above in two primary ways: First, in contrast to a single
deep neural network built on an entire database, each AE in the
NestedAEs has a distinct architecture and is trained on its own
dataset. Second, in previous approaches, the decoder only has
to reconstruct the input coming from the previous hidden layer
while in NestedAE the AE has to reconstruct both the latents from
the previous (or finer-grained) AE in addition to the features from
the dataset it is trained on. In Sec. 3.1, we demonstrate the ef-
ficacy of this hierarchical approach using a synthetic database.
Specifically, we benchmark the use of NestedAE in terms of re-
construction errors and robustness to noisy data.

We then demonstrate the applicability of NestedAE to the de-
sign of MHPs. These materials are a class of perovskite crys-
tals where the A site is occupied by an organic or inorganic
cation; e.g., cesium (Cs), methylammonium (MA) or formami-
dinium (FA). The B site is occupied by a transition metal cation
usually Sn or Pb. The X site is occupied by a halide usually Cl,
Br or I. The rise in popularity of these crystals as solar cell ma-
terials is fueled by their ease of synthesis and promising photo-
voltaic properties. The highest reported efficiency for a 1 cm2

single-junction perovskite solar cell is 24.35 % while that for a
1 cm2 perovskite/Si multi junction solar cell is 33.7 %.23 Their
high specific power (viz. power to weight ratio), compatibility
with flexible substrates and radiation resistance properties have
led to recent interest for their use in space technologies.24 They
can also be synthesized to take on a variety of morphologies. 0D
perovskites or perovskite quantum dots are isolated metal halide
octahedra surrounded by organic or inorganic cations. 1D per-

ovskites or perovskite nanowires are metal halide octahedra con-
nected in a chain. 2D perovskites have sheets of metal halide
octahedra spaced by large organic cations. 3D perovskites which
are the focus of this study form a 3D network of metal halide oc-
tahedra with inorganic cations or small organic cations occupying
the voids of the network. Taken together, this leads to an over-
whelming number of material compositions and processing con-
ditions in optimizing the selection of a suitable MHP as is seen in
most material design problems. Intuition may guide the choice
toward a lower-dimensional subset of compositions and process-
ing conditions favorable for fabricating a device with high per-
formance. However, it is not a priori obvious how varying these
choices will affect the performance of the device, or how to un-
ravel what is likely to be a highly nonlinear correlation between
them. For example, properties of the ions in the MHP crystal
affect charge transport properties in the 3D MHP metal halide
network,25, and the type of extracting layers used in the device
stack affects how efficiently these charges can be extracted to
their respective contacts. How these properties at different phys-
ical length scales synergize to affect device performance remains
unknown. In Sec. 3.2, we show how the 2D latent space of the
last AE in NestedAE can be used to design a PSC for a given PCE.

Thus, the NestedAE method creates a bridge across material
properties measured at multiple physical scales using data driven
techniques. It is an interpretable machine learning model that
uses AE architectures as building blocks. Each AE represents a
single physical scale, and information is transferred between pairs
of scales via the latent space of the finer-grained scale AE This
approach is somewhat analogous to value iteration in a Markov
Decision Process (MDP)26 in the sense that information is trans-
ferred as subsequent AEs depend on the latents of the preceding
AE. More generally, the NestedAE framework also includes phys-
ical properties of the current scale among its inputs.

In summary, below, we first develop the use of the theory for
NestedAE (Sec. 2.1) on a synthetic multiscale dataset (Sec. 2.2),
and on a multiscale MHP dataset constructed from multiple
sources (Sec. 2.3). The ensuing results for these two datasets in
Secs. 3.1 and 3.2, respectively suggest that the NestedAE method
presented here can be applied to any type of multiscale materials
with distinct properties at different physical scales.

2 NestedAE

2.1 Theory and Formulation

NestedAE is a novel neural network architecture designed to build
multi-scale material models by bridging material properties mea-
sured/computed at different physical scales. The building blocks
for the NestedAE method are the AEs at each of the scales. For
example, let us consider N physical length scales. This implies
we have N sequentially trained AEs. At each scale, the encoder-
decoder is trained and the latent space is learned. For the subse-
quent scale, the input features include the latent variables from
the previous scale and additional physical properties from the cur-
rent scale. This process of “nesting" latents within the latents of
the successive autoencoder can be continued for the N autoen-
coders. Figure 1 gives an overview of this architecture when
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trained in an unsupervised and supervised manner. Details re-
garding the training strategies and loss functions used for training
on the synthetic dataset are described in Sec. 2.2.

For the MHP dataset, the NestedAE architecture involves super-
vising the latent space for prediction of MHP properties. In this
architecture, a predictor, which is a feed forward neural network
is attached to the latent space of the autoencoder at a given scale.
The inputs to the predictor are the latent variables and the output
is the MHP property, for example, the band gap. In this training
scheme, the encoder, decoder and predictor are trained simulta-
neously in a multi-task learning format as described in Sec. 2.3
and Algorithm 2.

A : B : 

L1

Predictor

x1

y1

x̂1

L2x2

y2

x̂2, L̂1

L3x3

y3

x̂3, L̂2

...

Up to xN

L1x1 x̂1

Encoder Decoder

Latent

L2x2 x̂2, L̂1

L3x3 x̂3, L̂2

...

Up to xN

Fig. 1 Unsupervised (A) and supervised (B) NestedAE architecture.

2.2 NestedAE architecture and training scheme for synthetic
dataset

In an unsupervised learning setting, the training of a NestedAE
is the natural extension of that for a traditional AE. Each of the
AEs in the NestedAE represents a particular scale, and they are
trained sequentially. The training scheme is demonstrated on the
synthetic dataset and the results are reported in Sec. 3.1. In this
illustrative example, the first—viz finest-grained or lowest scale—
AE consists of two hidden layers with 4 and 3 nodes, respectively.
The latent space dimension is fixed to 2. Tangent hyperbolic
activation functions are employed in the hidden layers. In or-
der to prevent overfitting of the model, the weights are explored
through L1 regularization. The second (scale) AE consists of three
sequential hidden layers containing 9,7 and 6 nodes, respectively,
and uses the same activation function and regularization scheme
as the first AE. The loss functions and training scheme are shown
in Algorithm 1.

Algorithm 1 Unsupervised learning scheme for NestedAE

Require: Multi-scale dataset
1: Initialize weights : W1

encoder, W1
decoder ← xavier_normal()

2: Optimize encoder and decoder
J = 1

10 ∑
10
b=1|X

1
prop− X̂1

prop|+0.01∥W1
encoder∥1

2.3 NestedAE architecture and training scheme for multi-
scale MHP

The first and second stage AEs in NestedAE are very similar in
design in that they have single hidden layers for the encoder and
decoder, and use a hyperbolic tangent activation for the encoder
to create a bounded latent space with values along each dimen-
sion ranging from 1 to -1. L1 regularization is employed on the
encoder weights to introduce sparsity in feature selection. A reg-
ularization coefficient of 0.01 is used. Bandgap and PCE are pre-
dicted from the latents of the first and second stage AEs, respec-
tively. The prediction neural networks are comprised of 2 hidden
layers with ReLU activation.27 After the first hidden layer, we use
dropout regularization with a dropout probability of 0.1.28 This
implementation prevents overfitting in the bandgap and PCE pre-
diction. A multi task optimization scheme is employed in which
the encoder, decoder and predictor neural networks are trained
together. The prediction and reconstruction losses in both AEs
are measured through Mean Absolute Error (MAE) loss functions.
The mini-batch gradient descent algorithm is used during train-
ing with batch sizes of 10 and 100 for the first and second AE, re-
spectively, and the Adam optimizer with a learning rate of 0.001
in both. Training was stopped in both AEs after reaching 1500
epochs as we observed no significant reduction in validation loss
thereafter. All neural network architectures are trained using the
PyTorch Lightning package. The numerical performance and ap-
plications of the NestedAE method are reported below.

Algorithm 2 NestedAE training scheme for multiscale MHP
dataset
Require: Density Functional Theory (DFT) bandgap dataset

Features : A,B,X site ionic properties (X1
prop)

Labels : DFT predicted bandgap (y1
bandgap)

Require: PSC device dataset
Features : A,B,X site ionic properties (X2

prop), Electron Trans-
porting Layer (ETL) (X2

ETL) and Hole Transporting Layer
(HTL) (X2

HTL) layer types
Labels : PCE (y2

PCE)

1: Initialize weights : W1
encoder, W1

decoder, W1
predictor ←

xavier_normal()
2: Optimize encoder, decoder and predictor weights of autoen-

coder 1 for predicting DFT bandgaps by training on the DFT
bandgap dataset. Use mini-batch gradient descent with the
following multi-task objective function:
J = 1

10 ∑
10
b=1|X

1
prop − X̂1

prop|+ 1
10 ∑

10
b=1|y

1
bandgap − ŷ1

bandgap|+
0.01∥W1

encoder∥1

3: Predict DFT bandgaps and latents (L1) for the MHP composi-
tions in PSC device dataset.

4: Initialize weights : W2
encoder, W2

decoder, W2
predictor ←

xavier_normal()
5: Optimize encoder, decoder and predictor weights of autoen-

coder 2 for predicting PCE by training on the PSC device
dataset and latents from AE 1 (L1). Use mini-batch gradient
descent with the following multi-task objective function:
J = 1

100 ∑
100
b=1|L

1 − L̂1| + 1
100 ∑

100
b=1|y

2
PCE − ŷ2

PCE| +

Cross_Entropy(X2
ETL, X̂

2
ETL) + Cross_Entropy(X2

HTL, X̂
2
HTL) +

0.01∥W2
encoder∥1
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3 Results

3.1 NestedAE performance on Synthetic dataset
The performance of the NestedAE architecture has been bench-
marked using multi-dimensional datasets composed of analyt-
ical functions. We refer to these datasets as the synthetic
datasets in the remainder of the paper. The first synthetic dataset
is composed of 13 functions ( fi i = 1,2, . . .13) of 5 indepen-
dent variables, zi i = 1,2, . . .5, as available in Sec. S1 of the
Supplementary Material (SM). Four functions depend only on
z1 and z2, and these form the input feature space for the first
AE in the NestedAE architecture. The remaining seven functions
depend on all five independent variables and form the input fea-
ture space for the second AE in the NestedAE architecture. The
second dataset consists of the same 13 functions with Gaussian
noise added to each. The aim of the second dataset is to assess
the robustness of the NestedAE architecture to noisy inputs such
as would be expected from an experimental data set. The ap-
plication of NestedAE on these synthetic datasets represents a
top-down approach in the sense of coarse grain modeling since
the inputs to the first AE are functions of fewer variables (z1 and
z2) while the inputs of the second AE are functions to all inde-
pendent variables. This is contrary to the bottom-up approach
used in describing the logic of the NestedAE construction in the
sensed that the first scale had therein been described as being the
fine-grained scale. However, the benchmarking performed on the
synthetic database remains relevant because of the symmetry be-
tween the two frameworks. Further details for all entries in the
synthetic dataset are given in Sec. S1 in the SM.

Train 
 Single AE

Test 
 Single AE

Train 
 NestedAE

Test 
 NestedAE

0.2

0.3

0.4

0.5

0.6

M
ea

n 
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so
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te
 E

rro
r

Smooth functions
Noisy functions

Fig. 2 Comparison of MAE between NestedAE and single AE archi-
tectures for the training and test datasets. The training is done using
ten different random seeds. The blue violins show the reconstruction
error distributions for 13 analytical functions created as a function of
5 independent variables, zi, i = 1,2, . . .5. The orange violins show the
reconstruction error distributions for the 13 analytical functions with ad-
ditive Gaussian noise.

Figure 2 compares the performance of a single AE and
NestedAE for reconstruction errors, and robustness to noise.
These results are generated by training the AE architectures from
10 different random seeds used to initialize variations in the test-

train data split and initialization of the AE weights. The data with
lower reconstruction errors shown using blue violins correspond
to the dataset with analytical functions and the data with higher
reconstruction errors shown using orange violins correspond to
the dataset generated from noisy functions. In both datasets, we
see that the NestedAE approach outperforms the single AE ar-
chitecture. This result is primarily due to the splitting up of the
input vector into two input feature vectors across the two AEs in
NestedAE and the resulting reduction of the dimensions of each
input vector into the latent space between the sequential AEs. In
doing so, we allow more information to be encoded within a (la-
tent) space that has the same effective dimensionality, thereby re-
ducing the reconstruction errors. We also see that the NestedAE
approach is more robust to noise and results in overall smaller
reconstruction errors with better convergence. The correlations
between the principal components of the latent spaces obtained
from NestedAE and single AE are also available in Figs. S1, S2,
and S3 in the SM. It is difficult to confirm the relative dimen-
sionality between these spaces. However, the latent space of the
first stage of the NestedAE appears to have a significant contrac-
tion to a reduced dimensional curve indicating the corresponding
reduced dimensionality of the underlying domain space used to
generate the synthetic database.

3.2 NestedAE performance on multiscale Metal Halide Per-
ovskites dataset

In describing material properties, we may ultimately need to
include many different scales explicitly, and hence a NestedAE
framework would include several corresponding AEs. Each of
these AEs would then be trained sequentially, allowing the ma-
chine to perform the coarse-graining of information at each scale
resulting in the corresponding latent space for each AE. For
simplicity, here we focus on a NestedAE trained on data at
only two different material length scales. The first-stage AE is
trained for bandgap prediction. For this, we use the dataset
published by Mannodi-Kanakkithodi et al.29 The dataset con-
sists of properties of ions situated at A, B and X sites: ionic ra-
dius, weight, electronegativity, ionization energy electron affin-
ity, and others. This dataset includes 499 pure and mixed MHPs
with mixed compositions at all three sites. For each composi-
tion, Mannodi-Kanakkithodi et al.29 computed the bandgap us-
ing a Perdew-Burke-Ernzerhof (PBE) functional and Projector-
Augmented Wave (PAW) pseudo potential. They found surpris-
ingly good accuracy using this level of theory, but we recognize
that the accuracy of the machine learning approach introduced
here is subject to that of our selected database. That is, improve-
ments on the present work could arise from the introduction of
databases generated by experiment or through more accurate lev-
els of theory.

The second stage AE is trained for PCE prediction. For this,
we use the perovskite device dataset published by Jacobsson et
al.30 The original dataset consists of devices manufactured with
different perovskite formulations and processing conditions. Each
device is characterized for its current density-voltage (J-V) perfor-
mance, various device stabilities and outdoor testing. We chose to
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Fig. 3 Plots depicting NestedAE predictions for (A) DFT bandgap and
(B) PCE versus true DFT bandgap and PCE. Model predictions are from
the test dataset.

focus only on the effect of the types of contacts on the PCE. In par-
ticular, we chose the PCE measured in the reverse scan setup as a
majority of the devices in the dataset were characterized accord-
ingly. We filtered for samples from the original dataset that were
manufactured using a single-step spin coating process followed
by gas quench-induced crystallization. This type of quenching
was found to produce uniform films with densely packed grains
circumventing the formation of pinholes.31 J-V performance is
a standard way to measure PCE of solar cell devices, hence we
also filtered for devices that did not meet the standard proto-
col for measuring J-V performance. The standard protocol in-
cludes measurements performed at 25◦C, under ambient or dry
air conditions, using light intensity of 100 mW/cm2, and em-
ploying light not passed through a mask. We dropped dupli-
cates and devices from the dataset which did not report a PCE
measurement. We also dropped devices which involved partic-
ular ETL or HTL layers that are seen in fewer than 5% of the
devices in the dataset. This was done to limit the size of the
one hot encoding to only the most popular types of ETL and
HTL layers in the reported materials. After applying all these fil-
ters, we were left with a dataset containing 2018 devices. The
dataset contains 7 types of ETL (C60/Bathocuproine (BCP), [6,6]-
Phenyl-C61-butyric acid methyl ester (PCBM-60), PCBM-60/BCP,
SnO2-compact(c), SnO2-nanoparticle(np), TiO2-c, TiO2-c/TiO2-
mesopororus(mp)) and 4 types of HTL (NiO-c, PEDOT:PSS, PTAA,
Spiro-MeOTAD).

In optimizing the NestedAE architecture for this multiscale
dataset, we found that a latent space dimensionality of at least
12 is required for autoencoder 1. Any reduction in the dimension
beyond that resulted in an increase in both reconstruction and
prediction losses. Five-fold cross-validation was implemented to
assess the model performance for overfitting. The average train
and validation MAE across the 5 folds in bandgap prediction is
shown in Table 1. This is on par with bandgap prediction accu-
racy observed by Mannodi-Kanakkithodi et al.29 The performance
of supervised AE performance was also found by Lei et al.32 to be
on par with standard neural network architectures when compar-
ing prediction metrics. Figure 3 shows that most of the bandgaps
are predicted close to their true values.

Supervised latents from the first stage AE are passed to the
encoder of the second stage AE. Among the five models trained

using the 5 folds from five-fold cross-validation, the model which
has the smallest sum of the validation bandgap MAE and property
reconstruction MAE is chosen to predict the bandgaps and latents
for the compositions in the perovskite device dataset. In training
the second AE, we found that a latent space dimensionality of at
least 18 is required. The average train and validation MAE in PCE
prediction is shown in 1. We trained a single AE using only the
type of ETL and HTL to predict PCE. We observed the average
train and validation MAE for PCE prediction to be higher when
compared to using the NestedAE approach. From this, we observe
that the information encoded in the supervised latents improves
the PCE prediction. It should be noted however that the ETL
type predictions are slightly better in single AE than compared to
NestedAE.

Single AE does not provide information about bandgaps be-
cause the perovskite device dataset does not contain bandgap in-
formation for all formulations. Approximately 25% of composi-
tions have missing bandgap values. Even when there is avail-
able bandgap information, the various methods used to measure
the bandgap are sometimes inconsistent or insufficiently detailed.
Hence, the exact same device can be associated with multiple
bandgap values which impedes training of a single AE. Figure
3 shows that there is a large spread in PCE predictions at low
PCE values but the NestedAE performs better at predicting high
PCE values. This could be attributed to a smaller number of low
PCE data points in the perovskite device dataset for the NestedAE
model to learn from. Li et al33 have also created a model for PCE
prediction using bandgap, the energy difference between HOMO
of HTL and HOMO of perovskite materials, and the energy differ-
ence between LUMO of ETL and LUMO of perovskite materials as
features. They were able to achieve an RMSE in PCE prediction
(in % units) of 3.27 % using the predicted bandgap. While this is
on par with the PCE RMSE values predicted from NestedAE, we
are also able to predict the ETL and HTL types that provide such
PCE values.

Figure 5 shows the 2D latent space for NestedAE. Figure 5B
shows the 2D latent points for each perovskite device colored ac-
cording to the NestedAE predicted PCE value. We see a clear
distinction between points having low PCE (lying near the bot-
tom left corner of the plot) and points having high PCE (lying
near the top left corner). Figure 5A shows the 2D latent space
colored according to the values of the DFT bandgap predictions.
Most of the devices in the dataset were constructed using MAPbI3

and hence the majority of the NestedAE predicted DFT bandgaps
are around 2.55 eV. Figures 5C and 5D show the 2D latent space
colored according to the predicted ETL and HTL type. Here, we
see a clear segregation between organic and inorganic transport
layers. This is in contrast to Figs. 4 B and D. Therein, we plot the
bandgaps vs PCE for devices in the perovskite dataset and color
the points according to the type of ETL and HTL layer used re-
spectively. It is not obvious from the PCE and bandgap values
in the naive figures how the ETL and HTL layers should be clus-
tered to produce better devices. In contrast, the resulting latent
spaces in the NestedAE do provide the necessary segregation to
infer such design.

The findings from the 2D latent space of the NestedAE,—and
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NestedAE Single AE (No A,B,X prop.)
Property Train Validation Train Validation
EPBE

gap (eV) 0.156 ± 0.007 0.168 ± 0.027 NA NA
A,B,X 0.021 ± 0.001 0.019 ± 0.002 NA NA
PCE (%) 2.566 ± 0.026 2.384 ± 0.034 3.215 ± 0.041 2.889 ± 0.118
Latent 0.032 ± 0.005 0.029 ± 0.01 NA NA
ETL type 82.341 ± 0.093 81.846 ± 0.105 95.122 ± 0.017 96.145 ± 0.011
HTL type 99.525 ± 0.002 99.61 ± 0.003 100 ± 0 100 ± 0

Table 1 Comparison of prediction metrics for properties using NestedAE compared to single AE. MAE is the metric used for measuring EPBE
gap , A, B, X

ionic properties, PCE and latent prediction errors. ETL type and HTL type are categorical variables hence we use accuracy to report their prediction
metrics. NestedAE was trained using 5-fold cross-validation. We report the mean and standard deviations for each prediction across the 5 folds.

from Figs 5 B, C and D, in particular—corrobate findings from
the MHP literature. In general, organic ETL layers (C60, PCBM)
hinder PCE while inorganic ETL layers (TiOx, SnOx) have been
shown to provide improved efficiencies due to higher stability
and easily adjustable electronic and optical properties.34 This is
reflected in Figs 5 B and C where blue, orange and green dots
(which correspond to organic ETL layers) in Fig 5 C occupy the
same region in Fig 5 B corresponding to a region of low PCE. Sim-
ilarly the red, purple, brown and grey dots (which correspond to
inorganic ETL layers) in Fig 5 C occupy the high PCE region in
Fig 5 B. Among HTL layers, NiO has low conductivity causing
hole accumulation and recombination at perovskite/NiO layer.35.
Spiro-MeOTAD and PTAA on the other hand possess good hole
conductivity and have good band alignment with the valance
bands of a majority of the perovskite layers.36 This is reflected
in Figs 5 B and D where the yellow and cyan dots (which corre-
spond to NiO and PEDOT:PSS HTL layers) in Fig 5 D occupy the
low PCE region in Fig 5 B. Similarly the magenta and dark green
dots (which correspond to PTAA and Spiro-MeOTAD HTL layers)
in Fig 5 D occupy the high PCE region in Fig 5 B. Using a com-
bination of inorganic ETL layer, Spiro-MeOTAD as a HTL layer,
and low bandgap formulations, we thus lie in a goldilocks zone
of high PCE perovskite solar cells.

4 Conclusion

In physics-based models representing multiple scales, there is a
transfer of information from one model to the next through a
parameter or set of parameters measured from the lower-scale
model. In NestedAE, our models are AEs which construct a la-
tent representation of the original feature space and the latent
information is passed onto successive AEs that represent larger
physical scales. In an illustrative example of this work, the first
AE learned how to predict DFT bandgaps using the atomic and
ionic properties of the A, B and X ions in perovskite crystals.
These are used to infer DFT bandgap values of compositions
in the perovskite device dataset.30 In turn, they help to com-
plete the missing values in the dataset and to predict the PCE
values through the supervised latents. Possible aims for future
research using NestedAE include characterization of the impact
from adding more supervised AEs, prediction of film and charge
transport properties, and determination of how they affect PCE.
Notably, the use of NestedAEs is not limited to tabular data, and
this accommodates its use in learning from complex data sets.

One of the most striking features of the proposed architecture
is that it can be used in completing a database of materials which
have missing entries. For instance in the case of perovskites, let
us consider that we have data for MAPbI3 for AE1 and AE2, and
that both AEs are trained sequentially for this perovskite mate-
rial. Suppose further that we have another perovskite material
(FAPbBr3) for which we have the input feature set for AE1 (i.e.,
x1) but not for AE2 (i.e., x2). In this case, we can obtain our la-
tent L1 for AE1 by feeding in x1. However, since x2 is not known,
we the sample L2 that we have trained using known data samples
and explore the space such that the decoder’s L̂1 is approximately
equal to L1 for FAPbBr3 within an error tolerance. As such,
NestedAE offers a viable model enabling multiscale materials dis-
covery through a search of the associated reduced-dimensional
latent spaces rather than the full-dimensional feature space.

5 Data and code availability
Datasets and code for NestedAE is available on GitHub at
https://github.com /rxhernandez/NestedAE.
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