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Computational Approach for Structure Generation of Anisotropic 
Particles (CASGAP) with Targeted Distributions of Particle Design 
and Orientational Order  

Nitant Guptaa and Arthi Jayaraman*a,c 

The macroscopic properties of materials are governed by their microscopic structure which depends on the materials’ 

composition (i.e., building blocks) and processing conditions. In many classes of synthetic, bioinspired, or natural soft and/or 

nano materials, one can find structural anisotropy in the microscopic structure due to anisotropic building blocks and/or 

anisotropic domains formed through the processing conditions. Experimental characterization and complementary physics-

based or data-driven modeling of materials’ structural anisotropy is critical for understanding structure-property 

relationships and enabling targeted design of materials with desired macroscopic property. In this pursuit, to interpret 

experimentally obtained characterization results (e.g., scattering profiles) of soft materials with structural anisotropy using 

data-driven computational approaches, there is a need for creating real space three-dimensional structures of the designer 

soft materials with realistic physical features (e.g., dispersity in building blocks’ sizes) and anisotropy (i.e., aspect ratios of 

the building blocks, their orientational and positional order). These real space structures can then be used to compute and 

complement experimentally obtained characterization results or be used as initial configurations for physics-based 

simulations/calculations that can then provide training data for machine learning models. To address this need, we present 

a new computational approach called CASGAP - Computational Approach for Structure Generation of Anisotropic Particles 

- for generating any desired three dimensional real-space structure of anisotropic building blocks (modeled as particles) 

adhering to target distributions of particle shape, size, and positional and orientational order.

Introduction 

Materials comprising of polymers, colloids, and suspended 

nanoparticles, termed collectively as ‘soft materials’ exhibit 

structural diversity at a range of length scales starting from their 

molecular dimensions (~1 Å - 10 nm) to assembled domains of 

sizes ~100 nm – 10 𝜇m. This structural diversity in soft materials 

is driven by the nature and strength of the intermolecular 

interactions (e.g., van der Waals, electrostatic, hydrogen 

bonding, etc.) between the various chemical species and can 

also be affected by their processing conditions (e.g., thermal, 

solvent(s), mechanical stresses, or chemical stimuli). In 

particular, the interplay of interactions and processing can 

strongly affect the positional and orientational order within 

these mostly amorphous soft material structures that exhibit 

features somewhere between crystalline solids and completely 

disordered liquids1. In crystalline solids, the structure is highly 

resilient to room temperature fluctuations due to their 

stronger, long-ranged interactions as compared to disordered 

liquids whose structure can fluctuate both in space and time 

with little to no ordering at short ranges. As intermediates, 

amorphous soft materials can exhibit distribution in the shapes 

and sizes of their internal structure as well as in the extent of 

their positional and orientational order. Subtle changes to these 

morphological features can have a significant impact on the 

physical properties of soft materials; thus, to create structure-

property relationships in soft materials the distribution of 

structural features must be modelled and characterized with 

great nuance and precision. 

 

In modeling studies of soft materials, the structural elements – 

the molecular building blocks or the assembled domains of 

molecules – are often treated as hard or soft particles, either via 

coarse-grained models or via multi-phase models2–4. These 

particles’ chemistry, shapes, and sizes, as well as their positional 

correlations (i.e., order/disorder), can be linked to the physical 

properties of the structure (namely, mechanical5–8, 

optical/photonic9–12, electronic/magnetic13,14 and transport 

within15,16) through additional physics-based modeling and 

simulation methods or for further experiments. Importantly, 

when the structural elements are anisotropic in shape (e.g., rod-

shaped nanoparticles, crystalline domains in polymers, liquid 

crystalline domains) then the extent of orientational order in 

addition to positional order can become an important 

consideration for calculating physical properties. To establish 

the materials design – structure – property relationships, one 
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must quantify and characterize the extent of positional and 

orientational structural order within the material for various 

sets of particle designs (e.g., chemistry, size, shape) and 

processing techniques. 

 

Characterization of Positional and Orientational Order in Soft 

Materials 

 

In Figure 1 we show examples of diverse soft materials’ 

structures observed in experiments with different degrees of 

positional and orientational order that vary independently or in 

a coupled manner. These examples show (a) both positional and 

orientational ordering to control the thickness17 of the 

assembled structure, or to demonstrate monodispersity18; (b) 

only orientational ordering to achieve a property (curvature) for 

controllable phase behavior19, or to study preferential 

alignment during fluid flow20; and (c) weak positional ordering 

to pack anisotropic building blocks into superstructures21, or to 

understand mechanical (shear) behavior of colloidal 

monolayers22. Many classes of soft materials, however, (d) lack 

both positional and orientational ordering, leading to 

amorphous structures as in the case of nanoparticle 

dispersions23 or polymeric networks24. Furthermore, in 

biological/naturally occurring soft materials there could also be 

cross correlation between positional and orientational ordering 

that gives rise to specific functionality or property of that 

material. This idea has been depicted schematically in (e) with 

the circular organization of the anisotropic elements in the form 

of cells or their organelles25,26. Such correlated (or lack of 

correlated) positional and orientational organization can have 

biological implications, like the example in ref.26 where 

hexagonal cell shape improves cell cohesion whereas round or 

oval cells form loose aggregates. 

 

To characterize positional and orientational order in soft 

materials, researchers use direct imaging techniques, like 

scanning or transmission electron microscopy (SEM/TEM). 

However, these techniques are not appropriate for studying 

structural dynamics and/or structural features at multiple 

length scales simultaneously, and can be destructive due to 

requisite pre-treatment like drying, freezing or sectioning27,28. 

Indirect characterization techniques like scattering (by light, X-

rays, or neutrons) can overcome the aforementioned 

challenges with direct imaging. However, these indirect 

techniques often provide structural information in the 

reciprocal (Fourier) space. Interpretation of the results from 

such indirect structural characterization methods is not trivial, 

especially when the structure is amorphous and exhibits some 

positional and orientational order. In the case of crystalline 

structure, the periodicity can aid the interpretation of the 

structure by identification of known characteristic peaks. In the 

case of non-crystalline structures (Figures 1b-e), the 

interpretation of scattering profiles is not always 

straightforward and involves either tedious fitting to relevant 

analytical models29 of scattering profiles or in case of absence 

of analytical models, optimization of a modeled structure 

generated through computational methods like reverse Monte 

Carlo30,31 or Computational Reverse Engineering Analysis of 

Scattering Experiments (CREASE)32. These computational 

methods interpret the scattering results by identifying structure 

(or structures) whose computed scattering profile matches the 

experimentally obtained scattering profiles. The success of such 

computational methods relies on being able to generate a range 

of three dimensional (3D) real space structures with 

Figure 1 Examples of synthetic or biologically relevant soft materials exhibiting

different extents of positional and orientational order/disorder. (a) Colloidal (left) and 

nanorod (center) crystals exhibiting strong positional and orientational order. Left 

image adapted with permission from [17]. Copyright 1999 American Chemical Society. 

Center image adapted with permission from [18]. Copyright 2012 American Chemical 

Society. (b) Liquid crystalline-type assemblies of banana-shaped nanorods (left) and 

straight nanorods (center) exhibiting local or large scale orientational order. Left image 

adapted from [19]. Reprinted with permission from AAAS. Center image adapted with

permission from [20]. Copyright 2006 American Chemical Society. (c) Colloidal 

assemblies as quasicrystal (left) or polycrystal (center) with some positional order. Left 

image adapted from [21]. Reprinted with permission from AAAS. Center image adapted 

with permission from [22]. Copyright (2017) by the American Physical Society. (d) 

Amorphous structures like nanoparticle dispersion (left) and polymer network (center)

with no positional or orientational order. Left image adapted with permission from [23]. 

Copyright 2007 American Chemical Society. Center image adapted from [24]. 

Reproduced with permission from Springer Nature. (e) Biological tissues with nanoscale 

organelles, i.e., osteocytes (left) and melanocytes (center) that occur in a 

designed/tailored arrangement. Left image adapted from [25]. Reproduced with 

permission from Springer Nature. Center image adapted from [26]. Reproduced with 

permission from Springer Nature. The scale bars values (in μm) are (a) 1, 0.1; (b) 10, 

0.1;(c) 0.1, 50; (d) 0.1, 50; and (e) 10.
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incremental variations to structural features (e.g., particle 

positions, sizes, shapes, and orientations). These 3D structures 

can be (i) used directly for optimizing towards a structure that 

exhibits the best match between the computed and 

experimental scattering profiles or (ii) used along with their 

computed scattering profiles together as training data for 

machine learning models that link descriptions of these 3D 

structures to their computed scattering profile.33–35  In 

particular for the latter case of data-driven approaches, 

computationally efficient generation of 3D real space structures 

requires a lower dimensional representation of the structure 

that can capture the desired distributions in the structural 

features without manually doing such variation for each and 

every individual particle.  

 

In the case of spherical particles, many algorithms can be found 

in literature36–39 for modeling the particles’ desired size 

dispersity and these algorithms can be coupled with stochastic 

or deterministic molecular simulations (e.g., Monte Carlo, 

molecular dynamics, Brownian dynamics etc.) to achieve a 

desired 3D structure for these spherical particles. However, 

classical stochastic or deterministic simulation methods tend to 

access equilibrium configurations, or a limited number of 

kinetically trapped configurations (due to poor sampling) and 

require knowledge of inter-particle interactions within the 

complex material that one may not know a priori. Moreover, it 

is difficult to capture anisotropic structural details of the 

assembled spherical particles unless the particles can be 

clustered together meaningfully, which can pose additional 

computational challenges. 

 

In the case of non-spherical particles, far fewer number of 

papers40–43 have addressed construction of 3D structures with 

anisotropic structural elements at desired packing fractions. We 

highlight here two such noteworthy studies for 3D structural 

creation for non-spherical particles – In one study, Torquato and 

co-workers40 developed the “adaptive shrinking cell method”, 

which enables them to construct dense packing of arbitrary 

shaped particles. However, their method currently may not 

preserve desired particle orientational order as the particles are 

allowed to freely rotate to achieve higher packing efficiency. 

Thus, it is not suitable for creating structures with a specific 

positional or orientational order that may only be accessed 

through processing techniques. Another method by Jia et al.41 

describing packing of arbitrary shapes, can preserve particle 

orientation, however it is based on a grid, requiring digitization 

of the entire simulation cell, which can be computationally 

intensive for large system sizes. To the best of our knowledge, 

there are no other studies that describe computational 

methods to build 3D structures of anisotropic particles with 

target distributions of particle shapes and sizes exhibiting 

desired positional and orientational order.  

 

In this paper we present a new computational workflow - 

Computational Approach for Structure Generation of 

Anisotropic Particles (CASGAP) - that can generate 3D 

structures of anisotropic particles with target distributions of 

particle shapes and sizes exhibiting desired positional and 

orientational order. We describe the anisotropic particles’ sizes, 

shapes and orientations via well-defined statistical models or 

probability distributions. In particular, we formalize the 

distribution of orientational order by using the von Mises-Fisher 

distribution which has rarely been used in the context of soft 

materials44,45. We demonstrate that for some of these 

parameters, in place of a distribution, a more complex spatial 

field-based description can also be imposed to add spatial 

correlations, aiding in modeling of sophisticated or hierarchical 

structures. We tackle unique challenges that one faces with 

non-spherical particles that are not an issue when dealing with 

spherical particles, including determining overlap between two 

particles which can be highly specific to the shape of the 

individual particles. In a way, this new CASGAP method can be 

viewed as an adaptation of the random sequential adsorption 

(RSA) type algorithms41,46 but for anisotropic particles with 

polydispersity in shapes, sizes and orientations.  Further, 

CASGAP is inspired from algorithms with sophisticated 

computational advances for aerospace engineering and video-

game design that deal with collision-detection of arbitrary 

geometries at scale and with computational efficiency. We 

make use of these algorithms from these other fields to 

efficiently detect and resolve inter-particle overlaps in our soft 

materials structure generation work. CASGAP also facilitates the 

user to invest only the computational resources that they have 

available by stopping the algorithm as and when needed and 

yet achieving structures adhering to the targeted statistical 

distributions of particle size, shape, and order. 

 

CASGAP will be valuable for experimentalists and 

computational researchers using data-driven and physics-based 

models. As described earlier, in computational methods used 

for interpretation of scattering results (e.g., CREASE), there is a 

need for real space structure generation to identify features of 

structures that give rise to the scattering patterns; CASGAP can 

be used for this purpose. With the advent of data driven and 

machine learning methods, CASGAP can be used for generating 

large databases of 3D structures with various minor or major 

variations in particle shapes, sizes, and positional and 

orientational order parameters; this type of database is 

essential for the training of machine learning models for design-

structure or structure-property relationships. CASGAP can also 

be useful for creating desired (experimentally relevant) initial 

configurations for use in molecular dynamics simulations, in 

particular for predicting dynamic evolution upon application of 

a stimulus on one experimentally observed ‘processed’ 

structure to another structure. Although, it is possible to use 

molecular simulations to also create 3D structure with 

anisotropic potentials for anisotropic particles, the resultant 

structures may not preserve desired orientation of particles 

that one may achieve only through processing and not via 

thermodynamics. Our approach generates 3D non-crystalline 

configurations  regardless of whether it is an equilibrium 

configuration accessible to simulations or non-equilibrium 

configuration accessed through unique processing pathways in 

experiments. We acknowledge that some notable and widely 
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used software tools like packmol47 and LAMMPS48 have tackled 

similar challenges of anisotropic structure generation using 

discrete particle approximation where they use rigid groups of 

spherical particles as a single entity (sometimes treated as 

molecules). However, to the best of our knowledge, these tools 

currently have not directly tackled structure generation of non-

spherical particles, and do not support imposition of statistical 

distributions to particle orientations. 

Results and Discussion 

Computational Approach for Structure Generation of 

Anisotropic Particles (CASGAP) 

 

The steps of our new computational approach CASGAP are 

presented in the flowchart in Figure 2. The approach has been 

divided into two phases - Phase I builds a list of particles that 

follow a target distribution of parameters and Phase II builds the 

representative structure of particles by adding them 

sequentially without any overlaps. This division into two phases 

has been explained in more detail later and is preserved in the 

organization of the CASGAP source code. Our primary intention 

is to demonstrate that these phases are independent of each 

other, and the users can accordingly decide the best way to use 

this method for their purposes to perhaps only generate 

particle populations using Phase I or to use their own generated 

particle populations as input for Phase II. 

 

In Phase I, the user provides input of the statistical information 

(e.g., mean, variance) or the probability distributions of the 

parameters related to particle shape, size, and orientational 

order. The attributes of these parameters are described in a 

later section. In general, assuming that one of the parameters is 

represented as 𝑋, such that for particle with index 𝑖, the 

Figure 2 Flowchart of the steps involved in CASGAP subdivided into two phases. Phase I to generate population of particles for given input, and Phase II to assign coordinates to 

the particles and output the three-dimensional structure with desired positional and orientational order. The blocks shown with a reddish hue will be discussed in more detail in the 

text. GJK refers to the Gilbert-Johnson-Keerthi algorithm43 and EPA refers to expanding polytope algorithm44.
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parameter value is 𝑋௜, the probability distribution of this 

parameter is defined by the density function 𝑃ሺ𝑋ሻ and the 

cumulative distribution function is 𝐹௑ሺ𝑥ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑥ሻ. The 

random sample 𝑋௜  is then obtained by inverse transform 

sampling, where a uniform random number 𝑢௜, with 0 ൏ 𝑢௜ ൑
1, is fed to the inverse of the cumulative distribution function: 

𝐹௑
ିଵሺ𝑢௜ሻ ≡ 𝑋௜. The number of particles 𝑁 in the list is estimated 

by evaluating the running total of all the particle volumes, 

calculating the volume fraction, and comparing it to a target 

volume fraction.  

 

In Phase II, the list of particles from Phase I with precisely 

defined distributions of shape, size and orientation are 

sequentially placed within the 3D structure. Each of the 

coordinates 𝑥௜, ,𝑦௜  or 𝑧௜  of each new particle 𝑖, are first sampled 

from a uniform distribution over the interval ሺെ𝐿/2,𝐿/2ሿ 
where 𝐿 is the simulation box length. Before adding the particle 

to these coordinates, the method checks for overlap with all 𝑖 െ
1 previously added particles in the structure. This step is 

expedited by using a bounding sphere, and checking whether 

the bounding spheres overlap. Only if they do, the particles are 

considered as potentially overlapping. The Gilbert-Johnson-

Keerthi (GJK) algorithm49 is then used to determine overlaps to 

a higher precision, and the expanding polytope algorithm 

(EPA)50 is then used to resolve the overlap by updating 𝑥௜ ,𝑦௜  and 

𝑧௜. Although this method attempts to incorporate all the 

particles in the list into the structure, the difficulty to add new 

particles increases as the density of particles increases. The 

method therefore attempts to add the particle by first locally 

shifting the particle, and intermittently trying new random 

locations, until either the particle finds an overlap-free position, 

or a maximum number of iterations are reached. If not all 𝑁 

particles could be added, the structure with 𝑁ᇱ ൌ 𝑖 െ 1 particles 

is generated as output; the way the particles are placed ensures 

that even if the algorithm is terminated before all N particles 

are added the structure still adheres to the target statistical 

distributions of the particle shapes, sizes, and orientation 

parameters.  

 

Before we describe all the relevant details of this method, we 

highlight a few strengths and capabilities of this method. The 

division of the method into two Phases allows for customization 

in these phases independently and makes the method more 

generalizable and easier to extend. Phase I can be highly specific 

to the modeling requirements with input parameters that can 

be simplified to enable model studies or made to achieve a 

more experimentally relevant representation. As an example of 

the latter, in experiments, synthesis procedures could give rise 

to high dispersity in particle shape and size and yet when 

assembled these non-uniform particles may exhibit domain 

sizes and shapes with low dispersity51. Another capability of the 

method is that it can be easily extended to include complexity 

in particle geometry where more parameters that influence 

particle geometry or order can be identified as the need arises. 

Phase II does not need to make any assumptions about the 

particle geometry and can take as input any population of 

particles generated by Phase I and create a structure with the 

desired input distribution of order parameters. In this regard, 

we highlight the use of GJK (and EPA) algorithms, originally used 

in aerospace engineering and video games, for our purpose to 

avoid inter-particle overlap and generate desired 3D structures 

of amorphous soft materials. These algorithms have had limited 

use in soft materials; to the best of our knowledge they have 

only been used in evaluation of pair potentials for anisotropic 

particles52, Monte-Carlo method based pressure control for 

anisotropic particle self-assembly into superlattices53, and 

discrete element modeling of granular particles54. 

 

Details of Phase I: Generation of Particle Population 

 

Distributions of particle geometry (shape and size): As our 

model anisotropic particles (Figure 3a) we select ellipsoids 

which are effectively perturbations of a sphere along the three 

Figure 3 Distributions of particle shape and size. (a) Geometrical parameters of 

ellipsoids and spheroids. (b) Log-normal distribution of the aspect ratio 𝛾 (particle 

shape), with mean 𝛾ఓ  and standard deviation 𝛾ఙ. Insets are used to show the shape 

variation of these with aspect ratio. (c) 2D cross-section profiles of spheroids at different 

𝑅 values as indicated. Within each square depicted in the insets, the shapes have the 

same 𝑅 value and distinct colors are used to differentiate the shape with the darker 

shades being more oblate, and lighter shades being more prolate.
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mutually perpendicular axial directions, with semi-axial lengths: 

𝑎, 𝑏 and 𝑐 that simultaneously control the size and the aspect 

ratios of the ellipsoid. To define parameters that can decouple 

size and shape characteristics, we define the volumetric radius 

𝑅 ൌ √𝑎𝑏𝑐
య

 and two aspect ratios 𝛾ଵ ൌ 𝑐/𝑎 and 𝛾ଶ ൌ 𝑐/𝑏 as 

parameters. The parameter 𝑅 effectively depicts the size (or the 

volume) of the particles and parameters 𝛾ଵ and 𝛾ଶ  the shape 

anisotropy of the particles for a given volume. In some cases, it 

can be realistic or advantageous to simplify this model further 

by only considering a cylindrically symmetric ellipsoid, also 

known as a spheroid, where 𝑎 ൌ 𝑏. In such cases, the particles 

can be modelled using 𝑅 and 𝛾 (dropping the subscripts since 

𝛾ଵ ൌ 𝛾ଶ ≡ 𝛾). The advantage for such simplification may 

become evident when experimental measurement of both 

aspect ratios is not possible or reliable, and an average aspect 

ratio is the best physical approximation. Moreover, as will be 

made clear later, the orientation of spheroids is easier to 

quantify and measure than an arbitrary ellipsoid. 

 

In Figure 3b, we demonstrate how the shape of the spheroidal 

particles can vary from oblate (𝛾 ൏ 1ሻ to prolate (𝛾 ൐ 1ሻ, and 

how dispersity in particle shapes can be modeled using a log-

normal distribution. Log-normal distribution is an appropriate 

choice because it is strictly defined over the positive parameter 

values and is associated with the normal distribution. Note, 

however, that this is only a convenient choice, and to replicate 

the realistic population of particles synthesized more 

complicated distribution which may be multi-modal can be 

used; only restriction we impose is that the distribution should 

be defined over positive parameter values. The mean and the 

standard deviation of the ‘particle shape’ distribution, given by 

𝛾ఓ and 𝛾ఙ  become the structural parameters that need to be 

provided as inputs in Phase I. In an analogous manner, the 

dispersity in size 𝑅 of the particles (Figure 3c) can be modeled 

using the log-normal distribution or any experimentally guided 

(more appropriate) distribution. The details of the log-normal 

distribution used and how they can be inverted to generate 

parameter values, are provided in the Supplementary 

Materials Section S1. 

 

Distribution of orientational order among the spheroidal 

particles: The next set of structural parameters to consider are 

the orientational order of the particles. Particles with shape 

anisotropy like spheroids and ellipsoids, have a well-defined 

orientation which can be quantified by an 𝑛-dimensional unit 

vector 𝑽௡, where 𝑛 depends on the symmetry of the particle 

shape (and the dimensionality of the space, i.e., 2D vs 3D). For 

example, 𝑛 can be 1 when an anisotropic shape is confined to 

2D, such that only an angle with respect to a reference direction 

is required to quantify its orientation. For a spheroidal particle, 

the orientation can be expressed by tracking how its axis of 

rotational symmetry (the 𝑐-axis) can exist in 3D. We can use a 

3D unit vector 𝑽ଷ ≡ ሺcos𝜃 sin𝜙 , sin𝜃 sin𝜙 , cos𝜙ሻ ≡ ሺ𝜃,𝜙ሻ, 
which is expressed by two angles: 𝜃 (azimuthal component) and 

𝜙 (polar component), as is common in the spherical coordinate 

system and where 0 ൑ 𝜃 ൏ 2𝜋 and 0 ൑ 𝜙 ൑ 𝜋.  

 

In the above framework, we can also define a reference 

orientation 𝜦ଷ ≡ ሺ𝜃𝚲,𝜙𝚲ሻ (also a unit vector) and check to see 

whether the particles are co-oriented with 𝜦ଷ. To make a 

comparison between two orientations, we can use the 

magnitude of their dot product 𝑝 ൌ |𝑽ଷ ⋅ 𝜦ଷ| to quantify how 

well they match. Accordingly, 𝑝 shall approach 1 if the 

orientations match perfectly and will be 0 if they are orthogonal 

(perpendicular). If the spatial arrangement of the anisotropic 

particles is isotropic, the orientations of all the constituent 

particles must be random. This can be demonstrated when the 

orientations of all the particles are compared to the same 

reference 𝜦ଷ, such that 𝑝 values will be evenly distributed over 

the 0 to 1 range, showing no preference to any particular value. 

On the other hand, if the distribution of 𝑝 has a noticeable peak 

at any value over the 0 to 1 range, then the particles are co-

Figure 4 Distribution of orientational order among the spheroidal particles. The 

orientation of spheroids is represented by a 3D unit vector 𝑽ଷ. (a-c) The von Mises-

Fisher (vMF) distribution 𝑃ሺ𝑽𝟑ሻ for 𝑽ଷ at 𝜅 ൌ 1, 10 and 100 plotted as a polar plot 

where 𝜃 and 𝜙 angles corresponding to the spherical polar coordinates. The mean

orientation is 𝚲ଷ whose spherical polar coordinates are ሺ1,𝜃௸ ,𝜙௸) where 𝜃௸ ൌ 60° and 

𝜙௸ ൌ 75° as an example. On the right, the resulting spheroidal particle structures 

obeying the vMF distribution for the corresponding 𝜅 value is depicted. 
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oriented, and the spatial arrangement of the anisotropic 

particles also has orientational anisotropy. In this situation, we 

can redefine 𝜦ଷ to also indicate the direction of preferred 

orientation as well as to serve as a reference. In directional 

statistics55, one such distribution that can describe orientational 

anisotropy is the von Mises-Fisher (vMF) distribution as shown 

in Figure 4. 

 

The vMF distribution is an appropriate choice for describing the 

orientational order in the particles’ spatial arrangement 

because it is an analogue of the normal distribution defined on 

the surface of a sphere. Its probability density function is 

defined as 𝑃ሺ𝑽ଷሻ ൌ 𝐶ሺ𝜅ሻ expሺ𝜅 𝜦ଷ ⋅ 𝑽ଷሻ, where 𝜦ଷ will serve as 

the mean (or preferred) orientation, 𝜅 is technically referred to 

as the concentration parameter, and 𝐶ሺ𝜅ሻ is a normalization 

constant. We shall, however, avoid the usage of the term 

“concentration parameter” as it may cause some unintentional 

confusion with the use of the term “concentration” in Chemistry 

and instead, in this paper we shall refer to 𝜅 as the 

orientational-anisotropy parameter. This is because 𝜅 directly 

quantifies the extent of orientational order, with 𝜅 ൌ 0 for lack 

of orientational order and 𝜅 → ∞ for high orientation 

anisotropy. As shown in Figure 4, for nonzero 𝜅, the vMF 

distribution produces a peak near the 𝜦ଷ value, and the 

dispersity proportional to the reciprocal of 𝜅. 

So far, we have described orientation order only for spheroids, 

but more generally, if the ellipsoidal particles have lower 

symmetry, such that 𝛾ଵ ് 𝛾ଶ, we can more generally employ a 

four-dimensional unit vector 𝑽ସ, also known as unit-

quaternions, to characterize their orientation. This is because 

for two non-spheroidal ellipsoids to have the same orientation, 

all their corresponding axes should align together, and simply 

aligning one of their axes (as was the case in spheroids) is not 

sufficient. In simple terms, a unit-quaternion can be expressed 

by a combination of a scalar angle 𝜔 and a 3D unit vector 𝒘 ൌ
ሺ𝑤ଵ,𝑤ଶ,𝑤ଷሻ, so that we can define 𝑽𝟒 as: 

 

𝑽𝟒 ≡ ሺ𝜔,𝒘ሻ ൌ ሺcosሺ𝜔/2ሻ , sinሺ𝜔/2ሻ𝑤ଵ, sinሺ𝜔/2ሻ𝑤ଶ, sinሺ𝜔
/2ሻ𝑤ଷሻ       ሺ1ሻ. 

 

In Figure 5a (on the left), an ellipsoid with axes aligned to the 

coordinate axes is defined to have a zero orientation with 𝑽ସ ≡
0. If this ellipsoid is then rotated by the angle 𝜔 about the vector 

𝒘 passing through the origin following the right-hand rule (as 

shown on the right), then the orientation of the ellipsoid is given 

by equation (1). Note that for zero orientation, 𝑽ସ ൌ 0 can be 

equivalently written as 𝑽ସ ൌ ሺ0,𝒘ሻ indicating that the angle of 

rotation is zero (𝜔 ൌ 0), and we do not need to explicitly 

mention a 𝒘 vector as it can be any arbitrary vector about which 

a rotation is not performed. Variation of  orientation for a non-

spheroidal ellipsoid 𝑽ସ can also be modeled using the vMF 

distribution  with 𝑃ሺ𝑽ସሻ ൌ 𝐶ሺ𝜅ሻ expሺ𝜅 𝜦ସ ⋅ 𝑽ସሻ, where 𝚲ସ is 

the mean orientation and 𝜅 is the orientational-anisotropy 

parameter (same as for spheroidal orientation).  

 

As can be expected, 𝑃ሺ𝑽ସሻ is difficult to visualize without using 

more than three-dimensions, however it behaves in an 

analogous manner as 𝑃ሺ𝑽ଷሻ in Figure 4, with 𝜅 having an 

analogous behavior. In Figures 5b and 5c, we demonstrate the 

spatial arrangement obtained for the extreme values of 𝜅 

parameter. When 𝜅 ൌ 0, the vMF distribution reduces to the 

uniform distribution on the surface of a 4D hypersphere, 

meaning that each orientation is equally likely to occur (i.e., 

isotropic arrangement orientationally) and 𝑃ሺ𝑽ସሻ ൌ 1/ሺ2𝜋ଶሻ, 
which is a uniform distribution, and the constant is obtained by 

normalizing with the surface area of a unit hypersphere which 

is 2𝜋ଶ. On the other hand, when 𝜅 → ∞ in Figure 5c, the peak 

of the vMF distribution sharpens to the extent that  𝑃ሺ𝑽ସሻ →
𝛿ሺ𝜦ସ െ 𝑽ସሻ, where 𝛿ሺ⋅ሻ is the Dirac-delta function, and all 

ellipsoids have the same orientation. 

 

One key point not to be missed is that even for non-spheroidal 

ellipsoids, one may choose to represent their orientation with 

𝑽ଷ (a 3D vector) by for example, keeping track of only one axial 

direction (like the 𝑐-axis). This can be done to intentionally be 

agnostic about the other axial directions which may rotate 

freely as per modeling requirements. The 4D vector orientation 

𝑽ସ has been included to have more general representation of 

orientation for non-spheroidal ellipsoids, which may be 

important when trying to optimize the structure to better fit an 

experimental scattering profile (e.g., as a possible future 

extension of the CREASE32 method). In any case, the mean 

orientation 𝚲ଷ (or 𝚲ସ) and 𝜅 are the structural parameters that 

Figure 5 Distribution in orientation for ellipsoidal particles with dissimilar aspect 

ratios. (a) (Left) An ellipsoid with axes aligned perfectly to the reference axes 𝑥,𝑦, 𝑧. 

(Right) The ellipsoid after being rotated along w by an angle 𝜔 such that its axes change 

from 𝑥,𝑦, 𝑧 → 𝑥′, 𝑦′, 𝑧′. The dashed circles show the trajectory of the rotating axis. (b, 

c) Ellipsoidal particle structures following the vMF distribution 𝑃ሺ𝑽𝟒ሻ for 𝑽𝟒 (which 

cannot be plotted) for 𝜅 ൌ 0 (highly isotropic) and approaching ∞ (highly anisotropic). 

The vMF distribution for (b) is a uniform distribution with 𝑃ሺ𝑽𝟒ሻ ൌ 1/2𝜋ଶ (a constant), 

and for (c) is a Dirac-delta function about 𝛬ସ with 𝑃ሺ𝑽𝟒ሻ ൌ 𝛿ሺ𝜦𝟒 െ 𝑽𝟒ሻ. All ellipsoids 

are identical and colored with red, green, blue regions to allow easy visualization of 

their orientations.
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can be provided as input in Phase I. Generating random samples 

of particle orientation requires, requires some additional steps 

which are described in the Supplementary Materials Section 

S2, and more comprehensively covered in refs.56–58 

 

Details of Phase II: Generation of Structure from Particle 

Population 

 

At the end of Phase I we have a list of particles that have desired 

distributions of shapes and sizes. In Phase II we place these 

particles one-by-one into a representative 3D spatial 

arrangement. As noted earlier, a particle is successfully placed 

if it avoids any overlap with other previously added particles. 

Detection of overlap is simplified by eliminating all particles that 

completely lie outside the bounding sphere of the 𝑖-th particle. 

For two anisotropic particles, if the sum of their bounding 

sphere radii is smaller than their center-to-center distance, then 

those particles can never overlap. On the other hand, if the sum 

of the bounding sphere radii is greater, then a more 

sophisticated method (than that for spheres) is needed to 

evaluate whether they overlap. In the example of ellipsoidal 

particles, ellipsoid-ellipsoid intersection itself has been a topic 

of great interest in many areas of scientific research59,60, 

including those relevant to soft materials for example in 

calculating the excluded volume effects of particles61,62. 

Notably, the work by Zheng et al.63 describes a strategy to 

compute the distance of closest approach between two 

ellipsoids by first finding the distance of closest approach 

between two elliptical cross-sections analytically, and then 

rotating the plane by numerical computation to minimize that 

distance. 

 

It is however our intention not to be restricted to ellipsoidal 

particles, and Phase II is more general to an anisotropic particle 

with any arbitrary geometry or shape. In fact, in Phase II, if the 

output of Phase I is used with ellipsoidal particle geometry, a 

preliminary step is to convert the ellipsoidal shapes to convex 

polyhedral shapes (that completely bounds the ellipsoids), to 

make computations regarding overlaps simpler. Subsequently, 

as mentioned before, collision detection algorithms from the 

aerospace engineering field are used to find and resolve 

overlaps between these bounding convex polyhedral shapes. 

An advantage of using convex polyhedral shapes is the property 

that such shapes can be uniquely defined by the position of 

their vertices. However, care must be taken to minimize the 

volume difference between the ellipsoidal particle and the 

bounding polyhedron, so that their overlap avoidance does not 

waste extra space by positioning the actual particles further 

away from each other than necessary. 

 

These steps for Phase II are schematically depicted in Figure 6a, 

where two overlapping ellipsoidal particles are first converted 

to corresponding convex polyhedral shapes. The  GJK 

algorithm49,50 is then adapted to work on the polyhedral shapes 

to detect whether they overlap. If the two shapes overlap, then 

an extension of the GJK algorithm called EPA is used to find the 

minimum displacement vector which will resolve the overlap if 

one of the particles is moved along that vector. 

Although the complete details of how the GJK and EPA 

algorithms work is beyond the scope of this work, we describe 

some of the relevant details here and direct the reader for 

additional information in the Supplementary Material Sections 

S3 and S4. 

 

The main idea behind the GJK and EPA algorithms is 

schematically shown in Figure 6b with 2D representation of the 

particles and their bounding polygonal shapes (A and B), which 

involves the construction of a composite shape M called the 

Minkowski difference, denoted as M ൌ  A⊝ B, obtained by 

subtracting all the points in shape B from shape A, as explained 

in supplementary material section S3 . Knowing shape M 

enables us to reformulate the problem of finding overlap 

between two convex polyhedral shapes, into a problem of 

Figure 6 Overlap Detection and Resolution. (a) Schematic representation of overlap 

resolution of two ellipsoidal particles, which are first converted to their convex 

polyhedra, and then GJK and EPA algorithms, respectively, detect the overlap, and 

determine the displacement vector. (b)  The situation in (a) represented in 2D to show 

the Minkowski difference of their shape which is at the heart of the GJK and EPA 

algorithms. (c) Resolution of multiple overlaps by addition of pair-wise displacements 

for the new particle, and iteratively moving the new particle until no further overlaps 

are detected.
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finding whether the origin lies inside shape M, which is easier to 

solve. If the origin lies inside M then the shapes overlap, 

otherwise they do not. Moreover, if shape M contains the 

origin, the shortest vector that connects its surface to the origin 

is the displacement vector that will resolve the particle overlap 

as shown in Figure 6b. As described in more detail in the 

supplementary material section S4, the GJK and EPA algorithms 

work on the reformulated problem of determining whether 

origin is inside M and if so, what is the displacement vector that 

will resolve the overlap, respectively. 

During Phase II, it is easy to imagine the situation, especially at 

high particle density, that a new particle 𝑖 (that needs to be 

added), overlaps with several particles simultaneously as shown 

in Figure 6c. In this case, EPA provides displacement vectors in 

a pair-wise manner, and our method adds these displacements 

together to determine a cumulative displacement vector, that 

we use to move particle 𝑖. In this process, sometimes the 

individual pair-wise displacements may cancel, and particle 𝑖 
still intersects with other particles. Therefore, an iterative 

scheme is employed until a maximum number of iterations is 

Figure 7 Statistical properties of generated structure at different particle populations. In this example, the length of the simulation cell is 100 units, 𝛾 and 𝑅 are both log-normally 

distributed with means 3 and 1 units, respectively, and standard deviations for both is fixed to 10% of the mean value. The orientation is distributed using the vMF distribution with

mean orientation 𝜦𝟑 ൌ ሺെ120°, 75°ሻ  and 𝜅 ൌ 10. (a) (left axis) Box plot showing the number of attempts per 2500 particles added, the interquartile range as well as the minimum

and maximum attempts in that interval. The solid curve connects the median number of attempts marked by cross symbols. The right axis shows the runtime of the method as 

particles are assembled into the structure. Runtime (hr) of the method is based on performance on a single Intel Xeon E5v4 processor running at 2.10 GHz (single-threaded). Filled 

circles mark the particle populations 𝑁′ at which the generated structure is checked for adherence to target statistics. (b) Generated structures at different 𝑁′  with particles colored 

by their coordination number, calculated using a cutoff radius of 10 units. (c,d) Histograms showing the adherence to the log-normally distributed aspect ratio and volumetric radius,

respectively of the structures with different 𝑁’ shown in (b). The target distributions in each case are overlayed as solid black curves and normalized to 𝑁’. (e) Surface plot of

histogram showing the adherence to vMF distribution for particle orientation (target distribution is not shown for clarity). The count of particles at the peak (which is the mean

orientation) is noted for each case.
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reached, to find a position where particle 𝑖 finds a location 

without any overlap. Intermittently, the method also 

regenerates completely new random coordinates 𝑥௜ ,𝑦௜, 𝑧௜  for 

particle 𝑖, to avoid getting stuck inside small empty holes, or 

particle gaps which can never fit particle 𝑖. 
As Phase II proceeds and as the particle density increases, the 

availability of empty space decreases, and as a result multiple 

attempts are needed to find positions for newer particles. This 

is shown in Figure 7, where number of attempts are plotted (on 

the left axis) with respect to the population of particles 𝑁′ in the 

form of box plots per 2,500 particles added. This shows how 

much variation can be expected within this interval of addition, 

showing initially that maximum number of attempts are within 

100 attempts for about 20,000 particles added, but as more 

particles are added, the maximum number of attempts can 

reach up to 10,000 attempts after which a position for that 

particle was found. In all the intervals, the minimum number of 

attempts has been 1, indicating that some particles are still able 

to find an empty spot at their first trial. However, as shown from 

the median curve (solid black), most particles need more 

attempts as the population increases. This also means that the 

runtime of the method increases, and the growth of the time 

seems to be exponential. For this reason, it may be 

advantageous to stop the method earlier and use the generated 

structure with fewer particles than initially intended, for further 

analysis as required. 

 

Our method ensures that even upon early termination, the 3D 

structure of particles follows the target distributions of particle 

shape, size, and orientational order. Figures 7b and 7c 

demonstrate that when the generated structure is examined at 

various stages, with values of 𝑁ᇱ ranging from 10,000 to 70,000 

all the distributions closely match the targeted log-normal 

distributions for shape and size. Furthermore, in Figure 7d, 

snapshots of the structure are shown with particles colored by 

their coordination number, which measures the number of 

Figure 8 Application of method to study growth of aligned domains. (a-e) Orientational field and generated structure of particles in 3D showing an evolution in the size of the

domains. The inset shows a zoomed-in view of the structure to reveal the particle shapes. (f-j) Corresponding cross-sectional view of the orientational field and structure showing 

the degree of alignment as the field evolves. The cross-sectional plane in (f-j) is labeled “slice plane” in (a-e, marked by dashed lines). In each instance, the field evolution is achieved

by controlling the 𝑓௖௨௧  values as (a,f) 1, (b,g) 0.75, (c,h) 0.5, (d,i) 0.25 and (e,j) 0.
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neighboring particles within a cutoff radius of 10 units. The 

homogeneity in the coloring indicates that particles are added 

uniformly throughout the volume. The homogeneity of particle 

addition is further demonstrated in Supplementary Video S1. 

Finally, in Figure 7e, for each of the corresponding structures in 

Figure 7d, the histograms of orientation of the particles show 

the adherence to the vMF distribution. 

 

Example Modification to the Method to Model Growth of 

Aligned Domains 

 

The applications that  originally motivated the development of 

CASGAP is the use of the generated 3D real space structure(s) 

with desired distributions of particle shape, size and 

orientational order as initial configuration for follow-up 

calculations (e.g., computing the structure’s scattering profile to 

enable use of machine-learning enhanced CREASE32,64, 

conducting finite difference time domain method for color 

response prediction65). Another potential application is creating 

3D structures to understand dynamics during 3D printing of 

soft/hybrid materials66,67 with a specific external stimulus (e.g., 

light) or field (e.g., electric/magnetic) applied during printing 

that creates spatial correlation or fields within the structure. To 

model structures in these applications, it becomes important to 

include spatial (auto) correlations for a specific parameter, as it 

pertains to the specific scattering profile or property. 

 

We demonstrate an extension of the CASGAP method to include 

spatial correlations for one specific parameter during creation 

of the 3D structure. In the example shown in Figure 8, we apply 

the modified CASGAP method to create a structure with 

particles oriented according to spatial random field of particle 

orientation. A spatial random field 𝑔ሺ𝑥,𝑦, 𝑧ሻ can be chosen to 

obey the standard normal distribution (easily generated using 

several approaches68), i.e., the intensity range of 𝑔ሺ𝑥,𝑦, 𝑧ሻ is 

ሺെ∞,∞ሻ, mean and standard deviation of 𝑔ሺ𝑥,𝑦, 𝑧ሻ are 0 and 

1, respectively. This field can be easily converted to have a 

uniform distribution by using the error function transformation, 

𝑓ሺ𝑥,𝑦, 𝑧ሻ ൌ erf൫𝑔ሺ𝑥,𝑦, 𝑧ሻ൯, such that the range of intensities of 

𝑓ሺ𝑥,𝑦, 𝑧ሻ are now bounded to ሺെ1,1ሻ while preserving the 

same spatial correlations as 𝑔ሺ𝑥,𝑦, 𝑧ሻ.  This field 𝑓ሺ𝑥,𝑦, 𝑧ሻ is 

presumed to contain orientational correlation information of a 

two phase system of anisotropic particles, with the sign of 

𝑓ሺ𝑥,𝑦, 𝑧ሻ indicating the preferred orientation (𝚲ଷ under the 

vMF distribution), and the magnitude of 𝑓ሺ𝑥,𝑦, 𝑧ሻ indicating the 

dispersity in orientation (𝜅 under the vMF distribution). This is 

shown in Figure 8, with the negative values (in blue) of the field 

are assigned to the phase with preferred orientation 𝚲ଷ ൌ 𝒙ෝ, 

and positive values (in maroon) are assigned to the phase with 

𝚲ଷ ൌ 𝒚ෝ. Furthermore, using the description of the vMF 

distribution, we convert the field values into 𝜅 values by using 

𝜅 ൌ ሺ|𝑓ሺ𝑥,𝑦, 𝑧ሻ|ିଵ െ 1ሻିଵ, which gives 𝜅 ൌ 0 when 

𝑓ሺ𝑥,𝑦, 𝑧ሻ ൌ 0 and 𝜅 → ∞ when 𝑓ሺ𝑥,𝑦, 𝑧ሻ ൌ േ1.  

 

Using the field-based input for particle orientations, the 

CASGAP method needs the following modifications. (1) In Phase 

I particle shapes and sizes are generated according to the user 

specified distributions, however, particle orientations are not 

generated. (2) In Phase II, when particle 𝑖 is being added, its 

newly generated coordinate (𝑥௜ ,𝑦௜ , 𝑧௜)  is used to evaluate the 

field value 𝑓ሺ𝑥௜ ,𝑦௜ , 𝑧௜ሻ, and then as described above converted 

to the corresponding vMF distribution values (𝚲ଷ,𝜅 ). The 

particle orientation is then randomly sampled from the vMF 

distribution. (3) Once the orientation is designated, the particle 

is assessed for overlap using the same method described for 

Phase II. If the particle is displaced from its previous location 

due to overlap, then up to a small displacement the particle is 

allowed to remain, otherwise the field is reevaluated at the new 

location, and the subsequent process is repeated iteratively. 

This continues until either a valid configuration is achieved or if 

the method terminates. 

 

Using this modification, we now demonstrate how this method 

can also generate structures where the underlying field evolves 

systematically. In Figure 8, we have evolved the field to 

ℎሺ𝑥,𝑦, 𝑧ሻ, by using a positive field cutoff value 𝑓௖௨௧, where 0 ൑
𝑓௖௨௧ ൑ 1, such that 

 

ℎሺ𝑥,𝑦, 𝑧ሻ ൌ

⎩
⎨

⎧
1, 𝑓ሺ𝑥,𝑦, 𝑧ሻ ൐ 𝑓௖௨௧ 

𝑓ሺ𝑥,𝑦, 𝑧ሻ
𝑓௖௨௧

, |𝑓ሺ𝑥,𝑦, 𝑧ሻ| ൑ 𝑓௖௨௧

െ1, 𝑓ሺ𝑥,𝑦, 𝑧ሻ ൏ െ𝑓௖௨௧

.       ሺ2ሻ 

 

The effect of this evolution for values of 𝑓௖௨௧ ranging from 0 to 

1 is shown in Figure 8 (a-e for 3D, and f-j for 2D slice) and causes 

a growth of the domains. Accordingly, the structures generated 

from this field evolution follow the same trend with the darker 

shaded regions having particles that are increasingly co-

oriented. In Figure 8f-8j, a slice plane of the field and the 

structures is also shown, which clearly demonstrates how the 

particles align with the 𝒙ෝ or 𝒚ෝ depending on the phase domain 

they occupy. In this example, we have elected to keep the 

particle size and shape similar, and only varied the orientation 

of the particles to remove any ambiguity in visualization of the 

results. In principle, we can also extend the above approach to 

create field-based description of particle sizes and shapes that 

mimic gradient effects during synthesis (causing a spatial effect 

on particle size and shape) and deposition of particles in a film. 

Conclusions 

In this study we have demonstrated the steps in our novel 

computational method - Computational Approach for Structure 

Generation of Anisotropic Particles (CASGAP) - that can 

generate a real space 3D structure of anisotropic particles with 

(1) all particle parameters such as shape, size and orientation 

distributed according to a target statistical model, or 

alternatively (2) with some particle parameters described by a 

spatial field description, while the rest of the parameters having 

a target statistical model. The method ensures that at each 

incremental stage of structure generation, the particles always 

adhere to the desired particle shapes, sizes and orientations 
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described by the input distributions, which enables early 

termination based on computational resource/time constraints 

to use the already generated structure for further analysis. The 

structures generated from this CASGAP method can be used to 

study interpret structural characterization of soft materials 

from small angle scattering experiments, simulating processing 

effects especially using the field-based structure generation, 

provide initial configurations for additional physics-based 

molecular simulations to evolve structures or numerical 

simulations to calculate physical properties (e.g., mechanical 

strength, color, optical response, etc.). 

Methods 

The CASGAP code has been implemented using MATLAB version 

R2022a (MathWorks, Natick, MA). The code is available via 

https://github.com/arthijayaraman-lab/casgap (link currently 

inactive). We are also making the code available in Python on 

the same repository. 

 

Author Contributions 

A.J. and N.G. conceptualized the idea. N.G. developed the 

methodology, performed all analysis and visualization with A.J. 

providing supervision. Both A.J. and N.G. were involved in the 

writing and editing of the manuscript. 

Conflicts of interest 

There are no conflicts to declare. 

Acknowledgements 

The authors acknowledge financial support from the Air Force 

Office of Scientific Research (MURI-FA 9550-18-1-0142). 

Computational resources were provided by the University of 

Delaware’s Caviness cluster. Authors thank Mr. Sri 

Vishnuvardhan Reddy Akepati for his efforts and contributions 

in converting the CASGAP source code from MATLAB to Python. 

Notes and references 

1 I. W. Hamley, Introduction to Soft Matter: Polymers, 
Colloids, Amphiphiles and Liquid Crystals, John Wiley 
& Sons, Chichester, 2000. 

2 Z. M. Sherman, M. P. Howard, B. A. Lindquist, R. B. 
Jadrich and T. M. Truskett, J. Chem. Phys., 2020, 152, 
140902. 

3 L.-T. Yan and X.-M. Xie, Prog. Polym. Sci., 2013, 38, 
369–405. 

4 F. L. Paiva, A. R. Secchi, V. Calado, J. Maia and S. 
Khani, Macromolecules, 2021, 54, 4198–4210. 

5 C. J. Stender, E. Rust, P. T. Martin, E. E. Neumann, R. 
J. Brown and T. J. Lujan, Biomech. Model. 
Mechanobiol., 2018, 17, 543–557. 

6 S. Paszkiewicz, I. Irska, A. Zubkiewicz, A. Szymczyk, E. 
Piesowicz, Z. Rozwadowski and K. Goracy, Polymers, 
2021, 13, 397. 

7 G. B. Messaoud, P. Le Griel, D. Hermida-Merino and 
N. Baccile, Soft Matter, 2020, 16, 2540–2551. 

8 V. Calabrese, S. Varchanis, S. J. Haward, J. 
Tsamopoulos and A. Q. Shen, J. Colloid Interface Sci., 
2021, 601, 454–466. 

9 H. Fudouzi, Sci. Technol. Adv. Mater., 2011, 12, 
064704. 

10 M. Qin, M. Sun, M. Hua and X. He, Curr. Opin. Solid 
State Mater. Sci., 2019, 23, 13–27. 

11 W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. 
Hashemizad, B. Y. Leung, D. R. Liner, S. Torquato, P. 
M. Chaikin and P. J. Steinhardt, Proc. Natl. Acad. Sci. 
U.S.A., 2013, 110, 15886–15891. 

12 H. Yu, Prog. Polym. Sci., 2014, 39, 781–815. 
13 S. Mula, L. Donà, B. Civalleri and M. A. Van Der Veen, 

ACS Appl. Mater. Interfaces, 2022, 14, 50803–50814. 
14 A. Zhukov, Ed., High performance soft magnetic 

materials, Springer, 2017, vol. 252. 
15 J. Popovic, D. Brandell, S. Ohno, K. B. Hatzell, J. 

Zheng and Y.-Y. Hu, J. Mater. Chem. A., 2021, 9, 
6050–6069. 

16 M. J. Park and S. Y. Kim, J. Polym. Sci. B Polym. Phys., 
2013, 51, 481–493. 

17 P. Jiang, J. Bertone, K. S. Hwang and V. Colvin, Chem. 
Mater., 1999, 11, 2132–2140. 

18 X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, 
V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, 
and others, ACS Nano, 2012, 6, 2804–2817. 

19 C. Fernández-Rico, M. Chiappini, T. Yanagishima, H. 
de Sousa, D. G. Aarts, M. Dijkstra and R. P. Dullens, 
Science, 2020, 369, 950–955. 

20 B. Sun and H. Sirringhaus, Journal of the American 
Chemical Society, 2006, 128, 16231–16237. 

21 Y. Nagaoka, H. Zhu, D. Eggert and O. Chen, Science, 
2018, 362, 1396–1400. 

22 I. Buttinoni, M. Steinacher, H. T. Spanke, J. Pokki, S. 
Bahmann, B. Nelson, G. Foffi and L. Isa, Phys. Rev. E, 
2017, 95, 012610. 

23 K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang and G. 
A. Somorjai, Nano Lett., 2007, 7, 3097–3101. 

24 F. Lin, X. Lu, Z. Wang, Q. Lu, G. Lin, B. Huang and B. 
Lu, Cellulose, 2019, 26, 1825–1839. 

25 F. A. Shah, E. Zanghellini, A. Matic, P. Thomsen and 
A. Palmquist, Calcif. Tissue Int., 2016, 98, 193–205. 

Page 12 of 13Nanoscale



Nanoscale  ARTICLE 

This journal is © The Royal Society of Chemistry 2023 Nanoscale, 2023, 00, 1-3 | 13  

Please do not adjust margins 

Please do not adjust margins 

26 K. J. Busam, C. Charles, G. Lee and A. C. Halpern, 
Mod. Pathol., 2001, 14, 862–868. 

27 D. Lombardo, P. Calandra and M. A. Kiselev, 
Molecules, 2020, 25, 5624. 

28 N. N. Boustany, S. A. Boppart and V. Backman, Annu. 
Rev. Biomed. Eng., 2010, 12, 285–314. 

29 P. A. Penttilä, L. Rautkari, M. Österberg and R. 
Schweins, J. Appl. Crystallogr., 2019, 52, 369–377. 

30 R. McGreevy and L. Pusztai, Mol. Simul., 1988, 1, 
359–367. 

31 G. Tóth, J. Mol. Liq., 2006, 129, 108–114. 
32 C. M. Heil, A. Patil, A. Dhinojwala and A. Jayaraman, 

ACS Cent. Sci., 2022, 8, 996–1007. 
33 C. M. Heil, A. Patil, B. Vanthournout, S. Singla, M. 

Bleuel, J.-J. Song, Z. Hu, N. C. Gianneschi, M. D. 
Shawkey, S. K. Sinha, Jayaraman, Arthi, and 
Dhinojwala, Ali, Sci. Adv., 2023, 9, eadf2859. 

34 Z. Wu and A. Jayaraman, Macromolecules, 2022, 55, 
11076–11091. 

35 M. G. Wessels and A. Jayaraman, ACS Polymers Au, 
2021, 1, 153–164. 

36 E. Lozano, D. Roehl, W. Celes and M. Gattass, 
Comput. Math. with Appl., 2016, 71, 1586–1601. 

37 W. Jodrey and E. Tory, Phys. Rev. A, 1985, 32, 2347. 
38 W. Jodrey and E. Tory, Powder Technol., 1981, 30, 

111–118. 
39 S. Torquato and Y. Jiao, Phys. Rev. E, 2010, 82, 

061302. 
40 S. Torquato and Y. Jiao, Nature, 2009, 460, 876–879. 
41 X. Jia and R. A. Williams, Powder technology, 2001, 

120, 175–186. 
42 C. F. Schreck, N. Xu and C. S. O’Hern, Soft Matter, 

2010, 6, 2960–2969. 
43 T. Börzsönyi and R. Stannarius, Soft Matter, 2013, 9, 

7401–7418. 
44 H. Altendorf and D. Jeulin, Phys. Rev. E, 2011, 83, 

041804. 
45 S. Xu, Y. Jin and Y. J. Lee, Journal of the American 

Chemical Society. 
46 P. Kubala, P. Batys, J. Barbasz, P. Weroński and M. 

Cieśla, Adv. Colloid Interface Sci., 2022, 306, 102692. 
47 L. Martínez, R. Andrade, E. G. Birgin and J. M. 

Martínez, J. Comput. Chem., 2009, 30, 2157–2164. 
48 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. 

Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in’t 
Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, Shan, 
Ray, Stevens, Mark J, Tranchida, Julien, Trott, 
Christian, and Plimpton, Steven J, Comput. Phys. 
Commun., 2022, 271, 108171. 

49 E. G. Gilbert, D. W. Johnson and S. S. Keerthi, IEEE J. 
Robotics Automat., 1988, 4, 193–203. 

50 G. Van Den Bergen, Collision detection in interactive 
3D environments, CRC Press, Boca Raton, 2004. 

51 V. Sharma, K. Park and M. Srinivasarao, Mater. Sci. 
Eng. R Rep., 2009, 65, 1–38. 

52 V. Ramasubramani, T. Vo, J. A. Anderson and S. C. 
Glotzer, J. Chem. Phys., 2020, 153, 084106. 

53 J. A. Millan, D. Ortiz, G. Van Anders and S. C. Glotzer, 
ACS Nano, 2014, 8, 2918–2928. 

54 S. Zhao and J. Zhao, Comput. Phys. Commun., 2021, 
259, 107670. 

55 K. V. Mardia, P. E. Jupp and K. Mardia, Directional 
Statistics, J. Wiley, New York, 2000, vol. 2. 

56 G. Kurz and U. D. Hanebeck, in 2015 Sensor Data 
Fusion: Trends, Solutions, Applications (SDF), IEEE, 
2015, pp. 1–6. 

57 G. Ulrich, J. R. Stat. Soc., C: Appl. Stat., 1984, 33, 
158–163. 

58 A. T. Wood, Commun. Stat. Simul., 1994, 23, 157–
164. 

59 H. Ouadfel and L. Rothenburg, Comput. Geotech., 
1999, 24, 245–263. 

60 A. Nemirovski, C. Roos and T. Terlaky, Math. 
Program., 1999, 86, 463–473. 

61 J. Rallison and S. Harding, J. Colloid Interface Sci., 
1985, 103, 284–289. 

62 J. Talbot, D. Kivelson, M. Allen, G. Evans and D. 
Frenkel, J. Chem. Phys., 1990, 92, 3048–3057. 

63 X. Zheng, W. Iglesias and P. Palffy-Muhoray, Phys. 
Rev. E, 2009, 79, 057702. 

64 C. M. Heil, Y. Ma, B. Bharti and A. Jayaraman, JACS 
Au, 2023, 3, 889–904. 

65 A. Patil, C. M. Heil, B. Vanthournout, M. Bleuel, S. 
Singla, Z. Hu, N. C. Gianneschi, M. D. Shawkey, S. K. 
Sinha, A. Jayaraman, and others, Adv. Opt. Mater., 
2022, 10, 2102162. 

66 Q. Ge, B. Jian and H. Li, Forces Mech., 2022, 100074. 
67 L.-Y. Zhou, J. Fu and Y. He, Adv. Funct. Mater., 2020, 

30, 2000187. 
68 Y. Liu, J. Li, S. Sun and B. Yu, Comput. Geosci., 2019, 

23, 1011–1047. 
 
 

Page 13 of 13 Nanoscale


