
Machine learning of all-dielectric core-shell nanostructures: 
The critical role of the objective function in inverse design 

Journal: Nanoscale

Manuscript ID NR-ART-08-2023-004392

Article Type: Paper

Date Submitted by the 
Author: 31-Aug-2023

Complete List of Authors: Hoxie, David; University of Alabama at Birmingham College of Arts and 
Sciences, Physics
Bangalore, Purushotham; University of Alabama at Birmingham College 
of Arts and Sciences, Computer Science
Appavoo, Kannatassen; University of Alabama at Birmingham College of 
Arts and Sciences, Physics

 

Nanoscale



  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

 

Machine learning of all-dielectric core-shell nanostructures:  
The critical role of the objective function in inverse design 

David J. Hoxie*a, Purushotham V. Bangaloreb, Kannatassen Appavooc 

To integrate nanophotonics into light-based technologies, it is critical to elicit a desired optical response 

from its fundamental component, a nanoresonator. Because a nanoresonator’s optical resonance depends 

strongly on its base material and structural features, machine learning has been comtemplated for 

enhancing the design and optimization process. However, its accuracy in searching the vast parameter space 

of nanophotonics still pose unresolved questions. Here we show how the choice of objective functions, in 

combination with trained neural networks, can drastically change the optimization process — even for a 

simple nanophotonic structure. To assess how different objective functions select the correct structural 

parameters that generate a desired optical Mie response, we use a simple core-shell, all-dielectric 

nanostructure as benchmark. By controlling the proportion of training data, which represents the 

"experience" level, we also quantify how the various objective functions perform in finding the ground-truth 

parameters. Our findings demonstrate that certain objective functions exhibit improved accuracy when used 

with highly "experienced" neural networks. Surprisingly, we also find other objective functions that perform 

better when paired with less "experienced" neural networks. Taken together, our results emphasize that it is 

critical to understand how neural networks are coupled to optimization schemes, as evident even when a 

simple core-shell nanostructure is used.

Introduction 

To enhance the performance of an optoelectronic 
device, a successful strategy is to tailor photonic 
elements to be active at selected wavelengths. Such 
optically-resonant devices have been developed in 
many applications, such as telecommunications1,  
energy conversion2, detection of cancer cells3, chemical 
and biological sensing4, and all-optical signal 
modulation5, 6-10. In nanophotonics, optical responses 
(i.e., resonances) are controlled by selecting the 
material and the structural parameters of the 

fundamental photonic element, a nanoresonator. While 
free electrons in metallic nanostructures provide strong 
plasmonic resonances9, the polarizable bound charges 
in all-dielectric nanostructures provide strong Mie 
resonances9,11,12, with low parasitic loss in the visible. 
With resonances that can be both electric and magnetic 
in nature, all-dielectric nanostructures provide high 
spectral tunability9,13. In fact, this enhanced tunability 
obtained by the presence of a magnetic resonance is 
still under intense investigation — with goals of higher 
Q-factors14-18 and better figure-of-merit (FOM)17,19, 20-23..  
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Tailoring an optical response using an all-dielectric 
nanostructure (i.e., designing a target spectrum) 
requires searching a vast parameter space. To search 
this high-dimensional parameter space, machine 
learning has been touted to offer several benefits over 
traditional optimization scheme, which rely mostly on 
optical theory19-21. Examples are stochastic 
optimizations such as particle swarm optimizations24, 
genetic algorithms25-28, and Bayesian optimization29. 
With the availability of cheaper and faster 
computational resources, unsupervised machine 
learning methods allow for further classification, 
identification22 and optimization23 without a labelled 
set of data. A key step in the overall optimization 
process is to quantify how the proposed solution (i.e., 
computed spectra) deviate from the target. Since 
computing (or simulating) spectra can be time 
consuming30-33, neural networks have been employed to 
reduce optimization time34.  For example, Vai et al. 
showed how to employ inverted neural networks for 
optimizing microwave circuits34. Such inverted neural 
networks, as outlined by Hinton et al. 26,34-38, with a 
similar (but not identical) backpropagation process 
provides another efficient means of gradient descent 
optimization. Important for our work, Purifoy et al. 
demonstrated that such neural networks — trained via 
optical transfer matrix theory — can generate accurate 
Mie optical response for multi-layered core-shell 
nanostructures26. With the neural networks being 
computationally efficient, consideration for training 
time was lessened 26. While such methods show 
promise, they also open new questions as they involve 
gradient descent — which are known to be influenced 
by the initialization process and the overall structure of 
the network39,40. Moreover, difficulties in finding the 
target are compounded with using common objective 
functions. For example, it is known that sum of squares 
perform poorly when multiple local minima are 
present41. Convexity of the objective function can also 
alter the target of the optimization process36. For these 
reasons, probabilistic solutions are often pursued35,36,41. 
Unfortunately, as far as we know, little work has been 
conducted to understand the interplay between the 
neural network and the objective function. 
Understanding this interplay and how critical it is to 
improve the reliability and accuracy of the inverse 
design process in nanophotonics system is lacking. 
 
In this letter, we show how a transfer-matrix trained 
neural network, when paired with various objective 
functions, predicts vastly different optical responses — 

even for a simple core-shell all-dielectric nanostructure. 
We use this architecture specifically because there are 
only few structural parameters to tune while it can still 
host multiple resonances. The resonances are a result 
of the complex interaction among the electric and 
magnetic multipoles. Here we tune the diameter of the 

core and the thickness of the shell. Using only these two 
parameters enables us to manageably explore the 
parameter space while knowing the ground truth. 
Knowing the ground truth, in turn, allows us to quantify 
how accurate the optimization process is. Additionally, 
we quantify the optimization process when we pair 
different objective functions with various level of 
experience of the neural network (i.e., volume of training 
data). Our results show that while there are objective 
functions that, as expected, perform well on highly 
experienced neural networks, there are also select 
objective functions which perform better on less 
experienced neural networks. We also note that the 
time-efficiency of using a trained neural network (vs. 
corresponding transfer matrix theory) scales favourably 
by two orders of magnitude, as investigated later. 

Generating Optical Spectra of Core-Shell 
Nanostructures for Training Datasets 

We first compare the neural network assisted with an 
evolutionary optimization algorithm (Figure 1, red) to its 
corresponding transfer matrix framework (Figure 1, 
blue). Here we chose an evolutionary algorithm as 

Figure 1: Schematics depicting the inverse design process and comparing (top) the 

traditional computational flow with a genetic (evolutionary) algorithm paired with 

transfer matrix theory (or an electromagnetic simulation) to (bottom) a neural network 

that has undergone a one-time training to correctly capture transfer matrix theory and 

then paired with an evolutionary algorithm. The loss function, i.e., the objective 

function, when coupled to the neural network is the main subject of this work. Note 

that the top scheme requires using the various dielectric constants of the different 

materials at the input. 
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optimization method to ensure the parameter space is 
uniformly explored, similar to the procedure by Purifoy 
et al.26. The stochastic nature of the optimization 
process thus provides a method to quantify how often 
the target is obtained (reliability). Specifically, our goal 
is to find the optimized core diameter and shell 
thickness in an all-dielectric core-shell nanostructure 
that produces the closest spectral match to a desired 
target — here, e.g., a Gaussian spectrum centred at 600 
nm. To generate our training datasets, we use transfer 
matrix series solutions outlined by Qiu et al., using Mie 
theory applied to multi-layer core-shell 
nanostructures30. 

 
Mie theory For a homogeneous spherical nanostructure, 
the scattering cross-sections for extinction and 
scattering      are obtained for a particular wave 
number   by expansion up to the order   with the 
coefficients    and   . These coefficients describe the 
constructive or destructive interference of the incident 
waves with the induced electric and magnetic fields 
within the nanostructure42. 

        
  

  ∑      {             }

 

   

 

Multi-layer core-shells require a more comprehensive 
approach as the added shell layers affect the scattering 
profile42.  
 
Transfer matrix Qiu et al. showed that scattering solutions 
for multi-layer core-shell nanostructures are obtained 
by a series expansion of transverse magnetic and 
electric modes. The scattering cross-sections solutions 
are a series of radial Bessel functions30: 

 

             
  

  
∑∑      |      |

 
 

    

 

where      is the scattering cross-section,          are 
found via               . The cross sections are a 
function of   which is the optical wavelength,   
represents the various transverse channels for the 
electric and magnetic modes,   represents the 
transverse magnetic or transverse electric mode and 
finally,      is the reflectivity Ratio for the various layers. 
 
Resonances and Materials Response The scattering cross-
section is often re-casted as an efficiency, with the 
scattering efficiency defined as: 

          
       
     

 

where    is the physical cross-sectional area of the 
core-shell and   is the radius of the core-shell. The 
scattering efficiency depends critically on changes to 
core diameter and shell thickness, as described by Mie 
theory42. In addition, the lower-order scattering modes 
are highly sensitive to shell thickness. Using transfer 
matrix, we calculate these scattering modes, as shown 
in Figure 2. We use material properties from references 
43-45 for our calculations. Hereafter, we simplify our 
notation and refer to                                as 
      . In other words,        is the calculated spectra 
containing 201 scattering efficiencies equally 
distributed between minimum (         nm) and 
maximum (         nm) wavelengths. We refer to the 
target of scattering efficiencies, i.e.,                  , 
simply as       .  

Figure 2 Mie-resonant modes of core-shell nanoparticle. (a) Pseudo-colour plots 

of scattering efficiency for core-shell nanostructures as the core diameter is varied 

while the shell thickness remains constant at 50 nm, and (b) scattering efficiency of 

core-shell nanostructures with core diameter of 137 nm and varying glass shell 

thickness. Electric dipole (ED) and magnetic dipole (MD) are highlighted in both 

figures.
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Figure 2 highlight the first-order multipolar resonances, 
highlighting the electric (ED) and magnetic dipole (MD) 
lines in dashed lines. These resonances are 
characterised by plotting the respective spectra for the 
transverse magnetic (  ) and transverse electric (  ) 
modes of the scattered plane waves2,46,47. Figure 2a 
shows how the scattering efficiency changes with core 
diameter. The prominent electric dipole scattering 
modes (ED) is visible around 500 nm and redshifts as 
core size increases. Similarly, the magnetic dipole (MD) 
resonance near 500 nm gradually redshifts as the core 
size increases.  The magnetic mode redshifts faster 
than the electric mode and is therefore more sensitive 
to structural changes. These trend in redshift are 
similar with increasing glass thickness. In other words, 
the spectral distance between the magnetic and 
electric resonances remains constant as the aSi 
diameter changes, when the glass shell thickness 
reaches 50 nm. Figure 2b highlights how the glass layer 
has a more complex effect on the scattering efficiency 
than the core size. For example, the higher order 
resonances appear as the shell thickness of glass 
ranges from 150 nm-170 nm, with resonance wavelength 
ranging between 400 nm and 600 nm. Another 
resonance grows when the glass thickness ranges from 
170 nm to 300 nm — with resonances in the 600-800 
nm wavelength range. It is also apparent that the glass 
layer tends to decrease the first-order resonances when 
the core reaches 170 nm. In all, these changes highlight 
the impact the extra shell has on generating more 
complex interactions, with enhanced higher-order 
resonances than are observed with a thinner shell. 

Neural Network Training   

The neural network learns the relation between the 
diameter of the core and thickness of the shell to the 
corresponding scattering cross-sections. In other words, 
the weights and biases of the linear equations 
constituting the neural network are tuned for predicting 
the spectra that would have been obtained by exact 
calculations, which require other computational 
methods42,48-52.  
 
Overview of neural network architecture  The neural network 
we employ is trained to reproduce scattering efficiency, 
given only the structural parameters of the 
nanostructure as input. The neural network predicts the 
scattering efficiency of a core-shell nanostructure for 
varying core diameters and shell thicknesses (i.e., glass 
and air environment). The neural network follows the 
architecture used by Peurifoy et al.53, and consists of 
four fully connected hidden layers, each with 250 nodes. 
The final output layer has 201 nodes and are the 
wavelength-dependent scattering efficiency of the core-

shell nanostructure, i.e., its spectra (Figure 3). We follow 
the settings initially prescribed, with the ‘’patience’ 
setting at 10 % and ‘layers’ set to 4. The MATLAB version 
is 2017b and the python version is 3.6.1. and TensorFlow 
is 1.2. An approximated training time for 20% of the data 
is an hour, where we make use of 16 Gb of memory. We 

Figure 3. Visual representation of neural network, a) network architecture with three 

inputs, core size (𝜙𝑐𝑜𝑟𝑒), glass thickness (𝑙𝑠ℎ𝑒𝑙𝑙) and air shell thickness (𝑙𝑎𝑖𝑟), the inputs 

feed into 4 layers of 250 nodes, the hidden layers then lead to 200 outputs 

representing the wavelength dependent spectral points (𝜆𝑖). Each spectral output 

corresponds to a specific scattering efficiency for a given wavelength. 
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created several neural networks that have been trained 
with various percentage of total training data, i.e., 
various “experience” levels. We use a transfer matrix 
method to calculate the spectra of core-shell 
nanostructure, and we subsequently use the spectra, in 
conjunction with the core-shell label, for generating 
multiple training sets.  
 
Each dataset has a fixed number of nanostructure-
spectrum pairs, and contains 150,600 (100%), 120,716 
(80%), 91,290 (60%), and 61,152 (40%) spectra. For each 
dataset that was created, we evenly divided the 
parameter space for both the core diameter and the 
shell layer thickness between minimum and maximum 
(boundary) values. This method ensures both a uniform 
density of data points over the parameter space and 
that data points are provided at every optimization 
bounds. Each dataset is hereafter split using the 
traditional 80%-20% training-validation scheme and 
trained up to 1000 epochs using the default early 
termination provided with the ScatterNet code. We note 
that each dataset is used specifically to train its own 
neural network. The different population of dataset 
allows us to determine how untrained data points 
presented to the neural network affect the quality of the 
optimization. In other words, we are able to gauge how 

efficient the neural network is in predicting spectra it 
has not been trained on, allowing us to determine how 
reliable and accurate the optimization is. 

Evolutionary Algorithm and its Role in the Inverse 
Design Process 

Objective functions  The objective function evaluates how 
closely a proposed solution,       , resembles the target 
solution       . Here, we plot the 2D surface map of the 
objective function values for each core and shell values 
to generate the analytical ground truth. Our core-shell 
nanostructure only has the a-Si core and glass shell, 
which have a wavelength-dependent permittivity 
values. We explore the parameter space by mapping 
each pair of core-diameter and shell-thickness to each 
objective function (Figure 4). The error maps of the 
different objective function enable us to highlight their 
ground truth (where the error is minimum), denoted by 
stars. Plotted are the traditional weighted root mean 
squared (RMS), a weighted delta function (Delta), 
signal-to-noise ratio (Ratio), and a custom objective 
function (Momentum) figure 4 d. 
 

Figure 4 Surface plots depicting error calculated using the different objective functions (a) Delta, (b) RMS, (c) Ratio, and (d) Momentum as a function of core diameter and glass 

shell thickness. Plots are normalized to the maximum error with blue being regions of largest error and red regions of minimum error. Uniformity of color in the plot represent a 

lack of gradient in the error topography. Plots (e) and (f) are the error as a function of distance along the dashed line in plots a-d, starting from shell thickness at 0 nm and core 

diameter at 50 nm..
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Root Mean Square (RMS): The RMS objective function,     , 
is the L2 norm, i.e., the magnitude of the distance 
between the scattering efficiencies. 

     √ ∑  
               

  

  
       

 

Delta    : The Delta objective function is the root mean 
square at only one wavelength, i.e., a single datapoint. 
The error        is effectively the absolute distance, 
where               is the calculated scattering efficiency 
and                is the target scattering efficiency, at the 

       nm wavelength and   is unity. 

       |       
        

|     

 

Ratio: The Ratio objective function evaluates the average 
distance between the calculated scattering efficiency, 
       , and target scattering efficiency,       . The Ratio 

objective function,       , seeks to find the averaged 
lowest variance with respect to the target26,54-56. 

       
                       

              
 

 
Momentum: The Momentum function           is our 
custom objective function. We designed the Momentum 
objective function to better quantify the differences 
between the calculated spectrum and target. We 
incorporate both the shape and amplitude differences 
of both the target and calculated spectra. Our approach 
is similar to that of Spline fitting approaches57 and 
spectra-pooling by Baxter et al.58.  
 
Our custom objective function incorporates two 
measures for evaluating the difference in spectra. The 
first one,       is the square difference between         
and       . 

     (              )
 
 

The second measure,     , is the square difference 
between the slope of       , and the slope of       . 

     (
 

  
       

 

  
      )

 

 

We then apply a method to weigh the measures. Rather 
than choosing arbitrary weighting factors, we partition 
the range of wavelength where each measure is 
evaluated. The method of averaging over the partitioned 
regions (split spectra) is similar to pooling methods in 
machine learning. 

              ∑         

  

  

 

The   features (peaks or troughs in the spectra) 
correspond to regions,         , of interest in the 
target.    is the first wavelength of the region which 
         and          are evaluated over, and    is the last 
wavelength of that same region. Specifically, our target 
is a gaussian shape centred at 600 nm (mean,   

    nm; standard deviation,      nm).  Following 
extensive testing, we find that defining the central 
region width (i.e.,      ) of      provides the best 
optimization results, as discussed later.  In other words, 
our first region     is                            . 
The second region,     is ranges between         

           . The third region     ranges between 
                       .  
 
The two measures of the pooled regions are combined 
by taking the product of these two measures in a given 
region (i.e., attention), which gives a weight    for the 
region  :  

                        

The weights are combined through multiplication, as 
often carried out in Bernoulli trials and random-walk 
models.   

                    ∏  

 

 

 

We multiply the three different weights to obtain     . 
However, since a particular weight of zero could affect 
the overall product, we also sum the total of each 
weight. 

                      ∑  

 

 

 

 

To keep the objective function as convex as possible, we 
take the squared sum of the sum and product terms. 
Thus, the final objective value that we are minimizing, 
          is given by: 

              
      

            

 

Evolutionary Algorithm Setup 

We test the accuracy of the four different objective 
functions by using an evolutionary algorithm. We also 
quantify how the starting populations change our 
results. Our optimization method is an evolutionary 
algorithm based on Matrix Laboratory and Simulink 
(MATLAB®). To avoid potential issues regarding local 
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minima, we set a fix number of generations. Each 
optimization carried out the exact same number of 
iterations to ensure the optimization would not 
prematurely terminate due to a local minimum. For 
accuracy testing, the initial points (i.e., structural 
parameters) are varied randomly within the genetic 
algorithm starting population. After each optimization, 
the genetic algorithm provides the three structural 
parameters — that will subsequently generate the 
spectra either via ML or transfer matrix to best match 
the target. With the air layer ignored (since it does not 
contribute to the scattering), we can then evaluate each 
solution predicted by the genetic algorithm with respect 

to the surface maps of Figure 4. For the full optimization 
to be accurate, we expect the algorithm to always yield a 
point closest to the white/black star in the different 
maps in figure 4.  
 
Optimization Accuracy 

To understand how the genetic algorithm navigates 
through the error surface to finally propose a solution 
for each of the four optimization frameworks (in terms 
of the aSi and glass layer), we use a metric that 
compares each optimization run with the ground truth 
(with variance plotted as error bars in Figure 5). This 
metric is defined as the L2 norm between our target 
(location of stars in figure 4), and how close each final 
solution provided by the genetic algorithm is. To 
measure how often we obtain the correct structural 
parameters with respect to the target, we run 
optimizations with a population of 200 individuals 
using different starting initial positions. These 
population optimization scheme is repeated a 
thousand times. We note that for each of these 
optimizations, the initial population is distributed 
differently in terms of diameter/shell-thickness pair. 
Finally, we then average the various obtained L2-norms, 
as shown in Figure 5. 
 
Optimization Timing  

Further, we explore the effects of population size within 
the genetic algorithm framework by timing how long 
the optimization takes to converge to its proposed 
solution. For this test, we kept the initial positions fixed 
this time. The time taken to complete an optimization is 
recorded. We repeat this optimization scheme five 
times. Next, we discount the minimum and maximum 
times; the remaining three times are then averaged over 
to obtain the quoted computational time (see Figure 6). 
Moreover, we measured this optimization time for three 
different population sizes, that is using 50, 100 and 200 
individuals. The algorithm uses population 
conservation.   
 

Figure 5: Plots comparing the relative Euclidean distance (from ground truth) for each 

objective function used, i.e., the Momentum (red circle), Ratio (blue circle), Root Mean 

Square, (black circle) and Delta (grey circle), as the amount of training data provided to 

the neural network is decreased. Error bars represent the deviation from the target 

solution. Note that the results are plotted for differing amount of 80% of entire data 

training data used on the network.
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We mitigate any discrepancies in the timing that may 
arise due to the use of shared computational resources, 
in our case, the Cheaha compute cluster at the 
University of Alabama Birmingham59. To mitigate this 
effect, we ran the optimizations at the highest priority 
request on Cheaha (the UAB High performance 
Computing resource), along with having a random loop 
within the code to issue a minor delay before the start 
of each timing experiment to efficiently sample the 
cluster computational load over time. The 
computational resources allocated for use in this work 
are as follows: Intel Xeon Gold 6248R 3.00GHz. As 
benchmark, we find the amount of time to generate 
150,600 spectra using the transfer matrix is 
approximately one hour. To mitigate discrepancy in 
traditional computational workloads where programs 
will load and unload data into memory inconsistently, 
we dropped the shortest and longest times of each test 
as standard practice.  

Results and Discussion 

Figure 4, a-d demonstrates clearly how the different 
objective functions influence where the optimum core-
shell parameters of the nanostructure is located (i.e., 
global minimum), as marked with stars. The objective 
functions are normalized for visual inspection (the 
optimization however uses the actual, unnormalized 
error values. The various areas of minimum error in the 
surface affect how a gradient-based optimization 
behave. If the objective function is globally convex (i.e., 
having an absolute minimum), then we expect the 
evolutionary algorithm to perform as well or better than 
a traditional, non-stochastic gradient descent 
algorithms. The surface plots in Figure 4 a-d also allow 
us to explore how convex, flat or concave each objective 
function is. The ideal objective function would have a 
single minimum at the target location, and a negative 
gradient at every other point on the surface. 
 
Examining the loss in one dimension — i.e., taking a 
representative trace (dashed lines in Figure 4) — 
illustrates the mechanisms behind the contrasting 
results of the objective functions. The Delta and RMS 
traces highlight sections where the error values are 
similar. This uniformity in error topography prevents the 
genetic algorithm from looking beyond those local 
minima. In contrast, for the more diverse topography 
seen in the Momentum and Ratio objective functions 
traces allow the genetic algorithm to converge to the 
global minimum. In other words, the large error 
variations help ensure mutations within the population 
of the algorithm to use more points to sample. 
 
Figure 5 compares how changes to the neural network 
accuracy affects the optimization accuracy. The results 
clearly indicate the vast improvement in accuracy for 

the Momentum and Ratio objective functions over the 
Delta and RMS objective functions. The Momentum and 
Ratio Objective functions both have high accuracy. 
Further we see the Momentum and Ratio have low 
variations in the accuracy (error bars). The Momentum 
and Ratio objective functions are sensitive to changes 
in the neural network accuracy. The Delta and RMS 
objective functions have poor accuracy and large 
deviations (error bars).  We also see the Delta and RMS 
objective functions are not influenced by the changes in 
the neural network accuracy. One probable explanation 
for how the neural network accuracy does not affect the 
results of the RMS and Delta functions, may be the 
inaccuracy of the RMS and Delta may be so large it 
obscures the additional variance caused by the neural 
network. When we compare the Momentum to the Ratio 
objective functions, we see that as the neural network 
experience decreases (i.e., with less training data used), 
the Momentum objective function shows a decrease in 
standard deviation to the target spectra, while also 

increasing in accuracy until a minimum accuracy is 
reached at 60% of the training data. Conversely, as a 
decrease in neural network training data the Ratio and 
objective function increases in deviation from the 
target signal. We also see the Ratio objective function 
linearly decreases in accuracy as the training data is 
lowered. 
 

Figure 6: Plot demonstrating the average computational time for varying evolutionary 

algorithm populations, the x axis is not to scale. The colour red indicates the 

momentum objective function and blue represents the ratio objective function. The 

circle represents the network calculations, while the squares represent the transfer 

matrix calculations.
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We see that the Momentum loss becomes similar to the 
Ratio method as neural network is trained on less 
amount of data. We believe that this convergence is 
caused by smoothing of the local minima as the less 
experienced neural network would more likely underfit. 
Therefore, the differences between the Momentum and 
Ratio methods become less apparent. With the neural 
network trained on less data, the Ratio objective 
function have larger outliers from the target solution. 
Yet the Momentum objective function appears to have 
the smallest variation from the target solution. 
However, as the neural network becomes trained on 
lesser amount of data (Figure 5, 60%), the depth of the 
local minima modifies the optimization process and 
decrease the accuracy of the various objective 
functions.  
 
We now examine the efficiency (time for optimization 
scheme to reach a solution) of the two best objective 
functions as we change the population within our 
framework (Figure 6). Figure 6 demonstrates how a 
change in the population of the evolutionary algorithm 
affects the time required for a given optimization. The 
squares indicate that transfer matrix theory (in contrast 
to neural network) was used to evaluate the objective 
function. The circles represent optimizations where the 
neural network is used in calculation of the objective 
function. The colours indicate which objective function 
was used during the optimization, red is the 
Momentum objective function and blue is the Ratio 
objective function. 
 
The results indicate that the increased population from 
50 to 100 individuals has a nearly linear increase in time 
for both the neural network optimization and transfer 
matrix optimization. The large difference in time shows 
the computational performance of the neural network 
optimization is much more efficient than the transfer 
matrix optimization. Yet the rates of increase for the 
time between 50 to 100 individuals shows suggests that 
each optimization scales similarly with the increased 
population. Once the population increases beyond 100 
individuals the computational time increases at a 
faster rate for the transfer matrix optimization when 
compared to the neural network optimization. This 
increase in efficiency shows the neural network 
optimization has an advantage in scaling efficiency 
with population. This efficiency gain can be attributed 
to several factors like bandwidth from the material data 
required in the transfer matrix, memory capacity and 
computational complexity. Within the same framework, 
i.e., neural network or transfer matrix, there is no 
appreciable computational times for these two 
objective functions. The transferability of our model is 
limited by the scatter net framework. The current 
framework of scatternet only allows for the input of 
each core shell size, thus any interchange of material 

properties would bias the model or average the weights 
over different materials as there would be no input to 
distinguish between materials. 

Conclusion  

We demonstrate how the accuracy of an optimization 
process utilizing a neural network assisted with an 
evolutionary algorithm can be improved for the inverse 
design process. The results show evidence that the 
combination of a neural network’s experience in 
conjunction with a given objective function act as a 
means of regularization. If plenty of training data is 
available for the training of the neural network, one 
would choose the use a highly trained neural network 
and employ a Ratio objective function. Often, the lack of 
available data limits the networks experience. In such a 
case one should choose to employ the Momentum 
objective function. 
  
Our work highlights that one must factor and apply 
domain knowledge for the optimization of 
nanophotonic structures, as demonstrated by our 
prototypical core-shell nanostructure. We provide 
evidence on how the choice of an objective function 
yields different global optimal designs even when the 
physics is unchanged. The discrepancy in global optima 
could be attributed to some objective functions 
highlighting different features of the core-shell 
nanostructure asymmetric spectra. In the future, it will 
be interesting to explore how the use of other tailored 
optimizations functions affect other types of 
optimization process such as stochastic gradient-
based ones. 
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