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Diffusioosmotic flow reversals due to ion-ion electrostatic correla-
tions

Shengji Zhanga and Henry C. W. Chu∗b

Existing theories of diffusioosmosis have neglected ion-ion electrostatic correlations which are impor-
tant in concentrated electrolytes. Here, we develop a mathematical model to numerically compute
the diffusioosmotic mobilities of binary symmetric electrolytes across low to high concentrations in
a charged parallel-plate channel. We use the modified Poisson equation to model the ion-ion elec-
trostatic correlations and the Bikerman model to account for the finite size of ions. We report two
key findings. First, ion-ion electrostatic correlations can cause a unique reversal in the direction of
diffusioosmosis. Such a reversal is not captured by existing theories, occurs at ≈ 0.4 M for a mono-
valent electrolyte, and occurs at a much lower concentration ≈ 0.003 M of a divalent electrolyte
in a channel with the same surface charge. This highlights that diffusioosmosis of a concentrated
electrolyte can be qualitatively different from that of a dilute electrolyte, not just in its magnitude
but also its direction. Second, we predict a separate diffusioosmotic flow reversal, which is not
due to electrostatic correlations but the competition between the underlying chemiosmosis and elec-
troosmosis. This reversal can be achieved by varying the magnitude of the channel surface charge
without changing its sign. However, electrostatic correlations can radically change how this flow
reversal depends on the channel surface charge and ion diffusivity between a concentrated and a
dilute electrolyte. The mathematical model developed here can be used to design diffusioosmosis
of dilute and concentrated electrolytes, which is central to applications such as species mixing and
separation, enhanced oil recovery, and reverse electrodialysis.

1 Introduction
Diffusioosmosis refers to the deterministic fluid motion over a sur-
face induced by a solute concentration gradient.1–7 Diffusioosmo-
sis comprises a chemiosmotic and an electroosmotic component.
The chemiosmotic flow is generated by the osmotic pressure gra-
dient induced by the solute gradient, which acts to drive fluid
from a region of high to low solute concentration. The electroos-
motic flow is generated by an electric field which is induced by
the ionic solute gradient to ensure no net ionic current in the bulk.
The electroosmotic flow may drive fluid up or down the ionic so-
lute gradient, depending on the ions’ diffusivities and charge of
the surface. The diffusioosmotic flow velocity follows the ‘log-
sensing’ relation, uuu = M∇ logn,8 where n is the ion concentration
and a positive (negative) diffusioosmotic mobility M corresponds
to fluid driven up (down) the solute gradient. Diffusioosmosis
has received much attention in recent years due to its impacts on
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a wide range of applications, such as mixing and separation,9–36

reverse electrodialysis,37–42 and enhanced oil recovery.43–47

The main objective of this article is to demonstrate that ion-
ion electrostatic correlations can lead to a unique reversal in the
direction of diffusioosmosis of a binary, symmetric, concentrated
electrolyte solution, relative to diffusioosmosis of the same but di-
lute electrolyte solution. Existing theories of diffusioosmosis have
focused on dilute electrolyte solutions4,8,11,12,48–54 and cannot
capture this reversal. In a dilute electrolyte solution, the electric
potential is typically modeled by the Poisson equation, where ions
respond to the average potential in the electric double layer and
the space charge density decays monotonically from the charged
surface. The Poisson equation neglects electrostatic correlations
between ions. Ion-ion electrostatic correlations are prominent in
concentrated electrolytes and cause overscreening of charges of
a surface, where the space charge density oscillates in sign near
the charged surface.55–57 By molecular dynamics simulations and
other non-local approaches,58–67 it has been demonstrated that
the cause of overscreening is ion-ion electrostatic correlations.
Although these approaches can capture overscreening accurately,
the high computational cost largely restricts their use to model
equilibrium systems. Building on the work of Santangelo 68 and
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Hatlo and Lue,66 Bazant et al. 69 70 derived a continuum-level,
modified Poisson equation to robustly model overscreening. The
equation is applicable to dilute and concentrated electrolyte so-
lutions, room-temperature ionic liquids, and molten salts. For a
binary electrolyte, the modified Poisson equation reads69–71

ε(l2
c ∇

4
φ −∇

2
φ) = ρ = en+z++ en−z−, (1)

where ε is the solution permittivity, φ is the electric potential, ρ

is the space charge density, e is the proton charge, n+ and n− are
the number densities of the cations and anions, respectively, and
z+ and z− are the valence of the cations and anions, respectively.
For a symmetric electrolyte, z+ = −z− = z. The lower and up-
per bounds of the electrostatic correlation length, lc, is set by two
comparable length scales, namely, the hydrated ion diameter, a,
and z2lB, where lB = e2/(4πεkT ) is the Bjerrum length with k the
Boltzmann constant and T the absolute temperature. Because of
its continuum nature, the modified Poisson equation can be cou-
pled with other continuum-level transport equations and analyze
dynamical problems efficiently. For instance, the modified Pois-
son equation has successfully captured non-equilibrium phenom-
ena that follow from overscreening, including electroosmotic flow
reversal,70 electrophoretic mobility reversal,72 dielectrophoretic
polarization reversal,73 and ionic current rectification reversal.74

In this article, we develop a mathematical model that predicts
the diffusioosmotic mobilities of binary symmetric electrolytes
across low to high concentrations in a channel comprising two
charged parallel plates. We use the modified Poisson equation69

to model the electric potential and electrostatic correlations. We
incorporate the Bikerman model75 to account for the finite size
of ions. We report two key findings. First, we compute the
diffusioosmotic mobilities of common electrolytes and demon-
strate that the direction of diffusioosmosis of a monovalent elec-
trolyte reverses as the electrolyte concentration increases beyond
≈ 0.4 M. This unique diffusioosmotic flow reversal is not cap-
tured by existing theories and we identify its origin to be over-
screening of the channel surface charges by ion-ion electrostatic
correlations. In a channel with the same surface charge, we show
that the diffusioosmotic flow reversal occurs at a much lower
concentration ≈ 0.003 M of a divalent electrolyte. Second, we
present flow direction diagrams of diffusioosmosis as a function
of the electrolyte concentration, valence, diffusivity, and chan-
nel surface charge. The diagrams predict a separate diffusioos-
motic flow reversal shown in prior work.4,8,50,52 This reversal is
not due to electrostatic correlations but the competition between
the chemiosmosis and electroosmosis that constitute diffusioos-
mosis. The reversal can be realized by varying the magnitude of
the channel surface charge without changing its sign. However,
due to electrostatic correlations, this reversal has a distinct de-
pendence on the product of the channel surface charge and ion
diffusivity between a concentrated and a dilute electrolyte.

The rest of this article is outlined as follows. In Section 2, we
formulate the problem by presenting the governing equations and
boundary conditions for the electric potential, induced electric
field, and diffusioosmotic flow field and mobility. In Section 3,
we present our results and elaborate on the two above-mentioned

key findings. In Section 4, we summarize this study and offer
ideas for future work.

2 Problem formulation

1

2H y

L

x

∇ni∞

Fig. 1 A constant concentration gradient of a binary, symmetric elec-
trolyte ∇n∞

i induces a diffusioosmotic flow in a channel that comprises
two parallel plates of a constant surface charge density and a length L
separated by a distance 2H. The diffusioosmotic flow is parallel to ∇n∞

i
along the x-direction.

Consider a channel that comprises two parallel plates of a con-
stant surface charge density q (or a constant surface potential
ζ ) and a length L separated by a distance 2H (Fig. 1). A con-
stant concentration gradient of a binary, symmetric electrolyte
∇n∞

i is applied across the channel, where i = (+) and i = (−)
are the cationic and anionic species, respectively, and n∞

+(x) =
n∞
−(x) = n∞(x). Following prior work,4,8,12,48–54 we focus on typ-

ical regimes of diffusioosmosis, where the electrolyte concentra-
tion gradient across the channel length is much smaller than the
background concentration, L|∇n∞|/n∞ � 1 with n∞ = n∞(0). A
diffusioosmotic flow with a constant velocity uuu is induced parallel
to ∇n∞

i along the x-direction. The velocity uuu is an unknown. In
the following, we will determine the electric potential inside the
channel in Section 2.1 and the electric field induced by the elec-
trolyte gradient in Section 2.2. We will use this information to
determine uuu in Section 2.3.

2.1 Electric potential

The Bikerman model75 describes the electrochemical potential of
each ionic species as µ± = kT logn±+ z±eφ − kT log[1− a3(n+ +

n−)], where the first two terms represent an ideal solution and
the last term accounts for the steric effect of the finite size of
ions. The steric effect is controlled by the bulk volume fraction of
ions, ν = 2a3n∞. At equilibrium, ∇µ± = 0, the ion concentration
follows the Fermi-like, modified Boltzmann distribution as14,52,76

n± = αn∞e−
z±eφ

kT with α =

[
1−ν +ν cosh

(
zeφ

kT

)]−1
. (2)

Substituting eqn (2) into (1) yields a Poisson-Fermi equation that
governs the electric potential accounting for both the finite size
of ions and ion-ion electrostatic correlations 69,70

ε

(
l2
c

d4φ

dy4 −
d2φ

dy2

)
= ρ =−2αn∞ezsinh

(
zeφ

kT

)
. (3)

We non-dimensionalize eqn (3) using the following schemes:
ŷ = y/H, φ̂ = φ/(kT/e), κ̂ = κH, and ρ̂ = ρ/(n∞ez), where quanti-
ties with carets are non-dimensional and the Debye length κ−1 ≡√

εkT/(2e2n∞z2) is the length scale over which the space charge
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density varies. The non-dimensionalized eqn (3) reads

δ
2
c

d4φ̂

dŷ4 − κ̂
2 d2φ̂

dŷ2 =−ακ̂4

z
sinh

(
zφ̂
)
, (4)

where δc = κlc characterizes the importance of electrostatic cor-
relations which is expected to be prominent when δc & O(1).77

Eqn (4) is subject to the following boundary conditions69,70

dφ̂

dŷ
=−q̂ or φ̂ = ζ̂ , and

d3φ̂

dŷ3 = 0 at ŷ = 0, (5)

φ̂ = 0 and
dφ̂

dŷ
= 0 at ŷ = 1. (6)

In eqn (5), the first two conditions represent that the channel
surface charge density q̂ = qeH/(εkT ) or the channel surface po-
tential ζ̂ = ζ e/(kT ) is specified. The third condition is demanded
by the Poisson-Fermi equation. In eqn (6), the conditions repre-
sent that the electrostatic potential and its derivative go to zero
smoothly away from the channel surface. The first condition is
guaranteed, where our analyses focus on electrolyte solutions
with n∞ ≥ 10−3 M (κ−1 . 10−8 m) in typical microscale channels
with H & 10−7 m so that κ̂ ≥ 10 and φ̂ = 0 at ŷ = 1. When δc = 0
(lc = 0) and α = 1 (ν = 0), eqn (4) reduces to the classical Poisson-
Boltzmann equation for a dilute electrolyte solution, where the
last condition in eqn (5) and (6) are not required.

2.2 Induced electric field

In diffusioosmosis, an electric field EEE is generated by the imposed
electrolyte concentration gradient to ensure no net ionic current
in the bulk8

JJJ = z+e jjj++ z−e jjj− = 000, (7)

where the flux of individual species accounting for the finite size
of ions is14,52,75

jjji =−Di∇ni−
Dizie
kT

ni(∇φ−EEE)+niuuu−
νDini(∇n++∇n−)

2n∞−ν(∇n++∇n−)
, (8)

with Di the diffusivity of the i-th ionic species. Substituting
eqn (8) into (7) gives

EEE = Exeeex =
kT
ze
|∇n∞|

n∞

{[
(1+ zβ )e−zφ̂ − (1− zβ )ezφ̂

(1+ zβ )e−zφ̂ +(1− zβ )ezφ̂

]
×

(
1

1−αν cosh(zφ̂)

)
+

Pesinh(zφ̂)

(1+ zβ )e−zφ̂ +(1− zβ )ezφ̂
û

}
eeex,

(9)

where β = (D+−D−)/z(D++D−) is the ion diffusivity ratio, eeex is
the unit vector in the positive x-direction, the Peclet number Pe =

4n∞U/[(D++D−)|∇n∞|] describes the strength of diffusioosmotic
convection relative to ion diffusion, U = εk2T 2|∇n∞|/(ηe2z2n∞) is
a characteristic velocity, and û = ux/U is the non-dimensionlized
x-component of uuu.

2.3 Diffusioosmotic flow field and mobility

Inertial forces are negligible in microscale transport. The fluid
dynamics is described by the continuity equation, ∇ · uuu = 0, in

addition to the Stokes equation with an electric body force, 000 =

η∇2uuu−∇p+ ρ(EEE −∇φ). For a fully developed flow, ux = ux(y)
and the continuity equation suggests that the y-component of uuu is
zero. Thus, the y- and x-components of the Stokes equation are
written as

0 =−∂ p
∂y
−ρ

dφ

dy
, (10)

0 = η
d2ux

dy2 −
∂ p
∂x

+ρEx, (11)

where η is the dynamic viscosity of the electrolyte solution. The
pressure p can be obtained by substituting eqn (2) into (10) and
integrating with the boundary condition φ̂ = 0 at ŷ = 1,

p = p∞− 2kT n∞

ν
logα, (12)

where p∞ is a constant in the absence of an imposed pressure gra-
dient. Finally, substituting eqn (12) into (11) gives the governing
equation for the diffusioosmotic flow

0 =
1

κ̂2
d2û
dŷ2 −

logα−1

ν
+

ρ̂Ê
2

, (13)

where −(logα−1)/ν and ρ̂Ê/2 are the chemiosmotic and elec-
troosmotic driving force to the diffusioosmotic flow, respectively,
and Ê = Ex/(kT |∇n∞|/zen∞). Eqn (13) is subject to the no-slip
condition at the channel walls and the symmetry condition about
the channel centerline

û = 0 at ŷ = 0, and
dû
dŷ

= 0 at ŷ = 1. (14)

We further define the mean diffusioosmotic velocity as

ûm ≡
um

U
=

(
∫ H

0 ux dy)/H
U

=
∫ 1

0
û dŷ = M̂. (15)

Note that ûm is equivalent to the non-dimensionalized diffusioos-
motic mobility M̂ = Mηe2z2/(εk2T 2), which together recover the
dimensional log-sensing relation um = M∇ logn∞. In sum, we
solve eqn (4)-(6) for φ̂ . The potential φ̂ is then used to com-
pute ρ̂ via eqn (3) and is substituted into eqn (13) and (15) to
solve for û and ûm. We use a combination of the finite difference
method and Newton’s method in Wolfram Mathematica to solve
these equations and converged solutions are obtained with mesh
size ∆ŷ = 10−5. Details of the numerical scheme are given in Ap-
pendix A. We have validated our model by recovering the results
of prior work50,52 in Appendix B.

3 Results and discussion

In this section, we compute the non-dimensionalized diffusioos-
motic mobilities M̂ of common binary, symmetric electrolytes.
Their cation diffusivity, anion diffusivity, diffusivity ratio, and sat-
uration concentration are listed in Table 1. In Section 3.1, we
present the mobilities as a function of the bulk molar concen-
tration of the electrolyte C, which relates to the bulk number
density of ion via n∞ = 103AC, where A is the Avogadro con-
stant. In Section 3.2, we present flow direction diagrams which
show the direction of the diffusioosmotic flow as a function of

Journal Name, [year], [vol.],1–14 | 3

Page 3 of 14 Nanoscale



Electrolyte D+ [×10−9 m2s−1] D− [×10−9 m2s−1] β Saturation concentration [M]

Hydrogen chloride (HCl) 9.31 2.03 0.64 19.7

Potassium acetate (CH3COOK) 1.96 1.09 0.29 27.4

Potassium chloride (KCl) 1.96 2.03 -0.02 4.61

Sodium chloride (NaCl) 1.33 2.03 -0.21 6.16

Sodium hydroxide (NaOH) 1.33 5.27 -0.60 25

Zinc sulphate (ZnSO4) 0.72 1.07 -0.10 3.57

Magnesium chromate (MgCrO4) 0.71 1.13 -0.12 5.15

Beryllium sulphate (BeSO4) 0.60 1.07 -0.14 3.81

Table 1 Cation diffusivity D+, anion diffusivity D−, diffusivity ratio β , and saturation concentration of common binary, symmetric electrolytes in water
at temperature T = 298 K.78

the electrolyte concentration, valence, diffusivity, and channel
surface charge. In Section 3.1 and 3.2, we account for the fact
that varying C varies ν , κ̂, and δc; see Section 2.1 for parame-
ter definitions. We set T = 298 K, a = 0.3 nm,70,76 lc = z2lB,77

and Pe = 4n∞U/[(D++D−)|∇n∞|] = 1, which is justified by typi-
cal diffusioosmosis with U ∼ 10−6 ms−1, n∞/|∇n∞| ∼ 10−3 m, and
D± ∼ 10−9 m2s−1.10,50

3.1 Variation of diffusioosmotic mobilities with bulk elec-
trolyte concentrations

3.1.1 Monovalent electrolytes ignoring electrostatic correla-
tions (δc = 0)

First, we show and discuss the diffusioosmotic mobilities of mono-
valent electrolytes obtained by ignoring electrostatic correlations
in Fig. 2. This will facilitate discussions in the next section on
how electrostatic correlations can cause a unique diffusioosmotic
flow reversal that manifests in a sign reversal in the mobilities. In
Fig. 2(a), we compute the mobilities M̂ of five monovalent elec-
trolytes: HCl (β = 0.64), CH3COOK (β = 0.29), KCl (β = −0.02),
NaCl (β = −0.21), and NaOH (β = −0.60). The channel height
H = 100 nm. Thus, κ̂ ≈ 10 at C = 10−3 M and κ̂ ≥ 10 as C increases.
The channel surface charge density q = 0.014 C m−2 (q̂ = 78.4)
corresponds to a channel surface potential ζ = 100 mV (ζ̂ = 4) at
C = 10−3 M. We use the same q̂ to compute the mobilities at other
electrolyte concentrations. Fig. 2 includes the effect of finite-ion-
size, i.e., ν is non-zero, but ignores electrostatic correlations by
setting δc = 0. By definition (Fig. 1), a positive (negative) mo-
bility corresponds to a diffusioosmotic flow from a region of low
(high) to high (low) electrolyte concentration.

The first observation from Fig. 2(a) is that, at a low electrolyte
concentration C = 10−3 M for a strongly negative β =−0.60 (grey
line), the diffusioosmotic mobility is positive. That is, the dif-
fusioosmotic flow is from a region of low to high electrolyte con-
centration. To understand this observation, we show the chemios-
motic driving force −(logα−1)/ν in Fig. 2(b) and the electroos-
motic driving force ρ̂Ê/2 in Fig. 2(c)-(d) [see eqn (13)]; panel (d)
is a zoom-in of panel (c). Fig. 2(b) shows that the chemiosmotic
driving force is negative, meaning that a chemiosmotic flow is
generated from a region of high to low electrolyte concentration,

consistent with prior work.8 The chemiosmotic driving force is
independent of β , which explains the overlap of data for five dif-
ferent β values. Fig. 2(c)-(d) show that, for β = −0.60, the elec-
troosmotic driving force is always positive away from the channel
surface (ŷ = 0), meaning that an electroosmotic flow is generated
from a region of low to high electrolyte concentration. The posi-
tive electroosmotic driving force ρ̂Ê/2 for β =−0.60 is confirmed
by its negative components ρ̂ and Ê shown in Fig. 2(e). To sum,
since the magnitude of the electroosmotic driving force [Fig. 2(c)]
is larger than the chemiosmotic driving force [Fig. 2(b)], the di-
rection of the resulting diffusioosmotic flow is governed by the
former which goes from a region of low to high electrolyte con-
centration, i.e., a positive mobility.

The second observation from Fig. 2(a) is that, at a low elec-
trolyte concentration C = 10−3 M for a strongly positive β = 0.64
(red line), the diffusioosmotic mobility is negative. That is, the
diffusioosmotic flow is from a region of high to low electrolyte
concentration. This can be understood by the same reasoning as
in the above paragraph. Specifically, Fig. 2(b) shows that the
chemiosmotic driving force −(logα−1)/ν is negative, meaning
that a chemiosmotic flow is generated from a region of high to low
electrolyte concentration. Fig. 2(c)-(d) show that, for β = 0.64,
the electroosmotic driving force ρ̂Ê/2 is positive near the channel
wall (ŷ . 0.16) and becomes negative away from the channel wall
(ŷ & 0.16). Such a change in the direction of the electroosmotic
driving force is caused by a sign change in the induced electric
field Ê but not in the space charge density ρ̂ [Fig. 2(e)]. Thus,
the net electroosmotic flow for β = 0.64 is weaker than that for
β = −0.60. Consequently, when the electroosmotic flow couples
with the chemiosmotic flow for β = 0.64, the resulting diffusioos-
motic flow is governed by the latter which goes from a region of
high to low electrolyte concentration, i.e., a negative mobility.

Combining the first and the second observation, at a low elec-
trolyte concentration, the mobility transitions from positive to in-
creasingly negative as β becomes more positive.

The third observation from Fig. 2(a) is that the magnitude of
the mobility decreases and approaches zero with an increasing
electrolyte concentration C. This can be understood by recall-
ing that we consider a constant channel surface charge density
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ŷ

-0.8

-0.6

-0.4

-0.2

0

ρ̂

4 x 10
-220

ŷ
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Fig. 2 Diffusioosmosis of monovalent electrolytes ignoring electrostatic correlations (δc = 0). For panels (a)-(h), red solid line denotes HCl (ion
diffusivity ratio β = 0.64), green solid line denotes CH3COOK (β = 0.29), blue solid line denotes KCl (β = −0.02), purple solid line denotes NaCl
(β = −0.21), grey solid line denotes NaOH (β = −0.60), and dotted line is for referencing zero of the y-axis. The channel height H = 100 nm and
channel surface charge density q = 0.014 C m−2. Panels (b)-(e) and (f)-(h) are computed at a bulk electrolyte molar concentration C = 10−3 M and
C = 1 M, respectively. (a): The diffusioosmotic mobility M̂ versus C. (b) and (f): The chemiosmotic driving force − logα−1/ν versus the distance
from the bottom channel wall ŷ. (c) and (g): The electroosmotic driving force ρ̂Ê/2 versus ŷ. (d) A zoom-in of panel (c) for showing a sign change
of ρ̂Ê/2. (e) and (h): The space charge density ρ̂ (right y-axis; black solid line) and electric field Ê (left y-axis; all other lines) versus ŷ.
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q̂ = 78.4. This corresponds to a channel surface potential ζ̂ = 4
at a low electrolyte concentration C = 10−3 M. On increasing the
electrolyte concentration, the channel surface potential decreases
and approaches zero, e.g., ζ̂ = 0.24 at C = 1 M which can be ob-
tained by solving eqn (4)-(6), and so does the mobility.

3.1.2 Monovalent electrolytes accounting for electrostatic
correlations (δc = κlc)

In this section, we demonstrate a unique diffusioosmotic flow re-
versal caused by electrostatic correlations. This reversal manifests
in a sign reversal in the diffusioosmotic mobility at a high elec-
trolyte concentration C & 0.1 M. To this end, we show Fig. 3 ob-
tained with the same parameters as Fig. 2, except that a non-zero
δc is input in computation according to its definition (δc = κlc)
instead of assuming it to be zero.

We start by stating the similarities between Fig. 3(a) and 2(a).
These similarities occur when C < 0.1 M, where the effect of elec-
trostatic correlations is weak. First, Fig. 3(a) shows that, at a low
electrolyte concentration C = 10−3 M, the mobility is negative for
a strongly positive β (grey line) and transitions to be negative for
a strongly positive β (red line). This trend and the physical expla-
nations are identical to that in Fig. 2(a) at a low electrolyte con-
centration (the first and the second observation in Section 3.1.1).
In fact, the mobilities at C = 10−3 M in Fig. 3(a) and their consti-
tutive driving forces in Fig. 3(b)-(e) are almost identical to those
in Fig. 2(a)-(e). This is because, at C = 10−3 M, δc = 0.074� 1
in Fig. 3(a)-(e) indicates that electrostatic correlations are negli-
gible and can be approximated accurately by neglecting electro-
static correlations (δc = 0) as in Fig. 2(a)-(e). Second, same as
Fig. 2(a), Fig. 3(a) shows that the magnitude of the mobility de-
creases with an increasing electrolyte concentration. This echoes
the third observation in Section 3.1.1.

Next, let us state and discuss the new phenomena caused by
electrostatic correlations, as shown by the dissimilarities between
Fig. 3(a) and 2(a). These dissimilarities occur when C & 0.1 M,
where the effect of electrostatic correlations is prominent. The
first new phenomenon caused by electrostatic correlations is that,
for a fixed β , there is a substantial deviation of the mobility in
Fig. 3(a) relative to 2(a) at C ≥ 0.2 M where δc ≥ 1 . This is
consistent with the Poisson-Fermi equation (4) that the effect of
electrostatic correlations is important when δc & O(1).77

The second new phenomenon caused by electrostatic corre-
lations is that the aforementioned deviation of the mobility in
Fig. 3(a) subsequently evolves into a unique sign reversal in the
mobility at C & 0.4 M, which is absent in Fig. 2(a). For instance,
in Fig. 3(a) for β = −0.60 (grey line) the mobility is positive
at C = 10−3 M and becomes negative at C & 0.4 M, whereas in
Fig. 2(a) for β = −0.60 the mobility is positive at all concentra-
tions C. A comparison between Fig. 3(f)-(h) (which account for
electrostatic correlations) and Fig. 2(f)-(h) (which ignore elec-
trostatic correlations) shows that electrostatic correlations are at
the origin of such a sign reversal in the mobility at a high elec-
trolyte concentration. First, by comparing Fig. 3(f) and 2(f), the
chemiosmotic driving force −(logα−1)/ν in the two panels are
qualitatively the same, indicating that the chemiosmotic flow is
not a cause of the diffusioosmotic mobility reversal at a high elec-

trolyte concentration. Second, by comparing Fig. 3(g) and 2(g),
the electroosmotic driving force ρ̂Ê/2 in Fig. 3(g) shows a sign
reversal near ŷ = 0.01, which is absent in Fig. 2(g). This indi-
cates that the electroosmotic flow reversal away from the channel
surface is the cause of the diffusioosmotic mobility reversal at a
high electrolyte concentration. We remark that such a sign rever-
sal in ρ̂Ê/2 is due to the electrostatic correlations-induced over-
screening of the channel surface charge, which manifests in a sign
change in the space charge density ρ̂ near the channel surface as
shown in Fig. 3(h). This sign change in ρ̂ is absent when electro-
static correlations are ignored in Fig. 2(h). This sign change in
ρ̂ has been reported in prior work and causes various anomalous
electrokinetic phenomena, including electroosmotic flow rever-
sal,70 electrophoretic mobility reversal,72 dielectrophoretic po-
larization reversal,73 and ionic current rectification reversal.74 In
sum, electrostatic correlations cause overscreening of the chan-
nel surface charge that leads to a sign change in the space charge
density near the channel surface. Such a sign change in the space
charge density in turn causes a reversal in the electroosmotic driv-
ing force ρ̂Ê/2 that generates the electroosmotic flow, leading to
a sign reversal in the diffusioosmotic mobility.

A further note to the above-mentioned second new phe-
nomenon is that the unique sign reversal in the mobility is absent
for β =−0.02 (blue line) in Fig. 3(a), despite accounting for elec-
trostatic correlations. This is because for β =−0.02 a sign change
in Ê and in ρ̂ [Fig. 3(h)] cancel each other, leading to no sign
change in ρ̂Ê/2 [Fig. 3(g)] and the electroosmotic flow. Thus,
without a sign change in the electroosmotic flow, there is no sign
change in the diffusioosmotic mobility.

The third new phenomenon caused by electrostatic correla-
tions is that, after the unique sign reversal in the mobility at
C & 0.4 M, the mobility continues to increase in magnitude as
shown in Fig. 3(a). The two physical underpinnings of this new
phenomenon are as follows. First, in the presence of electrostatic
correlations, the magnitude of the electroosmotic driving force
ρ̂Ê/2 [Fig. 3(g)] is larger than that when electrostatic correlations
are neglected [Fig. 2(g)]. Second, overscreening as described by
the Poisson-Fermi equation causes a non-vanishing and increasing
channel surface potential at electrolyte concentration C & 0.4 M.
Physically, the charge on the channel surface is overcompensated
by a layer of counterions,69,72 resulting in an increasing surface
potential as the electrolyte concentration increases and electro-
static correlations become increasingly important. This is in con-
trast to the classical Poisson equation which overlooks overscreen-
ing and predicts a vanishing channel surface potential at a high
electrolyte concentration. For instance, at C = 1 M, in Fig. 3(a)
the channel surface potential ζ̂ = 0.32 whereas in Fig. 2(a) the
channel surface potential ζ̂ = 0.24. In sum, under electrostatic
correlations, with a larger ρ̂Ê/2 and an increasing ζ̂ at a high
electrolyte concentration, the diffusioosmotic mobility continues
to increase in magnitude after the unique sign reversal.

3.1.3 Divalent electrolytes ignoring electrostatic correla-
tions (δc = 0)

We show the diffusioosmotic mobilities of divalent electrolytes ob-
tained by ignoring electrostatic correlations in Fig. 4. In Fig. 4(a),
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Fig. 3 Diffusioosmosis of monovalent electrolytes accounting for electrostatic correlations (δc = κlc). Figure captions are the same as those in Fig. 2,
except that electrostatic correlations are accounted for.
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ŷ

0.8 x 10
-1

0.4

0

-0.4
ρ̂Ê
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field Ê (left y-axis; all other lines) versus ŷ.
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we compute the diffusioosmotic mobilities of three divalent elec-
trolytes: ZnSO4 (β = −0.10), MgCrO4 (β = −0.12), and BeSO4

(β = −0.14). The channel height H = 100 nm. Thus, κ̂ ≈ 20 at
C = 10−3 M and κ̂ ≥ 20 as C increases. The channel surface charge
density q = 0.014 C m−2 (q̂ = 78.4) corresponds to a channel sur-
face potential ζ = 50 mV (ζ̂ = 2) at C = 10−3 M. We use the same q̂
to compute the mobility at other electrolyte concentrations. Fig. 4
includes the effect of finite-ion-size, i.e., ν is non-zero, but ignores
electrostatic correlations by setting δc = 0. A positive (negative)
mobility corresponds to a diffusioosmotic flow from a region of
low (high) to high (low) electrolyte concentration. The observa-
tions from Fig. 4 and explanations largely follow those from Fig. 2
for monovalent electrolytes. We summarize them below.

First, Fig. 4(a) shows that, at a low electrolyte concentration
C = 10−3 M, the mobility transitions from a large positive number
to a small positive number as β is increasingly positive. This trend
and the physical explanations are identical to that in Fig. 2(a) at
a low electrolyte concentration (the first and the second obser-
vation in Section 3.1.1). Specifically, in Fig. 4(a) at C = 10−3 M,
the positive mobility for β = −0.14 (grey line) arises from the
electroosmotic flow [Fig. 4(c)-(e)] dominating the chemiosmotic
flow [Fig. 4(b)], where the former flows from a region of low
to high electrolyte concentration, i.e., a positive mobility. The
smaller positive mobility for β =−0.10 (red line) is due to the fact
that the electroosmotic flow is weaker than that for β = −0.14
[Fig. 4(c)-(e)], despite that it still dominates the chemiosmotic
flow [Fig. 4(b)].

Second, Fig. 4(a) shows that the mobility decreases in the mag-
nitude with an increasing electrolyte concentration. This trend is
identical to the third observation in Section 3.1.1. The physical
explanations are the same and not repeated here for brevity.

3.1.4 Divalent electrolytes accounting for electrostatic cor-
relations (δc = κlc)

In this section, we demonstrate that electrostatic correlations
cause a unique sign reversal in the diffusioosmotic mobility of
divalent electrolytes, similar to that shown in Section 3.1.2 for
monovalent electrolytes. To this end, we show Fig. 5 obtained
with the same parameters as Fig. 4, except that a non-zero δc

is input in computation according to its definition (δc = κlc) in-
stead of assuming it to be zero. In the following, we state and
discuss the new phenomena caused by electrostatic correlations,
as shown by the dissimilarities between Fig. 5(a) and 4(a).

The first new phenomenon caused by electrostatic correlations
is that, for a fixed β , there is a substantial deviation of the mo-
bility in Fig. 5(a) compared to Fig. 4(a). This observation is sim-
ilar to the first new phenomenon in Section 3.1.2 for monova-
lent electrolytes. Specifically, this deviation is shown in monova-
lent electrolytes at C ≥ 0.2 M by comparing Fig. 3(a) and 2(a).
However, this deviation occurs at a lower electrolyte concentra-
tion C ≥ 10−3 M for divalent electrolytes by comparing Fig. 5(a)
and 4(a). This can be understood as follows. First, the inverse
Debye length of a divalent electrolyte is twice that of a monova-
lent electrolyte, κdi = 2κmono. Second, the electrostatic correlation
length of a divalent electrolyte is four times that of a monova-
lent electrolyte, lc,di = 4lc,mono. Combining these two statements,

it is computed that, at C = 10−3 M, δc(= κlc) = 0.59 for a diva-
lent electrolyte whereas δc = 0.074 for a monovalent electrolyte.
That is, at C = 10−3 M, the effect of electrostatic correlations is
prominent in divalent electrolytes but not in monovalent elec-
trolytes. Hence, consistent with the Poisson-Fermi equation that
the impact of electrostatic correlations increases with δc, at the
same concentration the deviation of the mobility in divalent elec-
trolytes [comparing Fig. 5(a) and 4(a)] is more prominent than
that in monovalent electrolytes [comparing Fig. 3(a) and 2(a)].

The second new phenomenon caused by electrostatic correla-
tions is that there is a unique sign reversal in the mobility at
C ≈ 0.003 M in Fig. 5(a), which is absent in Fig. 4(a). A com-
parison between figures 5(f)-(h) (which account for electrostatic
correlations) and Fig. 4(f)-(h) (which ignore electrostatic corre-
lations) shows that electrostatic correlations are at the origin of
such a sign reversal. The phenomenon and physical explanations
here are identical to those in the discussion of the second new
phenomenon in Section 3.1.2 and are reiterated briefly as follows.
Electrostatic correlations result in overscreening of the channel
surface charge and a sign change in the space charge density near
the channel surface [figure 5(h)]. Such a sign change in the space
charge density in turn induces a reversal in the electroosmotic
driving force ρ̂Ê/2 and electroosmotic flow, [Fig. 5(g)], lead-
ing to a sign reversal in the diffusioosmotic mobility [Fig. 5(a)].
We note that such a mobility reversal due to electrostatic corre-
lations occurs at a lower concentration of a divalent electrolyte
[C ≈ 0.003 M in Fig. 5(a)] relative to that of a monovalent elec-
trolyte [C ≈ 0.4 M in Fig. 3(a)].

The third new phenomenon caused by electrostatic correlations
is that, at C & 0.003 M, the mobility continues to increase in mag-
nitude as shown in Fig. 5(a). The physical underpinnings of this
phenomenon are the same as the third new phenomenon in Sec-
tion 3.1.2 and are not repeated for brevity.

3.2 Diffusioosmotic flow direction diagrams

So far, we have presented results of how the sign and magnitude
of the diffusioosmotic mobility (flow) vary with the electrolyte
concentration, ion diffusivity difference, and ion valence, at a
fixed channel surface charge. In this section, we plot diffusioos-
motic flow direction diagrams which show how the sign of the
mobility changes with these parameters at varying channel sur-
face charges. The channel height H = 100 nm. Electrostatic cor-
relations are accounted for by incorporating a non-zero δc = κlc.
These diagrams are efficient to identify the range of parameters
that generates diffusioosmosis of the desired direction.

We present the diffusioosmotic flow direction diagrams for
monovalent electrolytes at C = 10−3 M in Fig. 6(a) and at C = 1 M
in Fig. 6(b). The blue lines are obtained by determining the values
of β that generate a zero diffusioosmotic mobility (mean diffu-
sioosmotic velocity) at each q by setting a tolerance of M ≤ 10−4.
Thus, the blue lines separate each figure into four domains, each
of them corresponds to diffusioosmosis flowing from a region of
high to low electrolyte concentration or vice versa. We state three
key observations associated with electrostatic correlations from
these figures as follows.
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Fig. 6 Diagrams showing the diffusioosmotic flow direction versus the channel surface charge density q and ion diffusivity ratio β . The channel
height H = 100 nm. (a): Monovalent electrolytes at a bulk electrolyte molar concentration C = 10−3 M. (b): Monovalent electrolytes at C = 1 M. (c):
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Firstly, at C = 10−3 M, when q is positive and as β changes from
negative to positive [going from left to right in the top half of
Fig. 6(a)], the direction of diffusioosmosis changes from “flowing
from a region of low to high electrolyte concentration” (positive
mobility) to “flowing from a region of high to low electrolyte con-
centration” (negative mobility). This observation corresponds to
the first and the second observation in Section 3.1.1. In contrast,
at C = 1 M, when q is positive and as β changes from negative to
positive [going from left to right in the top half of Fig. 6(b)], the
direction of diffusioosmosis changes from “flowing from a region
of high to low electrolyte concentration” (negative mobility) to
“flowing from a region of low to high electrolyte concentration”
(positive mobility). This observation corresponds to the second
new phenomenon in Section 3.1.2. A diffusioosmotic flow rever-
sal due to electrostatic correlations is demonstrated by comparing
the same domain across Fig. 6(a) and (b).

Secondly, when the magnitude of q is large (e.g., |q| =
0.014 C m−2) and β is small (e.g., |β | = 0.02), the direction of
diffusioosmosis remains the same across a low [Fig. 6(a)] and a
high electrolyte concentration [Fig. 6(b)]. One example of this
observation is KCl (β = −0.02) in Fig. 3(a), where the mobility
remains positive from low to high electrolyte concentrations.

Thirdly, at a low electrolyte concentration, when βq > 0 a dif-
fusioosmotic flow reversal can occur by varying the magnitude

of the channel surface charge without changing its sign [e.g., the
two arrows in Fig. 6(a)], whereas at a high electrolyte concen-
tration this can only be achieved when βq < 0 [e.g., the two ar-
rows in Fig. 6(b)]. This diffusioosmotic flow reversal has been
observed in prior work that did not consider electrostatic corre-
lations.4,8,50,52 That is, this reversal is not due to electrostatic
correlations but is a consequence of the competition between the
chemiosmotic and electroosmotic components of diffusioosmosis,
since it occurs even at a low electrolyte concentration. How-
ever, here we remark that electrostatic correlations can radically
change the dependence of this reversal on βq between a dilute
and a concentrated electrolyte. Before closing, we show the dif-
fusioosmotic flow direction diagrams for divalent electrolytes at
C = 10−3 M in Fig. 6(c) and at C = 1 M in Fig. 6(d). These figures
are qualitatively similar to Fig. 6(a) and 6(b).

4 Conclusions

In this work, we have developed a mathematical model for quan-
tifying the diffusioosmotic flow driven by a binary symmetric elec-
trolyte concentration gradient in a charged parallel-plate channel.
The key distinction between this and prior work is the incorpora-
tion of ion-ion electrostatic correlations in modeling diffusioos-
mosis, which is important in concentrated electrolytes but has
been ignored in prior theories. The present model also incorpo-
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rates the steric effect of finite-ion-size, which has shown to be
important in diffusioosmosis of concentrated electrolytes.14,52 To
demonstrate our model, we have computed and analyzed the dif-
fusioosmotic flow mobilities of a list of common monovalent and
divalent electrolytes.

In the first part of this article, we have analyzed the variation
of the mobilities with respect to the electrolyte concentration. For
both monovalent and divalent electrolytes, we have shown that
ion-ion electrostatic correlations can lead to a unique reversal of
the diffusioosmotic flow. Specifically, electrostatic correlations
overscreen the channel surface charge and cause a sign change
in the space charge density near the channel surface. This in turn
causes a reversal in the electroosmotic driving force of diffusioos-
mosis, leading to a sign reversal in the diffusioosmotic mobility.
Existing theories that ignore electrostatic correlations cannot cap-
ture this unique diffusioosmotic flow reversal. Accounting only
for the steric effect of the finite size of ion is not sufficient to cap-
ture this flow reversal. This reversal occurs at ≈ 0.4 M for a mono-
valent electrolyte and at a much lower concentration≈ 0.003 M of
a divalent electrolyte in a channel with the same surface charge.
These results demonstrate the significant impact of electrostatic
correlations on diffusioosmosis, where not just its magnitude but
its direction can be altered.

In the second part of this article, we have constructed flow di-
rection diagrams which enable efficient identification of the dif-
fusioosmotic flow direction for a given set of electrolyte concen-
tration, ion diffusivity, ion valence, and channel surface charge.
These diagrams predict a separate diffusioosmotic flow reversal
which has been identified in prior work4,8,50,52. This reversal
can occur even at a low electrolyte concentration where electro-
static correlations are negligible. Thus, this reversal is not ow-
ing to electrostatic correlations but the competition between the
chemiosmosis and electroosmosis that constitute diffusioosmosis.
This reversal can be achieved by varying the magnitude of the
channel surface charge without varying its sign. We show that
electrostatic correlations can alter qualitatively how this reversal
depends on the product of the channel surface charge and the ion
diffusivity difference βq across low to high electrolyte concentra-
tions. Namely, this reversal occurs at a low electrolyte concen-
tration only when βq > 0 and at a high electrolyte concentration
only when βq < 0.

The present analysis can be extended in several directions.
First, a natural extension is to relax the assumption that the equi-
librium electric double layer is not perturbed by the diffusioos-
motic flow. This can be done by numerically solving the coupled
nonlinear systems of Poisson-Fermi equation, conservation of in-
dividual ionic species, and the Stokes equation with an electric
body force. However, we note that this extension will likely give
quantitative modifications to our present results only and will not
alter our conclusions, since Peclet number is weak [Pe ≤ O(1)] in
diffusioosmosis.10,50 Second, other effects can be incorporated in
the present model, e.g., a concentrated-dependent viscosity, dif-
fusivity, and permittivity.77,79 These effects are, however, promi-
nent only in a solution whose concentration is higher than a few
molars. Thus, they will not qualitatively alter the flow reversal
predicted from this work, which occurs much below one molar

concentration. Third, diffusioosmosis experiments are mature in
recent years9,21 and can measure the diffusioosmotic flow rever-
sal predicted in this work.

Appendix A: Numerical schemes for solving the elec-
tric potential and diffusioosmotic mobility
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Fig. 7 Figure captions are the same as those in Fig. 3(a). Solid lines
denote results obtained with the grid size ∆ŷ = 10−5 and circles denote
results obtained with ∆ŷ = 5×10−6.

We describe the numerical schemes for solving the electric po-
tential and diffusioosmotic velocity. Let us start with the govern-
ing equation and boundary conditions eqn (4)-(6) for the elec-
tric potential. We first discretize the domain ŷ ∈ [0,1] into m+ 1
grid points ŷ0, ŷ1, ...ŷm, where ŷi = ŷ0 + i∆ŷ with ∆ŷ the grid size
and i = 0,1, ...m. The electric potential at the grid point ŷi is
φ̂i. We approximate the first- and third-order derivatives using a
forward finite-difference scheme with a first-order accuracy, and
the second- and fourth-order derivatives using a central finite-
difference scheme with a second-order accuracy as follows,80

dφ̂i

dŷi
≈ −φ̂i + φ̂i+1

∆ŷ
, (16)

d2φ̂i

dŷ2
i
≈ φ̂i−1−2φ̂i + φ̂i+1

∆ŷ2 , (17)

d3φ̂i

dŷ3
i
≈ −φ̂i +3φ̂i+1−3φ̂i+2 + φ̂i+3

∆ŷ3 , (18)

d4φ̂i

dŷ4
i
≈ φ̂i−2−4φ̂i−1 +6φ̂i−4φ̂i+1 + φ̂i+2

∆ŷ4 . (19)

Upon finite-differencing, eqn (4)-(6) form a system of m+1 non-
linear equations with m + 1 unknown φ̂i, which are solved by
the Newton’s method via the built-in solver FindRoot in Wolfram
Mathematica. The diffusioosmotic velocity is solved by the same
finite-difference method, except that the highest-order derivative
in its governing equation and boundary conditions eqn (13)-(14)
is second order. A converged solution of the mean diffusioos-
motic velocity, equivalently the diffusioosmotic mobility, is ob-
tained with ∆ŷ = 10−5. For instance, as shown in Fig. 7, the mo-
bilities at C = 10−3 M obtained with ∆ŷ = 10−5 (solid lines) differ
less than 0.2% than those obtained with ∆ŷ = 5×10−6 (circles).
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ν = 0, respectively; purple solid line and squares denote β =−0.5 for ν = 0.05 and ν = 0, respectively; and grey solid line and squares denote β =−1
for ν = 0.05 and ν = 0, respectively. (a): The diffusioosmotic mobility M̂ versus the inverse Debye length κ̂ with a channel surface potential ζ̂ = 6.
(b): M̂ versus κ̂ with ζ̂ = 4.

Appendix B: Model validation by recovering prior
work
We validate our model by recovering the results of prior work,
which computed the diffusioosmotic mobilities that account for
the finite size of ions but ignore electrostatic correlations52 and
that ignore the finite size of ions and electrostatic correlations.50

Specifically, shown by the solid lines in Fig. 8(a), our model recov-
ers the mobilities computed by Hoshyargar et al. 52 with ν = 0.05,
ζ̂ = 6 and Pe = 1, in the limit of δc = 0. Shown by the squares in
Fig. 8(a), our model recovers the mobilities computed by Ma and
Keh 50 with ζ̂ = 6 and Pe = 1, in the limit of ν = 0 and δc = 0. In
short, Fig. 8(a) in this work recovers Fig. 2(b) in the reference,52

which compares model predictions with and without the finite
size of ions in the absence of electrostatic correlations. For an
additional reference, we generate a similar set of mobilities with
ζ̂ = 4 in Fig. 8(b).
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