

1-(N,N-Dialkylcarbamoyl)-1,1-difluoromethanesulfonyl ester as a stable and effective precursor for neopentyl labeling group with astatine-211

1-(*N***,***N***-Dialkylcarbamoyl)-1,1-difluoromethanesulfonyl ester as a stable and effective precursor for neopentyl labeling group with astatine-211**

Ichiro Sasaki,^b Masatoshi Tada,^a Ziyun Liu,^a Maho Tatsuta,^a Takeru Okura,^a Miho Aoki,^c Kazuhiro Takahashi,^c Noriko S. Ishioka,^b Shigeki Watanabe,^b and Hiroshi Tanaka*,^a

^aDepartment of Chemical Science and Engineering, Tokyo Institute of Technology

Address 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan

E-mail: thiroshi@cap.mac.titech.ac.jp

^bDepartment of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology

1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan

^cAdvanced Clinical Research Center, Fukushima Global Medical Science Center,

Fukushima Medical University

1 Hikariga-oka, Fukushima, Fukushima 960-1295, Japan

Abstract:

Radiohalogens with a short half-life are useful radioisotopes for radiotheranostics. Astatine-211 is an α -emitting radiohalogen and is expected to be applicable to targeted α therapy. A neopentyl labeling group is an effective hydrophilic labeling unit for various radiohalogens, which includes ²¹¹At. In this study, a 1-(*N*,*N*-dialkylcarbamoyl)-1,1 difluoromethanesulfonyl (CDf) ester was developed as a stable precursor for labeling with ²¹¹At as well as ⁷⁷Br and ¹²⁵I through a neopentyl labeling group. The CDf ester remained stable in an acetonitrile solution at room temperature and enabled the successful syntheses of ²¹¹At-labeled compounds in a highly radiochemical conversion in the presence of K_2CO_3 . ⁷⁷Br- and ¹²⁵I-labeled compounds can be prepared from the CDf ester without a base. The utility of the CDf ester was demonstrated in the synthesis of a benzylguanidine with a neopentyl ²¹¹At-labeling group. The developed method returned a 32% radiochemical yield of ²¹¹At-labeled benzylguanidine. However, a partial deastatination was observed under acidic conditions during the removal of an *N*-Boc protecting group. Deprotecting these groups under milder acidic conditions may improve the radiochemical yield. In conclusion, the CDf ester facilitates the syntheses of 211 At, 125 I and ^{77}Br -labeled compounds that use a neopentyl labeling group for radiotheranostic applications. Further optimization of protecting groups and reaction conditions should enhance the total radiochemical yield of the ²¹¹At-labeled compounds.

Introduction

Radiotheranostics is an innovative approach to cancer treatment. This strategy combines internal radiation therapy with diagnostics based on molecular imaging and provides a potent yet non-invasive method for cancer therapy.¹ At the heart of this technique is the 'theranostic pair'—two distinct radiopharmaceuticals that can be used for either diagnosis and therapy. This pair of ligands selectively accumulate in cancer cells, and each is labeled with an appropriate diagnostic or therapeutic radioisotope.

Radiohalogens with a short half-life have been used as radioisotopes for radiopharmaceuticals.² For instance, fluorine-18 and iodine-123, as positron and single-

photon emitters, respectively, allow for external visualization, thereby proving indispensable for diagnostic applications. By contrast, astatine-211, iodine-131, and bromine-77, which are as alpha, beta, and Auger electron emitters, respectively, tend to damage surrounding cells, but could potentially be utilized for therapeutic purposes. In addition, iodine-125 as a low-energy gamma emitter with a longer half-life (60 days) can support biological research to develop these radiopharmaceuticals. Furthermore, owing to the ability of halogens to form direct covalent bonds with organic compounds, alterations in the pharmacokinetics of the labeled compounds are minimal when the type of radioactive halogen is changed. This inherent property makes them particularly appropriate for the synthesis of radiopharmaceutical pairs designed for theranostic applications. However, the chemical properties of halogens can vary significantly according to their placement in the periodic table. For example, compounds labeled with ²¹¹At through an ²¹¹At-carbon bond more readily undergo dehalogenation *in vivo* than those labeled with iodine.³ The release of 2^{11} At from labeled compounds not only reduces the accumulation rate of astatine in targeted cancer cells, but also contributes to the nonspecific accumulation of ²¹¹At in the stomach and thyroid.

The neopentyl labeling group present in **1** has recently been identified as an effective hydrophilic labeling unit for various radiohalogens, which includes both ¹⁸F and ²¹¹At (Scheme 1).4-6 The carbon-halogen bond in the labeling group exhibits high *in vivo* stability and significantly resists dehalogenation even in ²¹¹At-labeled compounds. Moreover, the hydrophilicity offered by the two primary alcohols enhances their clearance from the blood. The process of preparing radiohalogen-labeled compound **1** via a neopentyl labeling group involves a nucleophilic substitution of the sulfonyl ester **2** with radiohalides, which is followed by hydrolysis of the acetal. For ${}^{18}F$ -fluorination, the tosyl

ester **2a** and the 4-(*N*,*N*-dialkylcarbamoyl)benzenesulfonyl ester **2b** were used as precursors and heated with $[18F]$ fluoride and phase-transfer catalysts at 100 °C or higher. The dialkylcarbamoyl group serves as a lipophilic phase-tag, facilitating the removal of tagged compounds from the reaction mixture via reverse-phase solid-phase extraction.⁷ By contrast, for ²¹¹At-astatination and ¹²⁵I-iodination, triflate **2c** was treated as a precursor with [²¹¹At]astatide and [¹²⁵I]iodide under mild heating conditions.⁶ Nevertheless, despite the high reactivity that makes triflate **2c** an exceptional precursor, careful handling is necessary due to its instability. In addition, triflate **2c** must be stored under cool and dark conditions in an appropriate solvent, or synthesized immediately prior to use. To streamline the development of radiopharmaceuticals using a neopentyl ²¹¹At- and ¹²⁵Ilabeling group, it is necessary to develop precursors that can be stably stored in the solvent that is used for radiohalogenation, and these precursors should be optimally reacted with radiohalogens in this solvent. Herein, we report the substituted difluoromethanesulfonyl ester **2d** as a stable precursor for synthesizing neopentyl ²¹¹At-, ⁷⁷Br- and ¹²⁵I-labeling groups.

Scheme 1. Different sulfonated ester precursors **2** for radiohalogenated neopentyl synthesis.

Results and Discussion

We designed the CDf ester **2d** as a precursor for radiohalogenation (Scheme 1). The CDf ester **2d** has a structure in which one fluorine atom of trifluoromethanesufonyl ester is replaced with an *N*,*N*-dialkylcarbamoyl group. The carbamoyl group is expected to enhance the chemical stability of the sulfonyl ester due to its weaker electronwithdrawing effect compared with that of fluorine, although it may reduce the reactivity of the sulfonyl ester towards nucleophilic substitution. Additionally, the *N*-alkyl groups could act as a phase-tag facilitating the removal of tagged compounds, such as a precursor, via a solid-phase extraction.

We initially compared the reactivity of the neopentyl sulfonates **3a**, **3b**, and **3c** possessing a naphthyl group towards nucleophilic iodination with sodium iodide in acetonitrile-d3 (Scheme 2). The naphthyl group acts as a strong chromophore to ease detection of the attached compound. The 8.9 mmol/L acetonitrile-d3 solutions of the neopentyl sulfonates **3a**, **3b**, and **3c** were reacted with 10 equivalents of sodium iodide at room temperature. The conversion rate of **3** into the iodinated compound **4a** was estimated via real-time ¹H NMR analysis of the reaction mixture employing dimethyl sulfone as an internal standard. Under these reaction conditions, triflate **3b** smoothly underwent nucleophilic iodination, achieving 50% conversion to iodide **4a** within 5.0 min. By contrast, the CDf ester **3a** required a significantly greater amount of time — more than 80 min — to reach the same conversion point. When tosyl ester **3c** was used, after 24

hours, most of the the tosyl ester **3c** was unaffected and the conversion to the iodinated compound **4a** remained at less than 5%. This result also indicates that the tosyl ester **3c** is very stable. Overall, these results indicated that the CDf ester **3a** was less reactive than triflate **3b**, however, much more reactive than tosyl ester **3c**.

Next, we compared the stability of sulfonyl esters **3a** and **3b** in acetonitrile-d3 (Scheme 2 and Table 1). Acetonitrile is a solvent that is suitable for nucleophilic substitution. A solution of the sulfonyl esters **3a** and **3b** in acetonitrile can be used directly for nucleophilic radiohalogenation. The remaining neopentyl sulfonate in the solution was quantitatively analyzed using ¹H NMR spectroscopy with dimethyl sulfone serving as an internal standard. After 24 hours, more than 99% of the CDf ester **3a** remained. Moreover, no significant degradation of sulfonate **3a** was observed after 30 days. By contrast, the triflate **3b** was completely decomposed after 24 h. TLC analysis of the mixture indicated that triflate **3b** was converted to a compound of higher polarity. ¹H NMR analysis of the resultant mixture showed that the majority of the sulfonyl esters had not been hydrolyzed. These findings suggest that the partial hydrolysis of triflate **3b** with acetonitrile resulted in the release of triflic acid, which then might promote the hydrolysis of acetal **3b** to diol

5.

Scheme 2. The reactivity and stability of neopentyl sulfonyl esters **3**.

Table 1. Survival rates of sulfonyl esters **3a** and **3b** in acetonitrile-d3 at room temperature

Entry[a Sulfony]	Time	Survival rate of 3
esters		$\left(\frac{0}{0}\right)$
3a	24 h	>99
3 _b	30 day	>99
3b	24 h	$<$ 1

We evaluated the 125 I-iodination, 77 Br-bromination, and 211 At-astatination of CDf ester $3a$ (Table 2). A 0.05 M NaOH aqueous solution of $[^{125}I]$ NaI⁸ was concentrated by evaporation. The resultant residue, which contained [125I]NaI was reacted with CDf ester **3a** (2.5 µmol) in acetonitrile (35 µL) at 70 \degree C for 10 min. The radiochemical conversion (RCC) value from the CDf ester **3a** to the ¹²⁵I- neopentyl iodide **4b** was 83%. Next, we examined the ⁷⁷Br-bromination of CDf ester **3a**. Initially, we prepared an aqueous solution containing [⁷⁷Br]bromide via a dry-distillation method from an irradiated Cu_2 ^{nat}Se target.⁹ The aqueous solution of [77Br]bromide was then purified and

concentrated using anion exchange column chromatography. The resultant residue contained [⁷⁷Br]bromide was reacted with CDf ester **3a** under conditions similar to those of the initial experiment. The RCC value of ⁷⁷Br-neopentyl bromide **4c** was 80%. On the other hand, a residue containing ²¹¹At, was prepared via dry-distillation from an irradiated ²⁰⁹Bi target using helium as a carrier gas and water as an elution solvent.¹⁰ The elution was concentrated under heating conditions. The residue was then reacted with CDf ester **3a** under the same reaction conditions. This reaction provided only a trace amount of ²¹¹At-neopentyl astatide **4d**. Considering the influence that the periodic trends exerted on the nucleophilicity of the halide ions, astatide was expected to exhibit higher reactivity than that of either bromide or iodide. We postulated that the significant decrease in the RCC value during ²¹¹At-Astatination of **3a** under these conditions could have been because astatine obtained by dry distillation forms a neutral chemical species. Therefore, we hypothesized that a base might improve the nucleophilicity of the astatine-containing chemical species. Therefore, we investigated labeling in the presence of K_2CO_3 , which has a proven track record in the synthesis of ¹⁸F-labeled compounds. As a result, the RCC value of neopentyl [²¹¹At]astatide 4d in the reaction with residue containing ²¹¹At with CDf ester $3A$ (2.5 µmol) and K_2CO_3 (0.5 mg) in acetonitrile (35 µL) at 70 °C for 10 min was 95%. K₂CO₃ is a basic salt that has no significant oxidizing or reducing activity. Therefore, we believe that potassium carbonate simply increases the nucleophilicity of the astatine species when isolated by dry distillation.¹¹ Astatine from dry distillation, however, is known to contain a variety of oxidated astatines¹² and requires a reducing agent prior to use in nucleophilic substitution.¹³ Based on the reaction mechanism of DMSO oxidation of alkyl halides to aldehydes, it seemed logical that a precursor of highly reactive neopentyl sulfonyl ester might reduce the oxidated astatine species to astatine

under basic conditions. However, no results are available that could prove this. In total, the CDf ester **3A** is sufficiently stable as stock for acetonitrile and possesses sufficient reactivity to synthesize ⁷⁷Br-, ¹²⁵I-, and ²¹¹At-labeled compounds using a neopentyl labeling group under these mild heating conditions.

Table 2. Radiochemical conversion (RCC) values during the radiohalogenation of sulfonyl ester **3a**.

To demonstrate the efficacy of our method, we utilized CDf ester **8** as a common precursor (Scheme 3) to synthesize benzylguanidines (NP-BG) **6** and **7** labeled with ²¹¹At and ¹²⁵I via a neopentyl labeling group. Benzylguanidines **9** labeled with radioiodines have been identified as crucial components in the development of ligands intended for targeted therapy and imaging of cancers expressing the norepinephrine transporter (NET).¹⁴ For many years, [¹³¹I]*m*-iodobenzylguanidine has been employed for targeted therapy and imaging of NET-expressing tumors.¹⁵ More recently, *m*- [²¹¹At]astatobenzylguanidine **10** has been synthesized for targeted alpha therapy¹⁶ and has demonstrated a reduction in tumor size in a mouse model of pheochromocytoma without triggering weight loss.¹⁷ Based on these findings, a clinical trial using [²¹¹At]MABG has started. We hypothesized that the use of a neopentyl labeling group in the 211Atastatination of benzylguanidines could enhance the in vivo stability of the labeled products. This approach could also facilitate their clearance from non-target tissues, thereby promoting a more efficient anticancer action with fewer side effects. Following the structural patterns of the previously reported bioactive benzylguanidine hybrid molecules **11**¹⁸ and **12**¹⁹, we positioned the neopentyl labeling group at the *p*-position of benzylguanidine. The synthesis of neopentyl ²¹¹At- and ¹²⁵I-NP-BG **6** and **7** involved a nucleophilic substitution of sulfonyl ester **8** possessing an *N,N'*-di(*tert*butylcarbonyl(Boc))guanidino group. This was achieved using $[2^{11}$ Atl astatide and $[1^{125}]$ iodide, which was followed by the hydrolysis of acetal *N,N'*-diBoc-guanidine. The highly reactive CDf ester facilitated efficient and selective ²¹¹At-astatination and ¹²⁵I-iodination in the presence of an *N*,*N*-diBoc guanidino group, which is known for its weak nucleophilicity. CDf ester **8** was prepared via O-alkylation of phenol **14** with diCDf ester **13**, while diCDf ester **13** allowed a one-step transformation of various ligands possessing a phenolic hydroxyl group to serve as precursors for radiohalogenation.

Scheme 3. Synthetic plan for the ²¹¹At- and ¹²⁵I-NP-BG and **6** and **7**

The preparation of precursor **8** is outlined in Scheme 4. Carboxylic acid **15** was converted to acid chloride **16** according to a reported method.²⁰ Subsequent amidation of the acid chloride **16** with dioctylamine provided sulfonyl fluoride **17** in a 70% yield in 2 steps. Diol **18** was treated with 2.2 equivalents of sulfonyl fluoride **17** to provide disulfonyl ester **13** in a 54% yield. Finally, O-alkylation of the phenolic alcohol **14**²¹ possessing an *N*,*N*'-diBoc-guanidinyl group with the disulfonyl ester **13** provided CDf ester **8** as a precursor in 47% yield.

Scheme 4. The preparation of CDf ester **8**

The synthesis of ²¹¹At-NP-BG **6** from CDf ester **8** was examined (Scheme 5). To begin, the ²¹¹At-astatination of sulfonyl ester **8** to yield the ²¹¹At-labeled diBoc guanidine **19** was examined (Table 1). The residue containing ²¹¹At was reacted with CDf ester **8** in the presence of K_2CO_3 at 70 °C for 10 minutes. The RCC value was 87% for the ²¹¹Atlabeling of CDf ester **8** and conversion to ²¹¹At-labeled diBoc guanidine **19** (entry 1). Conducting the ²¹¹At-astatination at room temperature resulted in a lower RCC value of 66% (entry 2), although the reaction was found to proceed sufficiently even under these reaction conditions. Without the addition of K_2CO_3 , the RCC values were decreased (entries 3 and 4). Following these findings, a one-pot synthesis of ²¹¹At-NP-BG [²¹¹At]**8** was pursued. The residue containing ²¹¹At was reacted with CDf ester **8** (0.5 mg) in the presence of K_2CO_3 (0.5 mg) in acetonitrile (150 μ L) under the conditions to provide the ²¹¹At-labeled diBoc guanidine **19**. Afterward, the addition of 6.0 M HCl aq. (80 μ L) and MeOH (20 μ L) to the reaction mixture, followed by heating at 70 °C for 30 min, enabled hydrolysis of the acetal and complete removal of the *N*-Boc groups. Post-neutralization with NaOH aq during radio-HPLC purification furnished ²¹¹At-NP-BG **6** in a 32% radiochemical yield (RCY) with >99.5% radiochemical purity (RCP). Radio-HPLC analysis of the reaction mixture after deprotection under acidic conditions revealed a significant amount of released ²¹¹At. By contrast, utilizing a similar labeling procedure for the synthesis of ¹²⁵I-NP-BG **7** resulted in a 54% RCY with >99.5 RCP, and no detectable release of ¹²⁵I. These results suggest that neopentyl astatide ²¹¹At-NP-BG **6** is more prone to instability under acidic conditions compared with that of ¹²⁵I-NP-BG **7**. Direct 211At-astatination using a precursor with a free guanidino group is a potential solution to this problem. However, to carry out this study, the corresponding unprotected CDf ester precursor must be prepared with a high purity. Despite these findings, we noted that previous literature has reported no dehalogenation of neopentyl astatide following treatment with TsOH. We predicted that the use of protecting groups that could be deprotected under milder acidic conditions would minimize deastatination, which would potentially enhance the radiochemical yield of the neopentyl astatide.

Scheme 5. Radiosynthesis of ²¹¹At-NP-BG **6** and ¹²⁵I-NP-BG **7**

acetonitrile, which is the labeling solvent. This contributes to reducing the research burden of requiring a radiopharmacist or radiochemist for handling of the precursor. The CDf ester also showed satisfactory reactivity, and in ⁷⁷Br-bromination and ¹²⁵I-iodination, high levels of RCC to the corresponding neopentyl halides were achieved without the use of special additives. On the other hand, in ²¹¹At-asatatination, the addition of potassium carbonate was important for a high level of RCC. Moreover, we successfully synthesized ²¹¹At-labeled benzyl guanidine **6** that possesses a neopentyl labeling group, via a one-pot procedure. Although a released ²¹¹At was partially observed during the deprotection step under acidic conditions, and the overall radiochemical yield was acceptable at 32%. By contrast, the synthesis of a ¹²⁵I-labeled benzylguanidine **7** possessing a neopentyl labeling group using a similar reaction recipe yielded 54% RCY with no released ¹²⁵I detected. Our findings suggest that compared with neopentyl iodide, neopentyl astatide is more prone to instability under acidic conditions. However, dehalogenation has never been reported when neopentyl astatide is treated with TsOH. This highlights the potential for using protecting groups that can be deprotected under milder acidic conditions, which may improve the radiochemical yield of neopentyl astatide. Overall, our study provides valuable insight into the synthesis of radiohalogen-labeled compounds for radiotheranostic applications, and these results emphasize the importance of balancing stability and reactivity to optimize radiochemical yields, which enhances the potential of these compounds in cancer treatment. Currently, the development of a process for 18Ffluorination of the CDf ester is underway.

Acknowledgments

This work was supported by JST-A-step (GRANT No. JPMJSN16A1) and government

funding for operating expenses.

Conflicts of interest

There are no conflicts to declare.

Keywords: astatine-211 • radiotheranostics • neopentyl labeling unit • target alfa therapy •radiohalogens

References

- 1. K. Herrmann, M. Schwaiger, J. S. Lewis, S. B. Solomon, B. J. McNeil, M. Baumann, *Lancet Oncol.*, 2020, **21**, e146, b) H. Duan, A. Iagaru, C. M. Aparici, *Nanotheranostics*. 2022, **6**, 103–117.
- 2. a) Mason, N. S., Mathis, C. A.: Radiohalogens for PET imaging. In: D. L. Bailey, D. W. Townsend, P. E. Valk, M. N. Maisey (Eds.), Positron Emission Tomopgrphay (2003), Springer-Verlag, London, p. 217. b) M. Adam, and D. S. Wilbur, *Chem. Soc. Rev.* 2005, 34, 153–163, (c) Meyer G. J., *J. Label. Compd. Radiopharm.* 2018, **61**, 154-164, (d) D. S. Wilbur, and M. J. Adam, *Radiochim Acta.* 2019, 107, 1033–1063.
- 3. a) R. H. Larsen, S. Slade, M.R. Zalutsky, *Nucl. Med. Bio*l. 1998, 25, 351-357. b) D. S. Wilbur, *Curr. Radiopharm*. 2008, **1**, 144-176., c) F. Guerard, C. Maingueneau, L. Liu, R. Eychenne, J.-F. Gestin, G. Montovan, and N. Galland. *Acc. Chem. Res*., 2021, 54, 3264–3275.
- 4. For ¹⁸F: a) Y. Shimizu, S. Zhao, H. Yasui, K. Nishijima, H. Matsumoto, T. Shiga, N. Tamaki, M. Ogawa and Y. Kuge, *Mol. Imaging Biol.*, 2019, **21**, 122–129; b) S. Watanabe, T. Shiga, K. Hirata, K. Magota, S. Okamoto, T. Toyonaga, K.

Higashikawa, H. Yasui, J. Kobayashi, K. Nishijima, K. Iseki, H. Matsumoto, Y. Kuge, N. Tamaki, *EJNMMI Res.*, 2019, **9**, 60.

- 5. T. Tago, J. Toyoharaa, R. Fujimaki, M. Tatsuta, R. Song, K. Hirano, K. Iwai, H. Tanaka, *Nucl. Med. Biol.*, 2021, **94**-95, 38–45.
- 6. H. Suzuki, Y. Kaizuka, M Tatsuta, H. Tanaka, N. Washiya, Y. Shirakami, K. Ooe, A. Toyoshima, T. Watabe, T. Teramoto, I. Sasaki, S. Watanabe, N. S. Ishioka, J. Hatazawa, T. Uehara, and Y. Arano, *J. Med. Chem.*, 2021, **64**, 15846-15857.
- 7. R. Song, T. Tago, M. Tatsuta, N. Shiraishi, K. Iwai, K. Hirano, J. Toyohara, H. Tanaka, *ChemistrySelect*, 2021, **6**, 2826-2831.
- 8. [125] NaI in NaOH ag was obtained from PerkinElmer as a solution in NaOH ag.
- 9. S. Watanabe, A. Shimada, S. Watanabe, H. Hanaoka, N. S. Ishioka, *Trans. Mat. Res. Soc. Japan.*, 2018, **43**, 219-222.
- 10. Y. Ohshima, H. Sudo, S. Watanabe, K. Nagatsu, A.B. Tsuji, T. Sakashita, Y. M. Ito, K. Yoshinaga, T. Higashi, N.S. Ishioka, *Eur. J. Nucl. Med. Mol. Imaging*, 2018, **45**, 999-1010.
- 11. a) K. Matsuoka, H. Obata, K. Nagatsu, M. Kojima, T. Yoshino, M. Ogawa, S. Matsunaga, *Org. Biomol. Chem.*, 2021, **19**, 5525-5528. b) C. Maingueneau, M. Berdal, R. Eychenne, J. Gaschet, M. Chérel, J.-F. Gestin, F. Guérard, Chem. – Eur. J, 2022, **28**, e202104169.
- 12. D.-C. Sergentu, D. Teze, A. Sabatié-Gogova, C. Alliot, N. Guo, F. Bassal, I. D. Silva, D. Deniaud, R. Maurice, J. Champion, N. Galland and G. Montavon, Chem. – Eur. J., 2016, **22**, 2964–2971.
- 13. F. Guérard, Y.-S. Lee, K. Baidoo, J.-F. Gestin and M. W. Brechbiel, Chem. Eur. J., 2016, **22**, 12332–12339.
- 14. S. Vallabhajosula, A. Nikolopoulou, *Semin. Nucl. Med.*, 2011, **41**, 324–333.
- 15. D. M. Wieland, J. Wu, L.E. Brown, T. J. Mangner, D. P. Swanson, W. H. Beierwaltes, *J. Nucl. Med.*, 1980, **21**, 349-353.
- 16. G. Vaidyanathan, M. R. Zalutsky, *Bioconjugate Chem.* 1992, **3**, 499–503
- 17. Y. Ohshima, H. Sudo, S. Watanabe, K. Nagatsu, A. B. Tsuji, T. Sakashita, Y. M. Ito, K. Yoshinaga, T. Higashi, N. S. Ishioka, *Eur. J. Nucl. Med. Mol. Imaging*, 2018, **45**, 999–1010.
- 18. T. Hampel, M. Bruns, M. Bayer, R. Handgretinger, G. Bruchelt, R. Brückner, *Bioorig. Med. Chem. Lett.*, 2014, **24**, 2728–2733.
- 19. O. O. Karakus, K. Godugu, M. Rajabi, S. A. Mousa, *J. Med. Chem.*, 2020, **63**, 7653- 7662.
- 20. N. D. Volkov, V. P. Nazaretian, L. M. Yagupol'skii, *Synlett*, 1979, 972-975.
- 21. E. J. Vandenberg and D. Tian, *Macromolecule*, 1999, **32**, 3613-3619.