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A Regiodivergent Truce-Smiles Rearrangement: A Strategy for the 
Synthesis of Arylated Indoles promoted by KN(SiMe3)2

Fan Zhou,ab Huimin Jin,ab Zhenhua Xiang,ab Patrick J. Walsh*c & Jie Li,*ab 

A chemo- and regioselective synthesis of 2-benzhydryl and 2,3-disubstituted indoles via 
cyclization and regiocontrolled Truce-Smiles (T-S) rearrangement is disclosed. A cascade 5-endo-
dig cyclization of 2-amino diphenylacetylenes mediated by KN(SiMe3)2 is followed by a 
regiocontrolled T-S reaction.   This system provides the first example of T-S regioselectivity and is 
controlled by ligands on K+.

Introduction
Non-fused benzenoid rings are found in most approved small 

molecule medications.1-3 Contributing to their observed prevalence 
is the utility and dependability of the Suzuki-Miyaura cross-coupling 
reaction4 for the installation of benzenoid rings. Despite its utility, 
the Suzuki-Miyaura reaction has drawbacks, like the use of 
transition metals and prefunctionalized coupling partners. To 
address some of these limitations, chemists have turned to 
transition metal catalyzed C–H arylation reactions to increase 
generality and atom economy.5 The need for transition metals in 
these processes persists, rendering them less sustainable and 
producing metal-containing waste, which can be difficult to 
separate from desired products.6, 7 Thus, the demand for greener, 
general transition metal-free arylation reactions that enable control 
of regioselectivity remains high.8-10 

To design greener processes, several research teams have 
recently been attracted to the Truce-Smiles (T-S) reaction11-14 to 
deliver an aryl group to a carbon-based radical center. The 
rearrangement process itself does not require a transition metal, 
although metals are often used to generate radicals and then set up 
the rearrangement. Recent years have witnessed the introduction 
of enantioselective versions of the radical T-S arylation reaction.15 
The T-S rearrangement11 can also proceed arylated products via a 2-
electron pathway and is similar to SNAr reactions.  While Truce-
Smiles rearrangement reactions generally require electron-
withdrawing groups, the original work by Truce16 and recent studies 

by Clayden17, 18 and others19, 20 have demonstrated that electron-
withdrawing groups are not always needed.

 Arylated indole derivatives, represent one of the most important 
classes of heterocyclic compounds that are found in bioactive 
molecules, pharmaceuticals and natural products.21-26 
Consequently, the development of efficient approaches for the 
construction and functionalization of these privileged heterocyclic 
compounds remains important.27-41  For several years, members of 
our team have been interested in the preparation of indoles under 
transition metal free conditions.42, 43 This interest springs from our 
long-standing goal: to generate and functionalize carbanions 
derived from weakly acidic pronucleophiles under mild 
conditions.44-52

Scheme. 1 Synthesis of multifunctional indoles from 2-alkynylaniline derivatives.
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In combining our interest in indoles with transition metal-free 
arylations, we focused on cyclization of 2-alkynylaniline derivatives 
(Scheme 1). Both intra and intermolecular cyclization of 2-
alkynylaniline derivatives have become popular strategies for indole 
synthesis and functionalization.53, 54 The approach typically starts 
with aminometallation of the C≡C bond, usually with the aid of a 
transition metal catalyst.  It can be followed by a 1,3-migration of 
functional groups from the metalated indole nitrogen, including 
allyl,55, 56 propargyl,57 sulfonyl,58 and α-alkoxyalkyl59  moieties 
(Scheme 1a). On the other hand, cyclization of a metallated ortho-
amino group on the alkyne forms an indolylmetal intermediate that 
can be trapped by external electrophiles, for example, via the Heck 
reaction,60 Sonogashira reaction,61 or Suzuki reaction,62, 63 among 
others (Scheme 1b).64-74 

In the current study (Scheme. 1c), we employ 2-arylpropargyl 
anilines with weakly acidic benzylic sp3 C−H bonds. Thus, base 
initiated deprotonation-nucleophilic attack of the sulfonamido 
nitrogen on the alkynyl moiety results in cyclization and produces a 
reactive sp2-hybridized carbanion. This carbanion will be 
protonated to give the 2-benzyl indole. Deprotonation of the 
weakly acidic benzylic position produces the key resonance 
stabilized anionic intermediate. We envisioned that this carbanion 
could undergo a polar T-S rearrangement with the N-aryl 
sulfonamide to form arylated products. The goal of this study was 
to control the regiodivergent desulfonylated rearrangement75-77 to 
chemoselectively furnish either 2,3-disubstituted indoles or 2-
benzhydryl indoles. Our strategy was to judiciously choose ligands 
for K+ to steer the regioselectivity.  Herein, we outline the 
development of this transition metal-free regioselective T-S 
rearrangement and the isolation of 2,3-disubstituted indoles and 2-
benzhydryl indoles (58 examples, up to 95% yield).  To our 
knowledge, this report represents the first example of control of 
regioselectivity in a T-S rearrangement. It is also noteworthy that 
the T–S rearrangement herein occurs even with electronically 
neutral migrating aryl groups.

Results and discussion
Control of the regioselective T-S rearrangement. We initially 
focused on the T-S rearrangement in the presence of 
MN(SiMe3)2 and crown ethers to generate solvent separated 
cations.  In general, arylation at the benzylic position took 
place to afford benzhydryl indoles.  The benzhydryl group78 is a 
common structural motif in many biologically active 
compounds, including indoles, and are contained in 
triarylmethanes.79 Thus, 2-phenylpropargyl-N-
phenylsulfonylaniline 1a was combined with KN(SiMe3)2 and 
18-crown-6 (18-C-6) at 60o C to search for a suitable solvent. 
Of those examined [toluene, THF, cyclopentyl methyl ether 
(CPME), dioxane and DME, Table 1], THF (60% yield) was the 
most promising for the T-S rearrangement leading to 2-
benzhydrylindole 2a (entries 1, 3−5 vs 2). Lower temperatures 
were next examined. Comparable conversions to indole 2a 
were observed at 40 °C (entry 6, 61% yield) and room 
temperature (entry 7, 66% yield). Fortunately, increasing the 
amount of KN(SiMe3)2 from 2 equiv to 3 equiv. provided 78% 
isolated yield (entry 8). Combinations of silyl amide bases and 

crown ethers were next examined. The combination of 
NaN(SiMe3)2/15-crown-5 gave indole 2a in 51% isolated yield 
(entry 9), whereas LiN(SiMe3)2/12-crown-4 produced the 
product in only 27% yield (entry 10). Interestingly, it was found 
that only 5% yield of 2a was obtained with KN(SiMe3)2 but 
without 18-crown-6, while the 2,3-disubstituted indole 
product 3a was observed in 8% yield (entry 11). Clearly, the 
crown ether plays a crucial role in the process. 

Changing the ligand on K+ changed the regioselectivity of 
the T-S rearrangement.  For example, the 3-phenyl indole 3a 
was obtained as the sole product when the reaction was 
conducted at 80 °C in the presence of N,N-
diethylethylenediamine (enEt2) (entry 12, 43% yield). Of the 
five solvents screened (toluene, THF, CPME, dioxane and 
DME), to optimize the regiochemistry of the T-S 
rearrangement, CPME was the best for the generation of 3a 
(61% yield, entry 13 vs. 26–55% for the others). Notably, this 
transformation was favored under more dilute reaction 
conditions in CPME (entry 17, 74% yield in 0.42 M vs. entry 13, 
61% yield in 0.71 M). In addition, an excess of the combination 
KN(SiMe3)2/enEt2 was critical for high yields and 
regioselectivities. Reducing the molar equivalence of 
KN(SiMe3)2/enEt2 from 4 : 12 to 3 : 9 led to decreased yield 
(entry 18, 51%). Further elevation of the reaction temperature 
to 100 °C increased the product 3a yield to 80% (entry 19), 
while only 51% of the product was obtained at 60 °C (entry 
20). Overall, the optimized T-S rearrangement conditions for 
the chemoselective synthesis of both products were 
established (entry 8 for 2-benzhydryl indole 2a and entry 19 
for 3-phenyl indole derivative 3a).

Table 1. T-S Regioselectivity Optimizationa

NH N
H

PhPh

S
Ph

O
O

base, additive A or B
solvent, temp PhN

H
Ph

Ph
or R

1a 2a 3a
A1: 18-crown-6

B: N,N-diethylethylenediamine

A2: 15-crown-5
A3: 12-crown-4

entry solvent MN(SiMe3)2 ligand T (°C) 2ab 3ab

1 toluene KN(SiMe3)2 A1 60 48 –
2 THF KN(SiMe3)2 A1 60 60 –
3 CPME KN(SiMe3)2 A1 60 49 –
4 dioxane KN(SiMe3)2 A1 60 40 –
5 DME KN(SiMe3)2 A1 60 49 –
6 THF KN(SiMe3)2 A1 40 61 –
7 THF KN(SiMe3)2 A1 rt 66 –
8c THF KN(SiMe3)2 A1 rt 78 –
9c THF NaN(SiMe3)2 A2 rt 51 –
10c THF LiN(SiMe3)2 A3 rt 27 –
11c THF KN(SiMe3)2 – rt 5 8
12d THF KN(SiMe3)2 B 80 – 43
13d CPME KN(SiMe3)2 B 80 – 61
14d DME KN(SiMe3)2 B 80 – 26
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15d dioxane KN(SiMe3)2 B 80 – 53
16d toluene KN(SiMe3)2 B 80 – 55
17d,e CPME KN(SiMe3)2 B 80 – 74
18f CPME KN(SiMe3)2 B 80 – 51
19d,e CPME KN(SiMe3)2 B 100 – 80

  20d,e CPME KN(SiMe3)2 B 60 – 51
aReactions were conducted with 1a (0.1 mmol), MN(SiMe3)2 (0.2 mmol), ligand 

(0.4 mmol) solvent (1 mL), 12 h. bIsolated yields. c0.3 mmol of base, 0.6 mmol of 

ligand. d0.4 mmol of base, 1.2 mmol of ligand. e2 mL of solvent. f0.3 mmol of 

base, 0.9 mmol of ligand.
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2ab R = OCF3, 85%

R

KN(SiMe3)2 (3 equiv)
18-crown-6 (6 equiv)

rt, THF N
H

Ar1

Ar2
R

1 2

Fig. 1 Scope of the chemoselective synthesis of 2-benzhydryl indoles. aReaction conditions: 1 (0.1 mmol), KN(SiMe3)2 (0.3 mmol), 18-crown-6 (0.6 mmol), THF (1 mL), 
rt, 12 h. bIsolated yield. c60 °C. dDME (1 mL).

Scope of the benzylic T-S rearrangement. The scope of the T-S 
rearrangement to the benzylic position is presented in Fig. 1. All 
reactions were conducted at room temperature apart from one 
example, which was performed at 60 ℃ . Various migrating aryl 
groups were first examined. 2-Arylpropargyl sulfonylanilines 
bearing aryl sulfonamides with electron withdrawing or 
electronegative groups, such as 3-CF3, 4-OCF3, and 4-Cl, gave the 
desired products (2b, 2c, 2d) in 48%, 75%, and 72% yield. Biphenyl, 
2-naphthyl, and 1-naphthyl sulfonamides provided 2e−2g in 
70−94% yields. A 1-naphthylsulfamide bearing an electron donating 
5-NMe2 also showed high conversion in this protocol, affording the 
cyclization/rearrangement product in 87% yield. Interestingly, 
sulfonamides possessing 3-pyridinyl, 2-thiofuranyl, and 8-(3-methyl-
quinolyl) (2i, 2j, 2k) groups were all suitable substrates, affording 
the desired heterocyclic products in 43−67% yields. 

Next, substitution on the aniline aromatic moiety was explored. 
2-Arylpropargyl sulfonylanilines bearing alkyl (5-Me, 4-Me, 4-tBu) 

and phenyl groups on the aniline-based ring reacted readily under 
the optimal reaction conditions giving the 2-benzhydryl indole 
products 2l−2o in 60−74% yields. In addition, both electron 
donating (4-OMe, 2p), electronegative and electron withdrawing 
groups (4-F, 2q; 4-Cl, 2r; 4-CF3, 2s) on the aromatic ring of 2-
arylpropargyl sulfonylanilines gave T–S rearrangement products in 
this reaction, albeit electron poor substrates were less efficient 
(34−38% for 2q−2s vs. 52% for 2p). 

The scope of arylpropargyl groups on the T-S rearrangement was 
next investigated. As shown in Fig. 1, a variety of aryl-substituted 
propargyl derivatives were compatible with the T-S rearrangement 
(2t–2ae), producing the products in 50–95% yields. To avoid the 
duplication of the products above, 2-naphthalenesulfonamides 
were employed, resulting in a 2-naphthyl undergoing the T-S 
rearrangement. 2-Arylpropargyl 2-naphthyl-substituted 
sulfonylanilines bearing alkyl (4-Me, 2t; 4-tBu, 2u), phenyl (2v), or 
OMe (4-OMe, 2w; 3,5-diOMe, 2x) groups on the aryl ring of the aryl 
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propargyl group were successfully employed, furnishing the 2-
benzhydryl indoles in excellent yields (80−95%). Additionally, this 
tandem reaction proceeded smoothly with substrates bearing 
electronegative substituents on the arylpropargyl group, including 
4-F (2y), 4-Cl (2z), 4-Br (2aa), and 4-OCF3 (2ab) (50–87% yields). Aryl 
groups bearing ortho-substituents, such as 2-F (2ac) and sterically 
hindered 2-Me (2ad) on the arylpropargyl group did not interfere 

with the T-S rearrangement, affording products in 77–84% yields. A 
substrate possessing a vinyl moiety on the arylpropargyl group was 
tolerated, providing the 2-benzhydryl indole 2ae in 72% yield.  
Unfortunately, aniline derivatives with Ar2 = 4-C6H4–I, 4-C6H4–F and 
4-C6H4–Me were poor substrates that gave less than 35% yield.  Not 
surprisingly, when replacing the sulfonamide S-Ar with S-alkyl , no 
T-S products were obtained.

N
H

Ph

3a 80%

N
H

Ph

3f 71%

N
H

Ph

3g R = H, 71%
3h R = N(CH3)2, 80%

N
H

Ph

3c 63%

OCF3

N
H

Ph

N

3i 78%

N
H

Ph

3D R = tBu, 75%
3e R = Ph, 87%

R

N
H

Ph

S

3j 47%

N
H

Ph

CF3

3b 37%

N
H

Ph

N

3k 61%

N
H

Ph

3l 77%

N
H

Ph

R

N
H

3x 80%

O

O
N
H

3t R = Me, 74%
3u R = tBu, 87%
3v R = Ph, 71%c

3w R = OMe, 71%

R

N
H

CH3

3ad 76%

NH

Ar1

S
Ar2O

O

R
KN(SiMe3)2 (4 equiv)
N,N-diethylethylenediamine (12 equiv)

100 oC, CPME N
H

Ar1
R

Ar2

R

3m R = Me, 88%
3n R = tBu, 69%
3o R = Ph, 85%
3p R = OMe, 66%c

3q R = F, 83%
3r R = Cl, 62%

N
H

3y R = F, 56%
3ab R = OCF3, 58%

R

1 3

N
H

3aEc 59%

Fig. 2 Scope of the chemoselective synthesis of 2,3-disubstituted indoles. aReaction conditions: 1 (0.1 mmol), KN(SiMe3)2 (0.4 mmol), N,N-

diethylethylenediamine (1.2 mmol), CPME (2 mL), 100 °C, 12 h. bIsolated yield. cToluene (2 mL).

T-S rearrangement to the indole 3-position. Next, we focused on 
the chemoselective T-S rearrangement to the indole skeleton to 
provide 2,3-disubstituted indoles. As presented in Fig. 2, substrates 
bearing diverse aryl-substituted sulfonyl groups exhibited fair to 
excellent reactivity.  Aryl groups with electron withdrawing (3-CF3, 
3b, 37% yield; 4-OCF3, 3c, 63% yield) and electron neutral alkyl (4-

tBu, 3d, 75% yield), and 4-phenyl (3e, 87% yield) gave the T-S 
rearranged products. Moreover, substrates possessing 2-naphthyl 
(3f), 1-naphthyl (3g), and 4-NMe2-1-naphthyl (3h) substituents on 
the sulfonyl group were also well-tolerated in the T-S 
rearrangement, providing the product in 71−80% yields. Of note, 
heterocyclic 3-pyridyl (3i), 2-thiofuranyl (3j), and 8-(3-methyl-

Page 4 of 9Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal Name  COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5

Please do not adjust margins

Please do not adjust margins

quinolyl) (3k) substituents were all compatible with this 
transformation, assembling the desired products in 47−78% yields. 

The diversity of the substituents on the aniline ring was next 
explored. In general, good to excellent yields of 2,3-disubstituted 
indoles were observed, regardless of the electronic nature of the 
aniline substituents. Thus, alkyl (5-Me, 3l, 77% yield; 4-Me, 3m, 88% 
yield; 4-tBu, 3n, 69% yield), phenyl (3o, 85% yield), electron 
donating (4-OMe, 3p, 66% yield) and electronegative substituents 
(4-F, 3q, 83% yield; 4-Cl, 3r, 62% yield) were all compatible with the 
cyclization/T-S rearrangement.

An exploration of the benzylic Ar1 in Figure 2 was undertaken. 
2-Arylpropargyl sulfonylanilines bearing Ar1 groups with alkyl (4-Me, 
3t, 74% yield; 4-tBu, 3u, 87% yield), 4-phenyl (3v, 71% yield), 
methoxy (4-OMe, 3w, 71% yield; 3,5-diOMe, 3x, 80% yield), and 
electron withdrawing (4-F, 3y, 56% yield; 4-OCF3, 3ab, 58% yield) 
could be readily converted into the desired T-S rearrangement 
products. It is noteworthy that the sterically hindered Ar1 = 2-Tol 
was successful in this reaction, giving the corresponding product 
3ad in 76% yield. 

To our knowledge, there are only a few examples of T-S 
rearrangements wherein a vinyl group undergoes the migration.80-82 
To exam the ability of the styrenyl group to participate in this 
process, we prepared the -styrenyl sulfenyl-containing substrate. 
When exposed to reaction conditions with KN(SiMe3)2 and diamine 
ligand, indole formation was followed by T-S -styrenyl group 
transfer producing the vinyl-containing product 3aE in 59% yield.  
Here again, sulfonamides with Ar2 = 4-C6H4–Cl and 4-C6H4–Me were 
poor substrates giving none of the desired products.

Overall, a variety of 2,3-disubstituted indoles were readily 
prepared by tandem cyclization/T-S rearrangement of 2-
arylpropargyl sulfonylanilines under transition metal-free 
conditions.

To illustrate the practicality of this protocol, we conducted the 
cyclization/T-S rearrangement of substrate 1w on a 3 mmol scale. 
The corresponding product 2w was isolated in 91% yield (0.995 g, 
Fig. 3a). In addition, 2,3-disubstituted indole 3x was isolated in 43% 
yield (0.676 g) on scale up of the reaction (4 mmol).

Interestingly, in the case of substrate 1ac (Fig. 3b) bearing a 2-
fluoro phenyl, after the T-S rearrangement the reaction took an 
unexpected turn and the product 4 was formed in 60% yield under 
the standard reaction conditions. We hypothesize that the 
polycyclic indole 4 arises from formation of the expected 2,3-
disubstituted indole, which then undergoes deprotonation at the 
indole nitrogen. A key mechanistic step to illustrate the initiation of 
the flow of electrons is shown in Fig. 3b, right. Once the new C–C 
bond is formed, the SNAr is completed by loss of the fluoride.  At 
this stage, we cannot rule out a mechanism involving base-
promoted elimination of HF to generate a benzyne intermediate.

To gain insight into the reaction mechanisms of the indole 
formation/T-S rearrangements, we set out to isolate key 
intermediates in the process. We envisioned that replacement of 
KN(SiMe3)2 with a weaker base, K2CO3, might allow the tandem 
reaction to be halted at the indole stage (pre-T-S rearrangement). 
As shown in Fig. 3c, in the presence of K2CO3, 1a underwent 
cyclization to form indole 5 without initiating the T-S 
rearrangement.  Subjecting indole 5 to the KN(SiMe3)2 and the 
selectivity-controlling ligand in the T-S rearrangement gave 2-

benzhydryl indole 2a when the ligand was 18-crown-6 in 79% yield 
and the 2,3-disubstituted indole 3a in 72% yield when KN(SiMe3)2 
was used with excess N,N-diethylethylene diamine. These results 
point to the formation of the common intermediate indole 5. 

Finally, we wished to probe the T-S rearrangement to 
understand if any of the observed products might emerge 
from an intermolecular pathway in the presence of the crown 
and diamine ligands. Thus, crossover experiments were carried 
out as depicted in Fig. 3d. In the event, upon use of a 
combination of alkynes 1a and 1x, only two products (2a and 
2x in 75 and 86% yields, respectively) were detected when the 
reaction was conducted under the influence of 18-crown-6 
(Fig. 1 conditions). Likewise, using alkynes 1a and 1x with 
KN(SiMe3)2 and in the presence of N,N-diethylethylene 
diamine led exclusively to the formation of the 2,3-
disubstituted indoles 3a and 3x in 74–77% yields). Thus, only 
intramolecular T-S processes were observed for both divergent 
reaction pathways. These results are consistent with a 5-endo-
dig cyclization to give the indole core and a subsequent T-S 
rearrangement.
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Fig. 3 Scale up reactions and control experiments. a Scale up synthesis of 

2w and 3x. b Synthesis of polycyclic indole 4 ,possibly through an SNAr. c 

Isolation of a common pre-Truce-Smiles intermediate. d Cross-over 

experiments.

The key advance in this study is the ability to control the 
chemoselectivity of the Truce-Smiles rearrangement by simply 
employing different ligands for K+. It is known from gas phase 
studies that dimethoxy ethane binds to K+ with a higher association 
constant than ethylene diamine (en).83  The same study also 
reported that the interaction of the third ethylene diamine with 
K+(en)2 to give K+(en)3 has a “much lower” binding constant than 
the first two en molecules.84 Of course, Pederson’s85 18-crown-6 
has a very high binding affinity for K+.80 Thus, we hypothesize that 
the benzylic C–H of the indole is readily deprotonated by the 
KN(SiMe3)2 in the presence of either 18-crown-6 (18-C-6) or N,N-
diethylethylenediamine (enEt2), as outlined in Scheme. 1c. In the 
case of KN(SiMe3)2/18-C-6, the K+ is sequestered to give a solvent 

separated ion pair with K+•(18-C-6) or perhaps K+•(18-C-6) 
interacting with the aromatic pi-system of the deprotonated benzyl 
group or indole.86 In this situation, we envision unhindered access 
of the carbanion to the SO2–Ar group ipso-carbon for the T-S 
rearrangement. As a result, the T-S reaction readily takes place at 
room temperature with a low barrier to the benzylic position. Note 
that in the absence of the crown ether, it is anticipated that the K+ 
will be associated with the anionic indole. Such an interaction will 
hinder the T-S rearrangement, which is consistent with the 5% yield 
of benzhydryl indole observed under crown-free conditions (Table 
1, entry 11).  In the case of the diamine additive, it is likely that the 
K+(enEt2)n has a stronger electrostatic interaction with the 
deprotonated benzylic site and neighboring aryl ring, because the 
weaker binding of the diamine. We propose that this tighter 
interaction hinders the T-S attack of the benzylic anion on the SO2–
Ar group ipso-carbon.  More forcing conditions (100 oC) are 
required for attack by the anionic indole 3-position on the SO2–Ar 
group ipso-carbon. Given the drive to more sustainable chemistry, 
including arylation reactions, we envision that this approach to 
steering the Truce-Smiles rearrangement by choice of ligands for 
cationic metals will be applicable to other arylation strategies. 
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