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Computational Investigation of the Phase Behavior of Colloidal 
Squares with Offset Magnetic Dipoles
Matthew A. Dorsey,a Orlin D. Velev,a and Carol K. Hall*a

Colloidal particles with anisotropic shapes and interactions display rich phase behavior and have potential as structural bases 
for materials with controllable properties. In this paper, we explore the self-assembling characteristics of a new class of 
particles that have been shown experimentally to form reconfigurable structures: microscopic cube-shaped colloids with a 
magnetic dipole that is transversely offset from the particle’s center of mass. We have performed in silico simulations of the 
dynamics of large numbers of dipolar squares in two-dimensions using discontinuous molecular dynamics (DMD). We use a 
coarse-grain method where the dipolar microcubes are represented by a group of four hard circles bonded together to 
create a rigid square in two-dimensions and two opposite charges are embedded within the square to represent a magnetic 
dipole. Annealing, or “slow-cooling”, simulations are conducted to determine the equilibrium structures. Systems of dipolar 
squares tend to assemble into one of two different types of conformations: either single- or double-stranded assemblies, 
each with unique structures and phase diagrams in the temperature-density plane. Single-stranded assemblies form highly 
interconnected percolated, or gel-like, networks. In contrast, double stranded assemblies tend to form globally-aligned 
nematic states at high densities, although this is not seen consistently in all runs. The phase behavior of systems of dipolar 
squares depends not only on the system’s temperature and density, but also on the type of dipole embedded within the 
microcube and on the relative number of cubes with an opposite “handedness” that are present within the system. 

Introduction
Colloidal self-assembly relies on interparticle forces to direct 
systems of particles into ordered structures. Colloidal 
assemblies can have many different morphologies, including 
lattices, strings, sheets, and vesicles (1). Often, they can be 
induced to reversibly switch between phases by adjusting the 
forces between the particles with specific external stimuli, e.g., 
electromagnetic fields (2). Colloidal systems with tailored 
properties that change predictably and reversibly in response to 
external stimuli are the basis for functional materials with 
tunable and controllable properties. Applications for these 
materials are increasingly being found in areas like 
biotechnology (3–5), photonics (6–9), and electronics (10–12). 
For example, dense suspensions of colloidal spheres self-
assemble into 2D monolayers and 3D multilayers with 
controllable lattice properties, which then act as templates for 
optical etching masks in photolithography (13). 

Colloidal particles with anisotropic properties are of interest 
because they exhibit phase behavior that is more complex than 
their isotropic analogs (14). One prominent example of an 
anisotropic colloid is Janus spheres, which are spherical colloids 
whose two hemispheres have different physical or chemical 
properties (15). As a result of their different properties, Janus 
spheres have interactions that depend on their relative 
orientation. Spherical colloids with isotropic interactions 

assemble into symmetrical, lattice-like configurations at high 
densities (e.g. face-centered cubic, hexagonal close-packed, 
and body-centered cubic lattice structures). The packing 
structure of systems with hard shapes is entropically driven: the 
system’s overall free-energy is minimized at high densities 
when colloidal particles organize into structures with fewer 
configurational possibilities (16). However, Janus particles, 
whose interaction symmetry has been broken, assemble into a 
rich variety of phases distinct from their isotropic analogs. 
Amphiphilic Janus particles, whose hemisphere’s have different 
physical properties (e.g. hydrophilic and hydrophobic) have 
surfactant-like behavior, assembling into micelle and bilayer 
phases (17,18). Colloids with internal dipoles also have 
orientationally-dependent interactions (19–21). Janus spheres 
with an internal, centrally-located magnetic or electric dipole 
form into staggered chains and branched structures at low 
densities, and into crystal structures at high densities (22–24). 
The geometry of a colloidal particle also plays an important role 
in a system’s phase behavior, especially at high densities. For 
example, colloidal rods at high densities order into smectic and 
nematic phases in which all particles are globally oriented in the 
direction of their long axis (25).

In this paper we explore the behavior of cube-shaped 
colloidal particles that have an internal magnetic dipole and 
which have been confined to a 2D plane. The focus is on a novel 
class of cubic, metallodielectric microparticles introduced by 
Han et al. that are able to interact, assemble, reconfigure, and 
propel in response to external magnetic and electric fields (26–
28). These “patchy” cubic microparticles are 10 m in size and a.Department of Chemical and Biomolecular Engineering, North Carolina State 
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are generated by coating one face of a cubic latex particle with 
a thin layer of cobalt, a ferrometallic material. When the 
particles are suspended in solution, they sediment to the 
bottom of the thin chamber, effectively reducing the geometry 
to two dimensions. Application of an external magnetic field 
across the chamber parallel to the floor causes the metallic 
coating to acquire residual magnetic polarization that creates 
long-range, directionally-dependent forces between the patchy 
microparticles. The magnetic field also forces the particles to 
orient their magnetic side along the direction of the magnetic 
field, leading to the formation of chained assemblies. The 
combination of particle geometry, directional dipole-dipole 
interparticle magnetic interactions, and responsiveness to 
externally-applied, tunable and time-dependent magnetic and 
electric fields gives these particles a rich potential for 
assembling into responsive and reconfigurable materials. 

Computer simulations have been used extensively to study 
the effect that particle geometry and orientationally-dependent 
interactions (e.g., dipole-dipole interactions) have on the self-
assembling behavior of anisotropic colloidal particles (29–32). 
Molecular dynamics simulations are often used to model the 
motion of colloidal suspensions by approximating forces 
between particles with pairwise interparticle potential 
functions (33–35). Computational studies of circular colloids 
with offset internal dipoles have predicted a range of phase 
behavior depending on the location and orientation of the 
dipole embedded in the particle (36). In previous studies, 
computer simulations have also been used to study systems of 
colloidal cubes with internal dipoles (37–41). One challenge 
with the modeling of systems of non-spherical colloids is in 
properly accounting for their excluded volume interactions. Due 
to their anisotropic geometries, computer simulations must 
account for both the translational motion and the rotational 
motion of the particle, increasing their overall computational 
burden. To alleviate this burden, colloids with anisotropic 
geometries are often approximated as groupings of particles 
with isotropic interactions. For example, Escobedo et al. 
performed Monte Carlo simulations of hard geometries in two- 
and three-dimensions, modelling the squares and cubes, 
respectively, as clusters of hard-spheres (42,43). The same 
method was used by Kantorovich et al. to study cubes with 
embedded, centrally-located magnetic dipoles, in which the 
magnetic dipoles were represented by the point charge-dipole 
equation (44,45). While theoretical studies of spheres with 
offset dipoles and of squares with centrally-located dipoles 
have been performed extensively using a variety of models, 
computational simulations of squares with offset dipoles have 
not yet been performed to the best of our knowledge. Colloids 
with offset dipoles can be grouped into two categories 
depending on how the dipole is shifted from the particle’s 
center-of-mass. If the vector that points from the particle’s 
center of mass to the center of the offset dipole is parallel to 
the direction that the dipole points, the dipoles are considered 
longitudinally shifted. If that same vector points perpendicular 
to the direction that the dipole points, the dipoles are 
considered transversely shifted. 

The goal of this work is to explore the phase behavior of the 
polarized square colloidal particles with transversely-shifted 
internal magnetic dipoles introduced by Han et al (26). We 
model square colloidal particles in 2D as a cluster of four hard, 
non-overlapping circles that are bonded together to create a 
rigid, square geometrical shape in two dimensions. We model 
the square’s dipole as two opposite charges embedded within 
the hard spheres on the square's edge, so that the dipole points 
parallel to one of the principle axes of the square. The 
interaction between two charges is defined such that charges 
with the same sign experience a repulsive potential, while 
charges with opposite signs experience an attractive potential. 
This construct is analogous to an electrostatic dipole, and has 
been used previously to model magnetically-polarized colloids 
(46–48). One unique feature of the magnetically-polarized 
colloids is their chirality. Since the squares are unable to rotate 
outside of the two-dimensional simulation plane, they have a 
fixed chirality, which depends on the direction of their magnetic 
dipole relative to the square’s center. Another unique feature 
of these magnetically-polarized colloids is that their dipole is 
offset from the particle's center. Here we study two different 
types of dipoles, which we denote as standard and offset 
dipoles, and which differ in how the dipole is embedded within 
the square.

Highlights of our results include the following. We find that, 
for all systems, as the temperature is reduced below a threshold 
value, the dipolar square particles assemble into one of two 
types of structures: 1) single-stranded assemblies, or 2) double-
stranded assemblies. In a single-stranded assembly, the squares 
aggregate primarily in head-to-tail configurations, to form 
flexible assemblies in which all the dipoles in the strand point in 
the same direction. In a double-stranded assembly, pairs of 
dipolar squares in an anti-parallel conformation aggregate to 
form rigid assemblies with rod-like morphologies. We have 
found that the system’s preference for assembling into either 
single-stranded or double-stranded assemblies is a 
consequence of where the dipole is embedded within the 
square, which affects the squares’ preference for either head-
to-tail or antiparallel configurations. Additionally, we find that 
under certain conditions, systems of magnetically polarized 
squares with transversely shifted dipoles exhibit density-
dependent percolation and nematic phase transitions. 
Interestingly, these phases depend not only on the type of 
dipole embedded within the square, but also on the presence 
or absence of squares of opposite chirality in the system. 

Model
The square particle is modeled with four non-overlapping, 
uniform hard discs of diameter . The square geometry is 𝜎
maintained by bonding the hard discs in each group in such a 
way that the square maintains a rigid shape, as shown in Fig. 1. 
Five pseudo-bonds are used for each square via Bellemans’ 
method (49). In Bellemans’ method, spheres bound together 
experience a repulsive force if their distance from one another 
is outside of a certain range. Bellemans’ constant,  defines 
how tightly the discs are bound to one another, which was set 
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to  for our simulations. Two small, charged discs, 0.015𝜎
opposite in "charge" but equal in magnitude, are embedded in 
the first and second discs of each square formation, shown in 
Fig. 2. In our model, squares are unable to rotate outside of the 
simulation plane, and, as a result, they have a fixed chirality over 
the course of any simulation (50). The chirality of any square 
depends on where the charges are embedded relative to the 
particles center. We define A-chirality squares to have a 
magnetic dipole that points clockwise relative to the center of 
the particle, and B-chirality squares to have a magnetic dipole 
that points counterclockwise relative to the center of the 
square. Fig. 2 illustrates two different squares, one with A-
chirality and the other with B-chirality.

 We model the dynamics of the dipolar square colloids using 
the Discontinuous Molecular Dynamics (DMD) algorithm. DMD 
is an accelerated variant of the standard molecular dynamics 
(MD) algorithm that is applied to coarse-grained versions of 
molecular models (51,52).  Coarse-grained models are 
particularly useful for exploring the behavior of large systems of 
particles, as well as phenomena that occur at long-time scales, 
as they substantially reduce the overall computational time 
required to simulate such systems. While in standard MD, the 
potentials are continuous potential functions of the 
interparticle distance, in DMD the potentials are represented by 
a series of discrete changes in the potentials value (53). When a 
pair of particles are not at a discontinuity in the potential, the 
change in the potential is zero. As a result, particles in DMD do 
not experience any forces or acceleration. Instead, they 
experience impulses over an infinitesimally small period of time 
at the location in the discontinuity. At all other times, their 
velocities (magnitude and direction) are constant until they 
encounter a discontinuity in the interparticle potential, at which 
point the trajectories of the interacting particles must be 
adjusted. The advantage of DMD over standard MD is that, since 
the particles maintain a constant velocity between 
discontinuities, the equations of motion between discrete 
points in time can be solved analytically. The DMD is an event-
driven algorithm operates by moving the system of particles 
forward in time from interaction to interaction, significantly 
reducing the overall computational time compared to MD (54).

The charged discs in different squares with opposite charges 
experience an attractive, multi-step, square well potential, 
while discs with the same charge experience a repulsive, multi-
step, square shoulder potential. The square potentials have the 
same step widths, but opposite depths. The depths and widths 
for either potential is selected to mimic the Yukawa potential, 
also known as the screened Coulomb potential. The Yukawa 
potential represents a full-range Coulomb potential that is 
shielded by a layer of aqueous counterions. A screened 
Coulombic potential was selected instead of a full-range 
Coulombic potential as, in the latter case, the computationally 
taxing Ewald sums method is required to account for the 
cumulative effect of the long-range potential across periodic 
boundaries during molecular simulations. The Yukawa potential 
is defined as 

𝑈𝑌𝑢𝑘𝑎𝑤𝑎(𝑟𝑖𝑗
∗ ) =

𝜀

𝑟𝑖𝑗
∗ exp ( ―𝜅 ∗ (𝑟𝑖𝑗

∗ ― 1)) (1)

where  is a constant with units of energy related to the 
interaction strength of the potential,  is the reduced inverse 𝜅 ∗

Debye length, which represents the range of the potential and 
therefore the strength of the screening effect, and  is the 𝑟𝑖𝑗

∗

reduced distance between the two charges. Both the inverse 
Debye length and the interparticle distance between the two 
charges are reduced by the hard disc diameter . The 𝜎
parameters used to fit the square well and shoulder potentials 
to the Yukawa potential were selected by determining a 
maximum cut-off length beyond which charged spheres will not 
interact with each other. This maximum cut-off length was 
selected to be slightly less than , which is the distance 2𝜎
between two similar charges when two dipolar squares are in 
an anti-parallel conformation. If the cut-off length is set to be  
greater than , then  dipolar squares interacting via 2𝜎
discontinuous potentials self-assemble in a manner that is  
significantly different  from the way that they self-assemble 
when they  interact with continuous potentials. We have 
estimated that a maximum cut-off length of  corresponds 2𝜎
to a reduced Debye length of approximately . The 𝜅 ∗ = 3.5
reduced temperature of our simulations is defined to be 𝑇 ∗ ≡

, where  is the Boltzmann constant and  is the energy 𝑘𝐵𝑇 𝜀 𝑘𝐵 𝜀
constant in the Yukawa potential with units of energy related to 
the strength of the interaction. 

Hard discs from different squares interact through the 
reduced hard disc potential , which is defined as𝑈 ∗

𝐻𝐷(𝑟 ∗ )

𝑈 ∗
𝐻𝐷(𝑟 ∗

𝑖𝑗 ) ≡ {∞ 𝑖𝑓 𝑟 ∗
𝑖𝑗 ≤ 1

0 𝑖𝑓 𝑟 ∗
𝑖𝑗 > 1 (2)

where  is the reduced distance between the centers of two 𝑟 ∗
𝑖𝑗

hard discs. Charged discs embedded in different squares 
interact via a four-step reduced charged disc potential , 𝑈 ∗

𝐶𝐷(𝑟 ∗
𝑖𝑗 )

which is defined as

𝑈 ∗
𝐶𝐷(𝑟 ∗

𝑖𝑗 ) ≡ { 𝜀1 𝑖𝑓 𝑟 ∗
𝑖𝑗 < 𝜎1

𝜀2 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑟 ∗
𝑖𝑗 < 𝜎2

𝜀3 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑟 ∗
𝑖𝑗 < 𝜎3

𝜀4 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑟 ∗
𝑖𝑗 < 𝜎4

𝑒𝑙𝑠𝑒 0

(3)

where  is the reduced distance between the centers of two 𝑟 ∗
𝑖𝑗

charged discs. The potential is either attractive (square well) if 
the charges are of opposite sign, or repulsive (square shoulder) 
if the charges are of the same sign. The step depths (𝜀1

, , , and ) and = 2.5426 𝜀2 = 1.5916 𝜀3 = 0.8259 𝜀4 = 0.3146
step widths ( , , , and 𝜎1 = 0.850 𝜎2 = 0.950 𝜎3 = 1.150 𝜎4

) were selected to approximate the discontinuous = 1.400
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interactions between charged discs to a Yukawa potential with 
a reduced Debye length of  (47). 𝜅 ∗ = 3.5

The dipoles that are embedded within each square are 
transversely offset from the particle’s center-of-mass. We have 
varied the location of the dipole’s charges within the square to 
study how the degree to which the dipole is offset from the 
square’s center impacts its behavior. In this paper, we consider 
two different dipole offsets. In the first, denoted as the 
standard dipole, the charged discs are placed in the center of 
either of the hard discs that they are embedded in. Both charges 
are located equidistant from the nearest square faces that are 
parallel and perpendicular to the dipole. Fig. 3.a shows that the 
transverse distance  and the lateral distance 𝑑𝑇 = 0.5𝜎 𝑑𝐿

. This dipole offset represents dipoles squares whose = 0.5𝜎
permanent magnetic dipole is located along one of the square 
faces, and is a good representation of those designed by Han et 
al (26). In the second type of dipole offset, denoted as the offset 
dipole, the charged discs are embedded such that the lateral 
distance is  and is less than the transverse distance, 𝑑𝐿 = 0.375𝜎
which remains . In this case, shown in Fig. 3.b, the 𝑑𝑇 = 0.5𝜎
charges are located slightly closer to the square face that is 
perpendicular to the direction that the dipole points than it is to 
the square face that is parallel to the direction that the dipole 
points. To model the offset dipole, two additional bonds are 
required for each of the charged discs to maintain their position 
within the square. Each charged disc is bonded to the hard disc 
that it is embedded inside of (with bond lengths ranging 
between 0.125 –  and 0.125 + ) and to the adjacent hard 
disc that contains the other embedded charge (with bond 
lengths ranging between 1.125 –  and 1.125 + . 

The primary difference between the standard and the offset 
dipole is their preference to be in anti-parallel or head-to-tail 
configurations with other squares of the same type. Fig. 4 
illustrates the difference between standard and offset dipoles 
by showing diagrams and potential energy calculations 
between two A-chirality squares in both head-to-tail and anti-
parallel configurations. Since the charged discs are embedded 
within hard discs, the smallest distance that the two charged 
discs can come to each other is determined by their distance in 
any direction from the edge of the hard disc that they are 
embedded in. In the case of the standard dipole, the charged 
discs are embedded in the center of the hard discs, and 
therefore can never come closer to each other than  𝑟 ∗

𝑖𝑗 = 1.00
in either the lateral or transverse directions. As a result, squares 
with standard dipoles have their lowest configurational 
potential in an antiparallel arrangement, in which both the 
charges on each square have an oppositely-charged partner. In 
the case of the offset dipole, the closest distance that is possible 
between two charges is  in the lateral direction , 𝑟 

𝑖𝑗 = 0.75𝜎 𝑑𝐿

while the closest distance in the transverse direction  remains 𝑑𝑇

. As a result, two squares with offset dipoles have 𝑟 ∗
𝑖𝑗 = 1.00

their lowest configurational potential in a head-to-tail 
arrangement. 

Methods

NVT ensemble DMD simulations are performed in a 2-
dimensional simulation box with periodic boundaries. Constant 
temperature is maintained using the Andersen thermostat, 
where random squares are periodically selected and every disc 
within that group is reassigned a unique velocity from a 
Boltzmann distribution (55). Canonical ensemble annealing 
simulations are used to investigate the equilibrium behavior of 
systems of dipolar squares. In annealing simulations, the system 
temperature is decreased in very small steps, allowing the 
system to equilibrate before reducing the system temperature 
again. For each annealing simulation, the system temperature 
is set to a starting value of  = 1.5 and reduced only after 200 𝑇 ∗

million collision events. On average, 200 million collision events 
last 1000 reduced seconds. The simulation time scale is defined 
in seconds as . We have determined that this 𝑡 ∗ = 𝑡 𝜀/𝜎2 ∙ 𝑚
length of time is sufficient for a system to be considered at 
equilibrium after a perturbation in the system temperature.

The temperature is reduced according to the following 
assignment strategy:

𝑇 ∗ ≔{ 𝑇 ∗ ― 0.25 𝑖𝑓 𝑇 ∗ > 0.5
𝑇 ∗ ― 0.0125 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑇 ∗ > 0.25
𝑇 ∗ ― 0.005 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑇 ∗ > 0.01

(4)

Each annealing simulation has 70 temperature steps and 
cumulatively runs for over 70,000 reduced seconds. When the 
temperature reaches a value of  = 0.01, the simulation is 𝑇 ∗

finished. At this temperature the thermal forces of the system 
are significantly lower than the strength of the interactions 
between magnetic dipoles. Below this temperature, the 
equilibrium structures of the system do not change further. 
Annealing simulations were performed for each system at area 
fractions, , ranging from 0.05 to 0.70. We define the area 𝜙
fraction as the area occupied by all squares in the simulation 
box, including the area between the circles in the center of the 
square group, divided by the total area of the simulation plane. 
The maximum packing fraction of this system is .𝜙𝑚𝑎𝑥 = 0.839

Four order parameters were developed to quantify the 
clustering behavior of the squares at each temperature step 
during the annealing simulations. Each order parameter 
measures the likelihood that a square will be found in a 
particular type of configuration with other squares when it is at 
equilibrium. A value of 0 indicates that none of the squares in 
the system have adopted the specified conformation, while a 
value of 1 indicates that all squares in the system have adopted 
the specified conformation. The order parameters are plotted 
against the reduced temperature of the system over the course 
of an annealing simulation to determine the temperature at 
which the system transitions from a state in which none of the 
squares in the system conform to a particular order parameter 
to a state in which all or most the squares in the system conform 
to a particular order parameter. This transition for any order 
parameter is defined to occur at the inflection point in the line 
fit to the order parameter data vs. the reduced temperature. 
The transition temperature of any order parameter is 
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determined by calculating the inflection point of the logistic5 
curve fit to the order parameter data 

Φ(𝑇 ∗ ) = 𝐶1 +
𝐶2 ― 𝐶1

(1 + (𝐶3
𝑇 ∗ )𝐶4)𝐶5 (5)

where  is the reduced temperature,  is the order 𝑇 ∗ Φ(𝑇 ∗ )
parameter as a function of the reduced temperature over the 
course of the anneal simulation, and , , , , and  are 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

constants used to fit the logistic5 curve to the order parameter 
data. Examples of selected order parameter data fit to the 
logistic5 curve are provided in the ESI.

In total we use four order parameters to categorize the 
phase behavior of large systems of dipolar squares. Two of the 
order parameters quantify how the dipolar squares aggregate 
with one another by measuring the configuration of squares 
that are associated with other squares. The other two order 
parameters are used to quantify the macroscopic, 
morphological properties of the systems of dipolar squares. For 
some order parameters, we use clustering criterion to 
determine if two squares are associated with one another. We 
consider two squares to be associated with one another if either 
of their two opposite charges are within a certain distance of 
one another. We define two charged discs as being associated 
if they are within a distance of  from one another, which is 2𝜎
the maximum interaction distance of the charged disc potential. 
We have found that this threshold distance is a good measure 
of square-square association. Increasing the threshold distance 
beyond this value does not make sense as the charged discs 
would not interact with each other in that case.

The first configurational order parameter is the single-
strand order parameter, , which quantifies the Φ𝑠𝑖𝑛𝑔𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

extent to which a system of dipolar squares conforms to a 
single-stranded assembly. A square is considered in a single-
stranded assembly if each of its charged discs are associated 
with at least one other oppositely charged disc. In a single-
stranded assembly, each square aligns in a head-to-tail 
configuration with two other squares, as illustrated in Fig. 5. The 
single-strand order parameter  is defined as the Φ𝑠𝑖𝑛𝑔𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

ensemble-averaged number of squares that conform to a single 
stranded assembly, , normalized by the total 𝑁𝑠𝑖𝑛𝑔𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

number of squares in the system, .𝑁𝑠𝑞𝑢𝑎𝑟𝑒𝑠

Φ𝑠𝑖𝑛𝑔𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑 ≡ 〈𝑁𝑠𝑖𝑛𝑔𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

𝑁𝑠𝑞𝑢𝑎𝑟𝑒𝑠 〉 (6)

The second configurational order parameter is the double-
strand order parameter, , which quantifies the Φ𝑑𝑜𝑢𝑏𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

extent to which a system of dipolar squares conforms to a 
double-stranded assembly. A square is considered to be in a 
double-stranded assembly when each of its charged discs is 

associated with two oppositely-charged discs, shown in Fig. 5. 
In this type of assembly, both of the charged discs embedded 
within a square are unable to associate with any additional 
charged discs, due to the steric hindrances of how the dipole is 
embedded in the square, and the square has reached its lowest 
possible potential energy. The double-strand order parameter 

 is defined as the ensemble-averaged number of Φ𝑑𝑜𝑢𝑏𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

squares that are conform to a double-stranded assembly, 
, normalized by the total number of squares in 𝑁𝑑𝑜𝑢𝑏𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

the system, . 𝑁𝑠𝑞𝑢𝑎𝑟𝑒𝑠

Φ𝑑𝑜𝑢𝑏𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑 = 〈𝑁𝑑𝑜𝑢𝑏𝑙𝑒 ― 𝑠𝑡𝑟𝑎𝑛𝑑

𝑁𝑠𝑞𝑢𝑎𝑟𝑒𝑠 〉 (7)

We have defined the single- and double-stranded order 
parameters in such a way that for a square to meet the double-
stranded order parameter criteria, it must already meet the 
single-stranded order parameter criteria. As a result, as any 
system of colloidal squares cools during an annealing 
simulation, the system first enters a single-stranded phase and 
then a double-stranded phase. 

The first morphological order parameter is the percolation 
probability, , which measures the likelihood of finding a cluster Π
of associated squares with infinite length. A system of colloidal 
particles that have achieved a percolated state are considered 
to be in a gel phase. Gel phases have a high degree of particle 
interconnectivity and are associated with materials that have 
properties such as mechanical stability or electrical conductivity 
(56). A system is determined to be percolated if any one cluster 
of squares spans the length of the periodic simulation box and 
connects with itself independently in both dimensions. A cluster 
is defined as any group of squares that are associated with each 
other (57). So, for example, if one square is associated with two 
other squares, all three squares are considered to be a part of 
the same cluster. The percolation parameter is a measure of 
whether or not a configuration of a system is in a percolated 
state. If the configuration at any point in time has reached a 
percolated state, that percolation parameter for that 
configuration  is assigned a value of one. Otherwise, 𝐶𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑒𝑑

it is assigned a value of zero. The ensemble average of the 
percolation order parameter, , for any temperature is Π
therefore the ensemble average of the value  𝐶𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑒𝑑

assigned to each system configuration that was examined for 
that ensemble.

Π ≡ 〈𝐶𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑒𝑑〉 (8)

The second morphological order parameter is the nematic 
order parameter, , which measures the directional order of the 𝑆
system. The nematic order parameter is calculated by 
measuring the angle between the embedded dipoles of every 
pair of squares  in each configurational snapshot that is 𝜃𝑖𝑗

taken. It is defined in a such a way that if a pair of dipoles are 
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aligned in a head-to-tail or antiparallel configuration (  or 𝜃𝑖𝑗 = 0
), the order parameter has a value of 1. However, if the 𝜃𝑖𝑗 = 𝜋

pair of dipoles are aligned perpendicularly ( ), the order 𝜃𝑖𝑗 = 𝜋 2
parameter is . For any system that has a random ― 1 2
orientational distribution,  and the nematic 〈𝑐𝑜𝑠2𝜃𝑖𝑗〉 = 1 3
order parameter has a value of 0 (58). 

𝑆 ≡
1
2

〈3𝑐𝑜𝑠2𝜃𝑖𝑗 ― 1〉 (9)

We define a system to be in a nematic state when the ensemble 
average of the nematic order parameter is , signifying 𝑆 ≥ 0.8
the system’s transition from a directionally disordered state 
into a directionally ordered state. The nematic order parameter 
has been used by others to study the nematic-isotropic phase 
transition in systems of soft ellipsoids with molecular dipoles, as 
well as in many other systems (59). 

Results
Simulations were performed for single- and mixed-chirality 
systems of dipolar squares with either an embedded standard 
dipole or an offset one. In total, we explored four systems: 1) 
single-chirality systems of dipolar squares with standard 
dipoles, 2) mixed-chirality systems of dipolar squares with 
standard dipoles, 3) single-chirality systems of squares with 
offset dipoles, and 4) mixed-chirality systems of squares with 
offset dipoles. For each system, annealing simulations were 
performed on systems containing  1,024 squares at 𝑁𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =
excluded area fractions ranging from  = 0.05 to  = 0.70. Single 𝜙 𝜙
chirality systems consisted entirely of A-chirality squares (  = 𝑁𝐴

1,024 and  = 0), while mixed chirality systems consisted of 𝑁𝐵

equal numbers of A- and B-chirality squares (  = 512 and  = 𝑁𝐴 𝑁𝐵

512, respectively). For the remainder of this paper, we visualize 
the dipolar colloids as squares, rather than as the groupings of 
hard circles. This was done to better illustrate the results of our 
simulations, which were designed to model the behavior of 
dipolar square colloids. To do this, we used the Open 
Visualization Tool (OVITO), an open source tool for visualizing 
data from atomistic simulations (60).

Single-Chirality Systems of Squares with Standard Dipoles

We begin with the results of the annealing simulations 
performed on single-chirality systems of dipolar squares with 
standard dipoles. The phase diagram for this system, plotted in 
the area fraction vs. reduced temperature plane, is shown in Fig. 
6.a. At high temperatures, the system of dipolar squares exists 
in an isotropic state where the squares are disordered with 
respect to one another and do not aggregate (Fig. 6.I). As the 
temperature is reduced below a threshold value, the squares 
begin to aggregate with each other, first forming single-
stranded (Fig. 6.II), and then double-stranded (Fig. 6.III), 
assemblies. For this system, the transition temperatures of the 
single-strand and double-strand order parameters are in close 

proximity to one another. This indicates that the dipolar squares 
rapidly coalesce into double-strands as they transition from a 
disordered state and begin to aggregate with mutual alignment. 
This phenomenon is illustrated by simulation snapshots, shown 
in Fig. 6.b for each phase observed and at various densities. At 
low temperatures (Fig. 6.III and Fig.6.IV), nearly every square is 
in anti-parallel alignment with another dipolar square, forming 
a double-stranded assembly. The double-strands that form at 
low densities have a rod-like morphology, are relatively 
inflexible, and remain disordered with respect to each other. 
The length of the double-strands that form depends on the 
system density. At low system densities, the double-strands are 
relatively short and as the density increases, so does their 
length, sometimes even reaching lengths that span the length 
of the simulation boxes’ periodic boundaries. However, even 
though some double strands span the length of the simulation 
box, we find that the criteria for percolation are never met at 
any temperature or density for this system. 

The double-strands tend to assemble into a nematic state, 
but only when the density in annealing simulation is above a 
threshold value (Fig. 6.IV). Even then, only a fraction of the 
annealing simulations performed under identical conditions 
form a nematic state, indicating the inconsistent nature of the 
formation of this phase. In the nematic phase, the dipolar 
squares align with one another. The nematic state only occurs 
for systems that are above a critical density, which corresponds 
to area fraction of , but not in all runs. Fig. 6.a shows 𝜙 ≥ 0.60
the region on the phase diagram where the nematic state 
appears to occur; the dotted lines and question marks are 
meant to convey that this is a tentative result. When in the 
nematic state, the double-strands grow longer and tend to align 
as the temperature is reduced below an aggregation threshold 
temperature, and the system’s potential energy is significantly 
lower than in the non-nematic state. The likelihood of forming 
a nematic state increases as the system density increases. We 
have not yet been able to determine a set of conditions when 
the nematic state appears consistently. When we increased the 
length of each temperature step from 200 million events to 1 
billion events (see (4), the system was more likely to form a 
nematic state, but it still did not do this consistently. Thus, at 
this point in time, we conclude that more sophisticated 
methods, which are beyond the scope of this paper, will be 
required to pinpoint the formation of a nematic state by these 
dipolar squares. Additional information about the probability 
and frequency of the formation of a nematic state for this 
system have been included in the Electronic Supplementary 
Information.

Mixed-Chirality Systems of Squares with Standard Dipoles

The second system that we explored is a mixed-chirality 
system of squares with standard dipoles. The phase diagram for 
this system, plotted in the area fraction vs. reduced 
temperature plane, is shown in Fig. 7.a. The phase behavior of 
these systems is very similar to that of the single chirality 
systems of squares with standard dipoles just discussed. At high 
temperatures, the squares exist in an isotropic fluid state where 
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they are disordered with respect to one another and do not 
aggregate (Fig. 7.I). As the temperature is reduced below a 
threshold value, the squares begin to aggregate, first forming 
single-stranded, then double-stranded assemblies (Fig. 7.II and 
Fig. 7.III, respectively). Once again, the transition temperatures 
of the single-stranded and double-stranded phases are in close 
proximity to one another, indicating that as the temperature is 
reduced below a threshold value the squares quickly assemble 
into double-strands. This is illustrated by simulation snapshots 
shown in Fig. 7.b for each phase observed and at various 
densities. 

We find that for this system two different types of double-
stranded assemblies form. The first double-stranded assembly 
consists exclusively of one type of square, either A-chirality or 
B-chirality. This homogeneous double-stranded assembly is like 
those observed in the single chirality system of squares with 
standard dipoles: two strands of squares with the same chirality 
coalesce such that their dipoles point antiparallel to one 
another. The second type of double-stranded assembly consists 
of both A- and B-chirality squares. In a heterogeneous double-
stranded assembly, two strands made from squares with 
opposite chiralities coalesce such that their dipoles point in the 
same direction with respect to one another. Simulation 
snapshots in Fig. 7.b at low temperatures (Fig. 7.III) illustrate the 
difference between these two different types of double-
stranded assemblies, while Fig. 5 shows how a double-stranded 
assembly can form from either a single-chirality square or from 
a mixture of both chiralities of square. Unlike the previous 
system, the nematic order parameter remains at a constant 
value of approximately  for all system temperatures and 𝑆≅0.25
densities, indicating that the system remains isotropic, even at 
high densities. Additionally, the criteria for percolation are 
never met for any temperature or density for this system. 

Single-Chirality Systems of Squares with Offset Dipoles

The third system explored is a single-chirality system of 
squares with offset dipoles. The phase diagram for this system, 
plotted in the area fraction vs. reduced temperature plane, is 
shown in Fig. 8.a. At high temperatures, the system of squares 
exists in an isotropic, fluid state where the squares are 
disordered with respect to one another and do not aggregate. 
As the temperature is reduced, the squares begin to aggregate 
(Fig. 8.I). We notice two distinct differences in their aggregation 
behavior compared to that of systems of squares with standard 
dipoles. First, the temperature at which the squares begin to 
aggregate is significantly higher. Second, the single- and double-
stranded phase transition temperatures occur at considerably 
different values from each other at all area fractions, unlike 
what occurs in the standard dipoles case. While the transition 
temperatures of the double-stranded order parameter are 
approximately the same as for systems of squares with standard 
dipoles, the single-stranded order parameter transition 
temperatures are all significantly higher.  As a result, the portion 
of the phase diagram for this system corresponding to the 
single-stranded phase is significantly wider than the same 
region of the phase diagram for systems of squares with 

standard dipoles, while the portion of the phase diagram 
corresponding to the double-stranded phases is approximately 
the same area as the previous systems. 

The morphology and macroscopic assemblies of systems of 
squares with offset dipoles are different from those for systems 
of squares with standard dipoles. This can be seen by examining 
simulation snapshots shown in Fig. 8.b. At temperatures 
corresponding to the “Single-Stranded Fluid” region of the 
phase diagram (Fig. 8.II), the squares form long chains and ring-
like or cyclical structures in which all the squares are in head-to-
tail configurations with one another. As the temperature is 
reduced further into the “Double-Stranded Fluid” region of the 
phase diagram (Fig. 8.III), double-stranded assemblies form, 
however they are shorter than those for the dipolar squares 
with standard dipoles and are often attached to short chains of 
single-stranded assemblies. The nematic order parameter 
remains constant at a value of approximately  for all 𝑆≅0.25
system temperatures and densities, indicating that the system 
remains isotropic, even at high densities. Additionally, the 
criteria for percolation are not met at any temperature or 
density. 

Mixed-Chirality Systems of Squares with Offset Dipoles

The fourth and final system explored is a mixed-chirality 
system of squares with offset dipoles. The phase diagram for 
these systems plotted in the area fraction vs. reduced 
temperature plane is shown in Fig. 9.a. The phase behavior of 
these systems is similar to those for the single chirality systems 
of squares with offset dipoles just discussed. At high 
temperatures, the system of squares exists in an isotropic, fluid 
state where the squares are disordered with respect to one 
another and do not aggregate (Fig. 9.I). As the temperature is 
reduced, the dipolar squares begin to aggregate with one 
another. Similar to the single-chirality system of squares with 
offset dipoles, the single- and double-stranded order parameter 
transition temperatures are significantly different from each 
other at all area fractions. As a result, the single-stranded phase 
is considerably wider than the same region of the phase 
diagram for systems of squares with standard dipoles (Fig. 9.II 
and Fig. 9.IV), while the portion of the phase diagram 
corresponding to the double-stranded phases is approximately 
the same area as the previous systems (Fig. 9.III and Fig. 9.V).

For this system, we observe the formation of a percolated 
state, unlike all the previous systems that we have examined. 
For systems that are above a threshold density, as the 
temperature is reduced below the threshold aggregation 
temperature, the criterion for percolation is met when the area 
fraction of the annealing simulation is at or above . We 𝜙 = 0.25
consider this state to be a gel because the colloidal particles are 
dynamically arrested due to their strong associations with one 
another. Simulation snapshots, shown Fig. 9.b, illustrate this. At 
densities above the percolation threshold, the squares achieve 
a high degree of interconnectivity with assemblies that span the 
length of the simulation box in both dimensions. In this case, as 
the temperature is reduced during the annealing simulation, 
the system transitions from a non-percolated, single-stranded 
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fluid (Fig. 9.II) to a percolated, single-stranded gel (Fig. 9.IV), and 
remains percolated as the system transitions to a double 
stranded gel (Fig. 9.V). We note that at densities above or below 
the percolation threshold, the squares assemble into flexible, 
strand-like morphologies that contain approximately equal 
amounts of either chirality square. However, at densities below 
the percolation threshold, the squares are unable to percolate 
due to the short length of their assemblies relative to the length 
of the simulation box. The nematic order parameter remains 
constant at a value of approximately  for all system 𝑆≅0.25
temperatures and densities, indicating that the squares do not 
align with each other, even at high densities. 

Conclusions
In this study, we have performed coarse-grained molecular 
dynamics simulations of square colloids with magnetically-
polarized dipoles that are transversely offset from their center 
of mass. We represent the square colloids as four hard circles 
that are bonded together in a rigid square geometry. The 
intrinsic dipole was mimicked by embedding equal but opposite 
charges in the hard circles, with additional bonds to maintain 
the position of the charges within the square geometry. 
Annealing simulations were performed for large numbers of the 
dipolar square colloids to discover their self-assembling 
behavior as the system temperature is slowly reduced relative 
to the strength of the embedded dipole. Order parameters 
were developed to quantify the aggregation of the squares, and 
subsequently to calculate phase diagrams that describe the 
equilibrium configurations of a system of dipolar squares at any 
temperature or density.  We used our model to explore four 
different systems, which vary in type of dipole embedded within 
the square (either a standard or an offset dipole) and in the 
relative amount of opposite chirality squares present in the 
system. 

We find that the phase diagrams for each system are 
unique. The microscopic configurations of the dipolar square 
colloids depend on the type of dipole that is embedded within 
the square. The microscopic configurations of the squares, in 
turn, determine the system’s morphology and the macroscopic 
assemblies that the system forms at low temperatures when 
the strength of the embedded magnetic dipole dominates. In 
this paper we consider colloidal squares whose dipole has been 
transversely-shifted from the particle’s center of mass. By 
adjusting the location of the transversely shifted dipole within 
the square, we also adjust the macroscopic structure of the 
system’s colloidal assemblies, and therefore alter the dipolar 
square’s preference for anti-parallel or head-to-tail microscopic 
configurations with other squares. Squares with standard 
dipoles prefer antiparallel configurations with other dipolar 
squares. They assemble into rod-like structures that are linear 
and have a rigid morphology. Alternatively, squares with offset 
dipoles prefer head-to-tail configurations with other dipolar 
squares. Systems of squares with offset dipoles assemble into 
single-stranded assemblies with string-like morphologies. 
Single-stranded assemblies are relatively flexible in comparison 
to double-stranded assemblies.

The simulations predict that the dipolar squares with 
transversely offset dipoles exhibit two unique density-
dependent phase transitions, to either nematic or percolated 
states, although the transition to the nematic state is not seen 
consistently in all runs. The type of transition that occurs, 
nematic or percolated, depends not only on how the dipole is 
embedded within the square, but also on the presence or 
absence of opposite chirality squares within the system. 
Systems of squares with offset dipoles exhibit a percolation 
transition at low temperatures and moderate-to-high densities. 
In a percolated state, the dipolar colloids have a high degree of 
interconnectivity and form clusters that span the entire length 
of the simulation box. This is likely a result of the propensity of 
the chiral mixtures to form linear chains, rather than anti-
parallel doublets (cf. Fig. 8 and Fig. 9). However, the percolation 
transition only occurs for systems of squares that contain equal 
numbers of either chirality of square. Systems of the same 
squares that contain only one chirality are unable to percolate 
under the same conditions. Additionally, systems of squares 
with standard dipoles sometimes formed a nematic state at 
high densities. We are unable to conclusively verify that the 
nematic state is the system’s most stable configuration due to 
the inconsistent results from the annealing simulation, as 
described in the results section. At high densities and low 
temperatures, double-stranded assemblies in the system 
become oriented in the same direction due to the excluded-
volume interactions of the rods. However, the nematic state 
only occurs for systems of squares with standard dipoles that 
contain only one chirality square. Even though mixed chirality 
systems of squares with standard dipoles form the same rod-
like structures as single-chirality systems, we never observe 
them to form a globally aligned state under the same 
conditions. 

The difficulty of reliably obtaining a nematic state at the end 
of an annealing simulation is not surprising given the system’s 
high densities and low temperatures, hallmarks of glassy 
dynamics. In the glassy state, the strong interactions between 
particles significantly increase the time required to fully explore 
all of the system’s configurational possibilities. Based on the 
inconsistent behavior in the annealing simulations not only as a 
function of system parameters (i.e. temperature, density), but 
also of the length of the annealing simulation at each 
temperature step, we expect that there exists a free energy 
barrier that prevents the system from transitioning to a nematic 
state and that the size of this barrier decreases as the system’s 
density increases. Below area fractions of 0.60, the barrier is too 
large for the system to transition to a nematic state. If annealing 
simulations for this system for area fractions at or above 0.60 
were run sufficiently (or infinitely) long at each temperature 
step, we expect that the system would reliably assembly into a 
nematic state. In that case the system would have enough time 
to sufficiently explore all configurational possibilities and likely 
find the most stable arrangement under those conditions. 
Additional information about the frequency and probability of 
the occurrence of a nematic state have been included in the 
Electronic Supplementary Information. In future work, we hope 
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to further explore this issue with algorithms that are better 
suited for calculating the system’s free energy.

The dimensions and length scales of the box that we have 
used for our simulations could have an impact on which density-
dependent phases we observe in our simulations. Simulations 
are subject to density fluctuations up to the length scale of the 
periodic box boundaries but are unable to capture the 
occurrence of longer-wavelength density fluctuations, which 
influence both the percolated and nematic states (61). For 
example, as the single-chirality system of squares with standard 
dipoles transitions from a double-stranded fluid to a nematic 
state, there is likely an interface that occurs between the 
disordered liquid state and the ordered crystal state. For this 
interface to be properly observed, the dimensions of the box 
should be significantly greater than the length scale of the 
liquid-solid interface. If one box dimension was significantly 
longer than the other, this would enhance the likelihood that 
the solid-liquid phase interface would form, making it easier to 
observe the order-disorder transition (62). The simulation box 
dimensions could also impact the likelihood of percolation, 
especially close to the transition point when the formation of a 
percolated state is less stable. We will consider this for future 
work. 

In our computational studies, simulations are performed in 
two-dimensions and, as a result, the relative number of chiral 
particles present in the system remain fixed. In experimental 
system, the chirality of any particle would be able to change 
should sufficient energy allow particle to flip or rotate onto 
another side. Our results suggest that at low to moderate 
densities, squares with offset dipoles confined to a plane would 
prefer to form a racemic mixture, and under certain conditions 
would form a high-interconnected, gel-like state. At high 
densities, however, the racemic mixture of dipolar squares is 
unable to form an order state. Instead, our results suggest, 
although do not prove, that the system may prefer 
configurations containing only one chirality of square. This 
information suggests that one might be able to control the 
relative amounts of chiral squares by adjusting the system 
density. An interesting avenue of further study would be to 
employ mixed DMD-MC simulations in which the chirality of the 
particle is allowed to flip according to some acceptance criteria 
(63).

The information provided by our computational 
investigation is useful for colloidal scientists synthesizing new 
types of particles. To the best of our knowledge, we are the first 
to perform theoretical studies of square particles with 
transversely shifted dipoles. We have discovered that the phase 
behavior of squares with transversely shifted magnetic dipoles 
is diverse, as they exhibit unique phases and morphologies that 
are sensitive to the location of the dipole embedded within 
them. Our inspiration for creating this model was the cubic 
microparticles synthesized by Han et al., which have one face 
that is coated in a polarizable magnetic material (26). We 
believe that our squares with standard dipoles provide 
guidelines for further investigations of the behavior of such 
emerging systems of microparticles with complex shape and 
interactions. We have shown how these colloids assembly into 

rods with linear and rigid morphologies, and exhibit 
temperature and density-dependent phase transitions, 
including the formation of a nematic phase under certain 
conditions. 

We also are interested in colloidal systems with highly 
interconnected gel-like states, as these phases are correlated 
with potentially desirable material properties. For this reason, 
we adjusted the standard dipole to create the offset dipole. This 
adjustment is experimentally analogous to taking the particles 
synthesized by Han et al. and shifting the magnetic dipole 
slightly away from the face and towards the square’s center. We 
found that by adjusting the location of the magnetic dipole 
within the square colloid, we switched the configurational 
preference of the squares in our model from anti-parallel to 
head-to-tail. This adjustment resulted in a remarkable shift in 
the system’s morphology, to more flexible assemblies, and 
phase behavior, enabling the formation of a percolated, gel-like 
state. While particles like this have not yet been realized 
experimentally, we believe that their interesting structural 
properties make them an exciting possibility and that their 
synthesis should be pursued by colloidal scientists for 
verification. 

The use of Discontinuous Molecular Dynamics (DMD) to 
model the polarized, square microparticles was driven by our 
goal of exploring the large phase space of systems of square-
shaped particles. The advantage of DMD is that we can rapidly 
simulate systems under many different conditions using only 
modest computational resources. Additionally, we were able to 
use simple DMD techniques to construct models of particles 
that have anisotropic interactions by applying isotropic 
interactions in specific ways. The use of short-ranged potentials 
also increases the computational speed of our simulations, 
allowing us to avoid using the computationally-costly Ewald 
sums method. While our model does not account for the effect 
of long-ranged potentials, we expect that the results of our 
study are qualitatively correct. The implementation of long-
ranged interactions would likely result in transitions that occur 
at different temperatures, as the squares would aggregate or 
percolate sooner in the annealing simulations. We believe that 
our efforts to model square colloidal particles with transversely-
offset dipoles will help guide experimentalists towards new and 
exciting colloidal particle systems with unique assembly 
properties and phases.
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Fig. 1 Illustration of the bonding strategy used to maintain the square geometry in DMD. Four bonds (dashed black lines) link each disc 
with its immediate neighbor. One bond (solid black line) links one disc to the disc that is across from it.
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Fig. 2 Two dipolar squares with opposite chiralities are shown.  (a) A dipolar square with a dipole that points clockwise relative to the 
square’s center. This type of square is denoted A-chirality. (b) A dipolar square with a dipole that points counterclockwise relative to 
the square’s center. This type of square is denoted B-chirality. While the opposite charges that are embedded within either of the two 
squares are the same, different colors are used to make distinctions between the two different squares.
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Fig. 3 Two A-chirality, dipolar squares are shown. Solid lines surround each square and illustrate the hard, square figure that the 
formation of hard discs represents, and dashed black lines connect opposite vertices of the square. The type of dipole that is embedded 
within the square is quantified by two parameters. The transverse distance ( ) is the distance from the dipole center to the square 𝑑𝑇
edge that is parallel to the direction that the dipole points. The lateral distance ( ) is the distance from the end of the dipole (either 𝑑𝐿
of the charged spheres) to the square edge that is perpendicular to the direction that the dipole points. (a) A dipolar square with an 
embedded standard dipole; the transverse distance and the lateral distance are equal. (b) A dipolar square with an embedded offset 
dipole; the lateral distance is slightly smaller than the transverse distance, which means that the charges on the offset dipole are 
slightly closer to the perpendicular square edge than to the parallel one.
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Fig. 4 Interaction potential between two polarized squares with standard (top) or offset (bottom) dipoles in anti-parallel (left) or 
head-to-tail (right) conformations. Each diagram lists the total interaction potentials between the two squares with charged spheres 
interacting via a continuous Yukawa potential  and the discontinuous potential  that was selected to mimic the Yukawa 𝑈𝑌𝑢𝑘𝑎𝑤𝑎𝑘 𝑈𝐶𝐷
potential.
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Fig. 5 Diagrams which demonstrate the possible conformations of any one square that meet the criteria for the single- (a and b) or 
double-stranded (c and d) order parameters. The gray circles represent the hard disks that make up the square geometry. The red 
and blue circles represent the centers of the negative and positive charges, respectively, embedded within A-chirality squares, and 
the orange and purple circles represent the negative and positive charges, respectively, embedded within B-chirality squares. The 
squares whose order parameter is being considered are shown in dark gray, while the squares associated with them are shown in 
light gray. The dashed, colored rings are centered around charged spheres corresponding to their color and are at the maximum 
distance at which the two opposite charges are considered to be associated with one another (the outermost well of the  𝑈𝐶𝐷
potential).
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Fig. 6 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with standard 
dipoles. In the phase diagram, the dotted line represents the system’s density threshold required for the system to form a nematic 
state. Below the dashed line the system will not form a nematic state while above the dashed line the system sometimes forms a 
nematic state.  (b) Simulation snapshots show structural properties of single-chirality systems of squares with standard dipoles at 
various densities and temperatures. In each snapshot, squares are gray; the A-chirality squares have dipoles shown as green arrows.
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Fig. 6 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with standard 
dipoles. In the phase diagram, the dotted line represents the system’s density threshold required for the system to form a nematic 
state. Below the dashed line the system will not form a nematic state while above the dashed line the system sometimes forms a 
nematic state.  (b) Simulation snapshots show structural properties of single-chirality systems of squares with standard dipoles at 
various densities and temperatures. In each snapshot, squares are gray; the A-chirality squares have dipoles shown as green arrows.
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Fig. 7 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with standard 
dipoles. (b) Simulation snapshots show structural properties of mixed-chirality systems of squares with standard dipoles at various 
temperatures and densities. In each snapshot, squares are gray, where A-chirality squares have dipoles shown as green arrows and 
B-chirality squares have dipoles shown as purple arrows.

Page 21 of 32 Soft Matter



Fig. 7 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with standard 
dipoles. (b) Simulation snapshots show structural properties of mixed-chirality systems of squares with standard dipoles at various 
temperatures and densities. In each snapshot, squares are gray, where A-chirality squares have dipoles shown as green arrows and 
B-chirality squares have dipoles shown as purple arrows.
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Fig. 8 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with offset dipoles. 
(b) Simulation snapshots show structural properties of single-chirality systems of squares with offset dipoles at various temperatures 
and densities. In each snapshot, squares are gray; the A-chirality squares have dipoles shown as green arrows.
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Fig. 8 (a) Phase diagram in the area fraction vs. reduced temperature plane for single-chirality systems of squares with offset dipoles. 
(b) Simulation snapshots show structural properties of single-chirality systems of squares with offset dipoles at various temperatures 
and densities. In each snapshot, squares are gray; the A-chirality squares have dipoles shown as green arrows.
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Fig. 9 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with offset 
dipoles. In the phase diagram, the dashed line represents the system’s density threshold required for the system to form a 
percolated state. Below the dashed line the system will not form a percolated state; above it the system forms a percolated state. 
(b) Simulation snapshots show structural properties of mixed-chirality systems of squares with offset dipoles at various 
temperatures and densities. In each snapshot, squares are gray; A-chirality squares have dipoles shown as green arrows and B-
chirality squares have dipoles shown as purple arrows.
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Fig. 9 (a) Phase diagram in the area fraction vs. reduced temperature plane for mixed-chirality systems of squares with offset 
dipoles. In the phase diagram, the dashed line represents the system’s density threshold required for the system to form a 
percolated state. Below the dashed line the system will not form a percolated state; above it the system forms a percolated state. 
(b) Simulation snapshots show structural properties of mixed-chirality systems of squares with offset dipoles at various 
temperatures and densities. In each snapshot, squares are gray; A-chirality squares have dipoles shown as green arrows and B-
chirality squares have dipoles shown as purple arrows.
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