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Stress and stretching regulate dispersion in viscoelastic
porous media flows†

Manish Kumar,a‡ Derek M. Walkama,bc‡ Arezoo M. Ardekani,a and Jeffrey S. Guasto∗b

In this work, we study the role of viscoelastic instability in the mechanical dispersion of fluid flow
through porous media at high Péclet numbers. Using microfluidic experiments and numerical simula-
tions, we show that viscoelastic instability in flow through a hexagonally ordered (staggered) medium
strongly enhances dispersion transverse to the mean flow direction with increasing Weissenberg num-
ber (Wi). In contrast, preferential flow paths can quench the elastic instability in disordered media,
which has two important consequences for transport: First, the lack of chaotic velocity fluctuations
reduces transverse dispersion relative to unstable flows. Second, the amplification of flow along
preferential paths with increasing Wi causes strongly-correlated stream-wise flow that enhances lon-
gitudinal dispersion. Finally, we illustrate how the observed dispersion phenomena can be understood
through the lens of Lagrangian stretching manifolds, which act as advective transport barriers and
coincide with high stress regions in these viscoelastic porous media flows.

1 Introduction
The flow of viscoelastic fluids through porous media governs ma-
terial transport and mixing in a range of geophysical, biological,
and industrial systems1,2. Bacterial biofilms proliferate in soils
and cause infections in bodily tissue3, and filtration media are
used in food and polymer processing4. Polymer additives im-
prove the efficacy of hydraulic fracturing and enhanced oil recov-
ery (EOR)5,6, including the remediation of oil ganglia7–11. In the
latter case of EOR for example, despite extensive efforts to ob-
serve and understand the impact of viscoelastic flow, no globally
accepted remediation mechanism via polymer additives has been
established12–15. However, the onset of unsteady velocity fluc-
tuations in such viscoelastic porous media flows16–18 appears to
play a critical role in microscale transport16,19–21, where porous
microstructure couples pore-scale viscoelastic flows22 to sample-
scale transport properties23. The non-Newtonian rheology of vis-
coelastic fluids encodes a memory of the flow history, whose non-
trivial dependence on pore geometry24–27 can result in viscoelas-
tic instability16,28–36. A deeper understanding of the interplay
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between rheology, flow structure, and dispersion is paramount to
predicting material transport in viscoelastic porous media flows.

In the absence of inertia, strong elastic stresses cause viscoelas-
tic flow instabilities in porous media, which are heavily depen-
dent on the flow geometry34,36. The transition to chaotic dy-
namics in viscoelastic flows is characterized by the Weissenberg
number, Wi = τγ̇, which compares elastic forces to viscous forces.
Here, τ is the fluid relaxation time and γ̇ =U/d is the character-
istic shear rate, where U is the average flow speed and d is the
characteristic obstacle diameter. Chaotic velocity fluctuations at
large Wi have been shown to enhance transverse dispersion in or-
dered porous media flows16,37 via a “lane-changing” effect38. In
contrast, markedly weaker dispersion enhancement has been re-
ported for viscoelastic flows in disordered media19–21. Recent ex-
periments have shed new light on the geometry-dependent tran-
sition to chaos and the resulting flow topologies, which ultimately
regulate the dispersion properties. The critical Weissenberg num-
ber, Wicr, is highly sensitive to both the disorder of the medium34

and orientation of ordered media relative to the flow36. Preferen-
tial flow paths in disordered media and along lattice directions in
periodic media reduce extensional deformation and stress and ul-
timately suppress the transition to chaos compared to staggered
obstacle arrangements in ordered systems at the same Wi34,36.
This topological and dynamical shift in the flow field with geom-
etry must be intrinsically linked to the transport properties. How-
ever, a comprehensive understanding of how viscoelastic flow in-
stabilities regulate dispersion in porous media remains lacking.

In this work, we characterize how changes in the topology
(i.e., structure) of viscoelastic flows regulate anisotropic disper-
sion in porous media, and we elucidate the underlying mech-
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anisms for geometry-dependent transport. Microfluidic experi-
ments are complemented by numerical simulations for quasi-two-
dimensional model porous media for both hexagonally ordered
(staggered) and disordered arrays of cylindrical pillars. Our re-
sults capture the accepted enhancement of transverse dispersion
via flow instability in ordered flow and also reveal that the am-
plification of preferential flow paths in the disordered media in-
creases longitudinal dispersion [Fig. 1]. Furthermore, recent the-
oretical work based on a Lagrangian analysis of viscoelastic flows
demonstrated that the fluid stretching field closely reflects the
polymeric stress topology39. We show that transverse and lon-
gitudinal dispersion can be understood through the structure of
the Lagrangian stretching field, whose manifolds act as barriers
to advection and dynamically guide transport in both steady and
unsteady flows. These results demonstrate a potential mechanism
for tuning anisotropic dispersion, and they illustrate a direct link
between elastic stress and transport in viscoelastic porous media
flows.

2 Methods

2.1 Experimental methods

Following established approaches from previous work34, mi-
crofluidic devices were designed and fabricated with 25 mm long,
4 mm wide, and 50 µm high straight main channels, which
contain arrays of cylindrical pillars (diameter, d = 50 µm) in
both an ordered and disordered configuration. Photolithogra-
phy masks were generated by first specifying an ordered, hexago-
nal array in a staggered orientation relative to the flow direction
(ESI† Fig. S1)36, which had a lattice constant, a = 120 µm. The
disordered geometry was created by randomly perturbing the pil-
lar locations from the original lattice within a hexagonal circum-
radius of a (ESI† Fig. S1). The porosity of both the ordered and
disordered geometries is ≈ 0.84. The viscoelastic fluid is a solution
of high molecular weight polyacrylamide (PAA; 18×106 MW) at a
concentration of 150 ppm of PAA in a viscous Newtonian solvent
(97% aqueous glycerol)40. The solution was prepared by mix-
ing 1 g of PAA into 200 mL of DI water using a magnetic stirrer
for 1 hr. 3 g of the aqueous PAA solution was mixed with 97 g
of glycerol for 12 hr. Finally, the fluid was seeded with 0.5 µm
(F8813 FluoroSpheres, Life Technologies) and 1 µm (F13081 Flu-
oroSpheres, Life Technologies) diameter tracer particles for si-
multaneous particle image velocimetry (PIV) and particle track-
ing, respectively.

Capillary breakup extensional rheology (CaBER) was used to
characterize the (longest) relaxation time, τ, of the PAA solu-
tions [ESI† Fig. S2(a)]41, which provides a more relevant mea-
sure of the relaxation time for stongly elongational flows com-
pared to shear rheology42,43. The PAA solution was stretched
between the ends of two circular cylinders, and the measured
exponential decay rate of the liquid bridge diameter (3τ) gave
a relaxation time τ = 1.14± 0.1 s (N = 6). The shear-rate depen-
dence of the viscoelastic fluid was characterized using a strain
controlled rheometer (TA-2000) with a cone and plate geometry
[ESI† Fig. S2(b)]. The polymer solution was pre-sheared at a
rate of 1 s−1 for 120 s, then each measurement was held at the

respective shear rate for 60 s and measured for 15 s. The PAA
solution exhibited a weak shear thinning behavior, which is well
fitted by the Carreau-Yasuda model44. The measured shear vis-
cosity, η , was in the range 2 Pa-s ≥ η ≥ 0.5 Pa-s for shear rates in
the range 0.01 ≤ γ̇ ≤ 10 s−1.

The viscoelastic flow was driven by a pressure controller (Elve-
flow OB1) through the microfluidic pillar array channel. Epiflu-
orescence video microscopy (Nikon Ti-e; 10×, 0.3 NA objective)
captured the motion (100 fps; Andor Zyla) of fluorescent tracer
particles at the mid-depth of the channel. Time-resolved veloc-
ity fields, u(r,t), were measured using PIV45, and Lagrangian
statistics were obtained by simultaneous particle tracking. For
the viscoelastic fluid and imaging system used here, a maxi-
mum Wi of Wi < 5 was found to provide reliable imaging for PIV.
These conditions corresponded to a maximum Reynolds number
of Re = ρUd/η0 ≲ 10−4 (density, ρ; mean flow speed, U; zero shear
viscosity, η0; see also ESI†), which ensured that inertial effects
were negligible and that the emergence of flow instability only
depended on elastic effects. The Péclet numbers, Pe =Ud/D(η),
for the experiments were in the range 105 ≤ Pe ≤ 109, where D
accounts for the viscosity dependent Stokes-Einstein diffusion co-
efficient of the tracers. These large Pe suggest that transport in
experiments was advection dominated, and thus, we assume that
tracer diffusion has negligible impact on measured dispersion.

2.2 Numerical methods

The numerical simulations were performed in a two-dimensional
domain that was designed to exactly match the region-of-interest
in experiments [Fig 1 (a); ESI† Fig. S1] via computer-generated
photomasks. The flow of incompressible polymeric fluid in the
interstitial region of the porous geometry is described by the con-
servation of mass and momentum as:

∇⋅u = 0, (1)

ρ (∂u
∂ t
+u ⋅∇u) = −∇p+∇⋅σσσ , (2)

where u and p are the fluid velocity and pressure fields, respec-
tively. The total stress tensor σσσ is written as σσσ =σσσ sss+σσσ ppp, where σσσ sss

and σσσ ppp are the solvent and polymeric stress tensor, respectively.
For the Newtonian solvent, σσσ sss is given as σσσ sss = ηs(∇u+∇uT ),
where ηs is the solvent viscosity. We chose the FENE-P consti-
tutive equation to calculate the polymeric stresses because it cap-
tures both elasticity and shear thinning behaviours as well as fi-
nite extensibility of polymeric chains46,47:

σσσ p+
τ

f
∇

σσσ p =
bηp

f
(∇u+∇uT )− D

Dt
( 1

f
)[τσσσ p+bηpI], (3)

where τ is the polymeric chain relaxation time, and ηp is the
polymeric contribution to the zero shear viscosity of the solution,
η0 = ηs +ηp. I is the identity tensor and D/Dt is the material
derivative. The function f is described as:

f (σσσ ppp) =
L2+ τ

bηp
tr(σσσ ppp)

L2−3
, (4)
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where b = L2/(L2 −3), and the parameter L2 = 3R2
0/R2

e represents
the ratio of the maximum allowable length, R0, to the equilibrium
length, Re, of the polymeric chains46–48. For the FENE-P model,
a typical range of L2 is 10-100021,47,49,50, which reduces to the
Oldroyd-B constitutive model in the limit of L2 →∞. The upper
convective time derivative operator ∇ used in equation 3 is given
by:

∇

σσσ p =
Dσσσ p

Dt
−σσσ p ⋅∇u−∇uT ⋅σσσ p. (5)

The numerical simulations were performed using an open-
source framework RheoTool51 integrated with OpenFOAM52,
where the equations were discretized using a finite volume
method and the log-conformation approach was used to calcu-
late the polymeric stress tensor53,54. The relationship between
the polymeric stress tensor, σσσ ppp, and the log-conformation tensor,
ΘΘΘ, is given as:

σσσ p =
ηp

τ
( f eΘΘΘ−bI). (6)

The implementation and the validation of the numerical tool can
be found in previous works (ESI† Fig. S3)51,55. Viscoelastic mod-
els often fail to represent the polymeric fluids used in the indus-
try, especially at high deformation rates1,43,56 and there are stud-
ies in the literature where the model parameters have been ad-
justed to match the experimental observations even for simpler
setups49,57,58. Therefore, we focus on a qualitative comparison
between experiments and simulations in the present study. The
dimensionless numbers used in the simulations were: Re = 10−4,
0.1 ≤Wi ≤ 5, β = ηs/(ηs +ηp) = 0.02, and L2 = 1000. The flow was
driven with a constant inlet velocity of 50 µm/s on the left side of
the channel with no-slip boundaries on the top and bottom walls,
and fully developed boundary conditions (i.e., zero-gradient) at
the outlet [Fig 1]. While the choice to use 2D simulations ver-
sus 3D was driven by the high computational cost, 2D simula-
tions were found to capture all of the essential features of these
viscoelastic flows [Fig 1]. In the present study, elastic effects
completely dominate over inertial effects as the elasticity num-
ber (El), which measures the relative importance of elastic and
inertial forces, is El ∼ O(104)≫ 1. Therefore, the Weissenberg
number in the simulation has been altered by changing the relax-
ation time (τ = 0.1−5s).

For both experiments and simulations, the Lagrangian stretch-
ing, S(x,t), is determined from the time resolved flow field59,60

by using established methods39,61,62. Briefly, fluid element posi-
tions, x0, at time t = t0 are deformed by a flow field, u(x,t), and
advected to new positions, x, at time, t1 = t0 +λ . The flow map,
Fλ (x0) = x, is determined as the solution to dx

dt = u(x,t), and the

(right) Cauchy-Green strain tensor is formed as C(R)
λ
=∇FT

λ
∇Fλ .

Finally, the stretching field S(x,t) is calculated as the square
root of the largest eigenvalue of C(R)

λ
, where the correspond-

ing eigenvector gives the principal stretching direction. For all
flows, the stretching history is determined by backward time in-
tegration, and the integration time was chosen as the fluid re-
laxation time (λ = −τ)39. Fλ was determined through numerical
integration (ODE45, MATLAB) for initial positions on a regular
grid (251×351) along with four auxiliary points each (1 µm sep-
aration). ∇Fλ was computed through central differences of the

auxiliary points. MATLAB was used to calculate the stretching
field.

3 Results

3.1 Anisotropic Lagrangian transport in porous media

The stability analysis of viscoelastic flows through the geometries
considered in the present study has been performed in Walkama
et al. 34 , where the temporal fluctuation of the flow speed was
used to characterize the stability. Flow through hexagonally or-
dered (staggered) geometries in both experiments and simula-
tions exhibit a transition to unstable flow at a critical Weissenberg
number, Wicr ≈ 0.534. However, the time-averaged flow fields do
not show a strong topological change with Wi due to the high de-
gree of geometric symmetry [Fig. 1 (a)]. In contrast, disordered
geometries stabilize these flows via the formation of preferential
flow paths63, where extensional fluid deformations – and con-
sequently polymer stretching – are reduced34,36. Time-averaged
flow fields through disordered media in both experiments and
simulations display a topological shift from a Newtonian flow
[Fig. 1 (a)], where filaments form as Wi is increased and the flow
field becomes more heterogeneous. As in previous works34,36,
this Eulerian picture points to a trade-off between stability and
channelization that is mediated by pore microstructure. However,
to gain deeper insight into the effect of geometry on particle dis-
persion in viscoelastic flows, we adopt a Lagrangian description
of transport.

Lagrangian analysis of fluid transport reveals that lateral and
longitudinal tracer displacements are enhanced at high Wi for the
ordered and disordered porous geometries, respectively. Particle
tracking provides tracer particle trajectories in time, xi(t̃), where
i represents an individual particle track. The normalized time,
t̃ = tU/l, corresponds to the number of pores traveled for a given
characteristic (mean) flow speed, U , and stream-wise pore spac-
ing, l = asin60○. Examination of the net displacement of the fluid
tracers with respect to their initial positions, ∆xi(t̃) = xi(t̃)−xi(0),
demonstrates how geometry influences transport through vis-
coelasticity [Fig. 1 (b)]. Tracers in the ordered geometry at small
Wi tamely oscillate back and forth, as they weave through the
pillar array following streamlines in the steady flow. Conversely,
at Wi = 4 >Wicr, tracers exhibit wild lateral excursions accompa-
nied by a moderate enhancement of longitudinal displacement.
The former is consistent with previous observations of “lane-
changing”16, which is a consequence of temporal velocity field
fluctuations34. In the disordered geometry, tracers laterally ex-
plore a relatively large swatch of the porous channel by virtue
of the meandering streamlines at low Wi, with little change at
higher Wi [Fig. 1 (b)]. While the disordered flow remains steady
at Wi = 4 (see also Fig. 3 in34), tracer displacements are apprecia-
bly enhanced in the longitudinal direction.

The displacement distributions relative to the mean, ∆xi(t∗)−
⟨∆xi(t∗)⟩, at a fixed time (t∗ ≡ t̃ = 5) more clearly show the
anisotropic enhancement of tracer excursions in both the or-
dered and disordered systems at high Wi [Fig. 1 (c)-(d)]. Here,
⟨⋅⟩ indicates an ensemble average. The transverse displacement
[Fig. 1 (c)] exhibits a narrow distribution for low Wi in the or-
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dered media (blue solid) due to the high Péclet number, stable
flow. At high Wi, the ordered media shows large displacements
in the transverse direction (red solid), consistent with the on-
set of the elastic instability. Transverse disordered flow, on the
other hand, is generally unaffected by increasing Wi and shows
little to no change (blue and red dashed for low and high Wi, re-
spectively). Surprisingly, longitudinal displacements [Fig. 1 (d)]
show the opposite effect as a function of disorder. Longitudi-
nal displacements in the ordered system (solid curves) show lit-
tle change with Wi. However, the disordered media exhibits a
broader tracer displacement distribution for high Wi (dashed red)
than low Wi (dashed blue). Thus, tracers disperse by traveling
both significantly faster and slower than the mean flow speed in
disordered media at high Wi.

3.2 Mean squared displacement analysis reveals diffusive
spreading of fluid tracers

The variance of the displacement distributions [Fig. 1 (c)-(d)]
defines the advection-free mean squared displacement (MSD) at
time, t̃, which indicate the nature and rate of spreading of the
tracers:

σ
2
T (t̃) = ⟨(∆yi(t̃)− ⟨∆yi(t̃)⟩)2⟩ , (7)

σ
2
L(t̃) = ⟨(∆xi(t̃)− ⟨∆xi(t̃)⟩)2⟩ . (8)

The MSD describes the average separation of fluid parcels from
one another in time due to both the mechanical dispersion and
flow instability in the transverse (σ

2
T ) and longitudinal (σ

2
L ) di-

rections, respectively. The transverse MSD in the ordered media
exhibits oscillations at low Wi reflective of the obstacle period-
icity, but the MSD saturates due to the sampling of streamlines
with finite amplitude displacements from the mean flow direc-
tion. As Wi increases and the flow becomes elastically unstable
[Fig. 2 (a), solid curves], the displacements at long times are
unbounded and grow superlinearly in time [Fig. 2 (a), inset],
which is indicative of superdiffusive transport (i.e., MSD ∝ tα

with 1 < α < 2). However, in the disordered geometry, all trans-
verse MSDs plateau after ≈ 2−3 pore lengths and are only mildly
affected by Wi [Fig. 2 (a), dashed curves]. While all transverse
MSDs are ballistic at short times (α ≈ 2) [Fig. 2 (a), inset], only
MSDs for the transverse, high Wi ordered flow continue growing
superlinearly at long times due to the elastic instability. Mechani-
cal dispersion in the flow direction64,65 causes longitudinal MSDs
to be unbounded. While all longitudinal MSDs are superdiffusive
[Fig. 2 (b), inset], MSDs for viscoelastic flows grow faster in the
disordered media [Fig. 2 (b), dashed curves] compared to or-
dered media [Fig. 2 (b), solid curves], relative to their respective
Newtonian flows.

3.3 Dispersion tensor for viscoelastic porous media flow

Due to the anisotropic spreading of the tracer ensemble in the
transverse and longitudinal flow directions66 [Fig. 1 (b) and (c)],
the transport is parameterized by the dispersion tensor, DT,L. Fur-
thermore, superdiffusive transport [Fig. 2 (a) and (b)] stemming

from mechanical dispersion in this high Pe regime suggests that
dispersion coefficients may vary indefinitely in time, and thus we
examine the time-dependent dispersion tensor20,67:

DT,L(t̃) = ∫
t̃

0
CT,L(t′)dt′. (9)

Here, CT,L(t̃) is the time-dependent velocity autocovariance that
quantifies the temporal correlation of tracer velocity:

CT (t̃) =
1
N

N
∑
i=1
(uyi(t̃)− ⟨uyi(t̃)⟩)(uyi(0)− ⟨uyi(0)⟩) , (10)

CL(t̃) =
1
N

N
∑
i=1
(uxi(t̃)− ⟨uxi(t̃)⟩)(uxi(0)− ⟨uxi(0)⟩) , (11)

where the uyi(t̃) and uxi(t̃) are respectively the transverse and lon-
gitudinal velocity components of particle i, and ⟨⋅⟩ is an ensemble
average over N particles. The transverse autocovariance is peri-
odic about zero in the ordered geometry, but the oscillations lose
coherence with the onset of the instability as Wi increases. How-
ever, as the instability drives lane changing, transverse particle
velocities gain a slight net correlation due to the motion over one
or more pores lateral to the flow. For disordered flow, CT rapidly
decays and appears to have little dependence on Wi [Fig. 2 (c)],
due to the random uncorrelated flow paths through the medium.
Similar to the transverse direction, the longitudinal autocovari-
ance for ordered flow exhibits periodic peaks that lose coherence
as Wi increases [Fig. 2 (d)], due to the onset of spatiotemporal
velocity fluctuations. Conversely, CL for disordered flow shows
an increase in the correlation time beyond a Newtonian fluid as
Wi is increased. This increased velocity correlation stems from
the formation of preferential flow paths that transport fluid in the
longitudinal direction34, which we expect to lead to increased
dispersion.

The time-dependent dispersion tensor serves as a primary mea-
sure of augmented anisotropic transport. Dispersion coefficients
(especially longitudinal) naturally increase with mean flow speed.
Therefore, to infer the explicit effect of fluid elasticity, the time-
dependent dispersion coefficients were normalized with the max-
imum value of dispersion coefficients obtained for a Newtonian
fluid for the same mean flow speed. In these high Péclet flows,
transverse dispersion coefficients in both experiments [Fig. 3 (a)]
and simulations [Fig. 3 (b)] either oscillate about zero (or-
dered) or decay to zero (disordered) for stable flows (Wi ≲Wicr).
In experiments, the instability only occurs in the ordered flow
[Fig. 3 (a), solid curves]. However, in simulations, some velocity
fluctuations in both ordered and disordered flows cause finite val-
ues of DT at long times and high Wi [Fig. 3 (b)]. While both ge-
ometries ultimately become unstable in simulations, this effect is
more pronounced in high Wi, ordered flows, indicated by elevated
long-time dispersion [Fig. 3 (b)] compared to the disordered flow.
In the longitudinal direction, DL grows approximately linearly for
ordered flow at low Wi, but plateaus at high Wi [Fig. 3 (c), solid
curves], indicating an effectively diffusive regime. The linear
growth is due to the constant, non-zero autocovariance in steady
flows through the ordered geometry. Once the flow becomes un-
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stable in experiments (Wi ≳Wicr), dispersion values increase at
small times but plateau at long times [Fig. 3 (c), solid curves]
due to decorrelation observed in CL [Fig. 2 (d), solid curves].
This effect is also seen in simulations [Fig. 3 (d), solid curves],
but the dispersion coefficient does not reach a constant value in
time. In simulations, we observe far less diagonal flow due to the
reduced system size compared to experiments. As a result of this
correlated longitudinal motion, DL does not reach a steady state
in simulations. Due to the limited domain size and ability to track
particles over very large distances in experiments, it is unclear
when dispersion in high Wi disordered flow reaches a steady state
[Fig. 3 (c), dashed curves]. However, the magnitude of dispersion
is larger than ordered flows at all times for high Wi. This obser-
vation also holds true for simulations [Fig. 3 (d), dashed curves],
where DL for disordered media is much larger than for ordered
media and is still growing for long times. Furthermore, in ordered
geometries aligned along the flow direction36, we speculate that
such highly stable, unidirectional flows will lead to faster growth
of DL compared to the disordered geometry due to Taylor-like
dispersion68, but this hypothesis remains to be tested.

We have systematically quantified the transport properties and
stability of viscoelastic flows through porous media. These results
show that there is a clear trade-off between rheology-enhanced
transport and geometry that also accompanies the stabilizing ef-
fect of preferential flow paths in the disordered media. These
viscoelastic fluids are composed of elastic polymers suspended in
a carrier fluid, which stretch dramatically in extensional strain
compared to shear strain69,70. Polymer elasticity embeds a mem-
ory into the fluid, whereby polymers continue to stretch and ac-
cumulate stress as they move through both space and time via
advection. Flow through the staggered ordered media becomes
chaotic due to extensional stresses at high Wi, whereas prefer-
ential flow paths can alleviate extension and promote stability
in the disordered media34,36. The topology of the polymeric
stress field has been known to regulate flow states in viscoelastic
flows24,26,27,71. Polymeric stress is thus integral to both enhanced
transport and elastic stability in these systems, but access to the
polymeric stress field in experiments is challenging72. Recently,
a Lagrangian analysis of fluid deformation was demonstrated to
provide direct insight into the topology of the polymeric stress
field from readily measurable flow field data39, which is a key to
the comprehensive understanding of the transport in these sys-
tems.

3.4 Lagrangian stretching guides fluid flow

Lagrangian coherent structures (LCS)59 characterize material
lines that organize fluid transport, which have been applied
broadly across scales to understand ocean flow patterns, chaotic
mixing60, bacterial transport flows62, and complex fluid flows39.
Key to LCS analysis is the concept of the Lagrangian fluid stretch-
ing field, which quantifies the extensional strain history of fluid
elements and is closely linked to the finite-time Lyapunov expo-
nent (FTLE) field. Manifolds of the stretching field are curves
that correspond to ridges in the stretching field having a locally
large value of S [Fig. 4 (b)]59. Such manifolds act as barriers to

advective transport, and recently, were shown to be highly corre-
lated with the topology of the polymeric stress field in viscoelastic
flows39. Thus, the Lagrangian stretching potentially provides a
direct link to understand how polymer stress regulates dispersive
transport in viscoelastic porous media flows.

Lagrangian stretching fields, S(x,t), were calculated directly
from both the experimentally measured and simulated velocity
fields (see Methods)39,59,61,62. The viscoelastic fluid relaxation
time, τ, was chosen as a natural integration time over which
the stretching history was computed for all Wi. Stretching fields
for both the ordered and disordered media [Fig. 4 (a)] reveal
sharp regions of high stretching (manifolds) that generally em-
anate from the hyperbolic flow regions on the downstream sides
of the pillars, including in unsteady flow conditions [Fig. 4 (e)].
Striations in S observed downstream of pillars in experiments are
likely due to finite PIV resolution73. Importantly, simulations also
provide the time-dependent stress tensor, σσσ(x,t), and enable di-
rect comparison with the Lagrangian stretching [Fig. 4 (b)]. In
line with recent work39, the trace of the polymeric stress ten-
sor [Fig. 4 (b)] mirrors the topology of the stretching manifolds
[Fig. 4 (a)] for both ordered and disordered flow simulations.
To quantify the correlation between the topologies of stress and
stretching fields, the cross-correlation is defined as:

Φ(δx) = [tr(σσσ(x+δx))− ⟨tr(σσσ)⟩] ⋅ [S(x)− ⟨S⟩]
⟨tr(σσσ)⟩⟨S⟩ ,

where ⟨⋅⟩ denotes the mean value over all x, and δx is the shifted
position. Large values of Φ indicate large values for both tr(σσσ)
and S. The strongest correlation occurs for δx = 0 due to the over-
lap of the filamentous stretching and stress fields [Fig. 4 (c)],
which is indicated by the elongated features of Φ for the ordered
media in the longitudinal direction. Examining the magnitude
of the cross-correlation in the flow direction (δx) shows that the
strength of the of Φ initially increases with Wi before diminishing
at larger Wi [Fig. 4 (d)], likely due to the onset of strong temporal
fluctuations.

The concordance between Lagrangian stretching and stress
demonstrated by simulations provides insight into the role of
stress in dispersive transport for viscoelastic flow experiments in
porous media39. In experiments for ordered media, enhanced
transverse dispersion is driven by elastic instability. The accom-
panying mobility of stretching manifolds [Fig. 4 (e)] – which act
as barriers to advective transport – effectively guide the local flow.
A time series of stretching fields from ordered experiments at
high Wi shows that stretching manifolds span the pillar array in
the longitudinal direction. Their lateral fluctuations in the trans-
verse direction illustrate the mechanism of lane-changing16 in
enhanced transverse dispersion. Conversely, stable flows in dis-
ordered media at high Wi disallow transverse material flux. In
this case, stretching manifolds elongate as Wi increases and cut
off regions of locally high pillar density resulting in the formation
of stagnation (dead) zones [Fig. 4 (a)]37. However, the stretching
manifolds in the regions of low pillar density facilitate longitudi-
nal transport by acting as a conduit through the porous media.
Thus, the particles trapped in the dead zones travel slower than
the mean flow speed, whereas those in conduits travel faster than
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the mean flow speed, leading to the enhanced heterogeneity of
spatial flow speed [Fig. 1 (d)]. In sum, instability in ordered me-
dia allows stretching manifolds to mobilize, whereas the stability
in disordered media forces the stretching manifolds, and there-
fore the stress, to cut off regions of flow that were previously
available at low Wi.

Efforts have been made to investigate viscoelastic instabilities
in 3D ordered and disordered porous geometries35,74. Similar
to the 2D ordered geometry, viscoelastic flow through 3D or-
dered geometry becomes unstable at high Wi74. For viscoelastic
flow through 3D disordered porous media35, the elevated dis-
order and enhanced connections are expected to enhance trans-
port and mixing. The investigation of the formation of dead
zones and their effect on longitudinal dispersion in 3D geome-
tries would provide useful insight for field applications such as
EOR and groundwater remediation6,75. The Lagrangian stretch-
ing concept which has been used here as a proxy of polymeric
stress field measurement can be extended to 3D geometry, where
the stretching manifolds will be characterized by the surfaces59

instead of the strands. This approach could be used to understand
particle transport in 3D porous geometries, but it awaits further
exploration.

4 Conclusions
In this work, we quantify dispersion in viscoelastic flow through
porous media and show how it is driven by viscoelastic instabil-
ities. Flow through hexagonally-ordered (staggered) porous me-
dia enhances transverse dispersion, which is especially prevalent
at high Weissenberg numbers. Through a novel Lagrangian analy-
sis of fluid stretching fields, we illustrate that this phenomenon is
regulated by stretching manifolds that act as barriers to advective
transport and characterize high-stress regions of the flow. At low
Wi, material lines are symmetric, stable, and situated between
obstacles parallel to flow, while at high Wi, strong lateral fluctu-
ations guide lateral dispersion. Conversely, high Wi flows in dis-
ordered porous media remain stable, as previously shown, due to
the reduction of extension and the availability of preferential flow
paths34,36. This flow stability is reflected in stable stretching man-
ifolds that disallow random transverse flows. Stretching mani-
folds also enhance spatial flow speed heterogeneity by cordoning
off slow flow regions as the stretching manifolds elongate with
increasing Wi. This feature results in dead zones between high-
speed filaments, where flow is carried longitudinally at disparate
respective rates. Thus, these results show that a Lagrangian ex-
amination of fluid stretching is essential to gain insight into the
coupling between fluid transport and stress through mechanical
fluid instability in viscoelastic porous media flows.
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