
Bridging the Gap Between Collective Motility and Epithelial-
Mesenchymal Transitions through the Active Finite Voronoi 

Model

Journal: Soft Matter

Manuscript ID SM-ART-03-2023-000327.R2

Article Type: Paper

Date Submitted by the 
Author: 19-Sep-2023

Complete List of Authors: Huang, Junxiang; Northeastern University College of Science, 
Levine, Herbert; Northeastern University, 
Bi, Max; Northeastern University College of Science, Physics

 

Soft Matter



Bridging the Gap Between Collective Motility and
Epithelial-Mesenchymal Transitions through the Active
Finite Voronoi Model†

Junxiang Huang,a,b Herbert Levine,a,b,c and Dapeng Bia,b

We introduce an active version of the recently proposed finite Voronoi model of epithelial tissue.
The resultant Active Finite Voronoi (AFV) model enables the study of both confluent and non-
confluent geometries and transitions between them, in the presence of active cells. Our study iden-
tifies six distinct phases, characterized by aggregation-segregation, dynamical jamming-unjamming,
and epithelial-mesenchymal transitions (EMT), thereby extending the behavior beyond that observed
in previously studied vertex-based models. The AFV model with rich phase diagram provides a co-
hesive framework that unifies the well-observed progression to collective motility via unjamming with
the intricate dynamics enabled by EMT. This approach should prove useful for challenges in devel-
opmental biology systems as well as the complex context of cancer metastasis. The simulation code
is also provided.

1 Introduction
During development and remodeling, as well as during wound
healing and invasion, the ability of cells to migrate collectively1,2

is crucial for biological functions.
Mesenchymal phenotypes3 exhibit distinct cellular behaviors

during movement, characterized by features like polarized mor-
phology and dynamic cytoskeletal changes. One notable trait
is their tendency to exhibit lower confluency, resulting in fewer
triple junctions. This reduced cell-cell contact allows mesenchy-
mal cells to adapt to dynamic microenvironments more readily,
facilitating their capacity for individual or collective migration,
invasive behavior, and responsiveness to chemical and mechani-
cal cues. In contrast, epithelial tissues maintain a tightly packed
and organized structure with extensive intercellular contacts such
as adherens junctions, tight junctions, and desmosomes.4 These
junctions create a cohesive barrier, essential for functions like ab-
sorption, secretion, and providing a protective layer. Unlike mes-
enchymal cells, epithelial cells typically find themselves “caged”
by their neighbors, an arrangement that shares a striking re-
semblance with glassy materials.5 Despite these constraints, cells
within an epithelium can still move collectively as sheets rather
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than individually, relying on coordinated cell-cell interactions to
maintain tissue integrity and function.1 This fundamental distinc-
tion in cellular behavior underscores the diverse roles these tissue
types play in physiological processes and brings forth numerous
crucial challenges in the fields of active matter physics and non-
equilibrium statistical mechanics.6–8

Research over the past several years9–19 has demonstrated
the importance of understanding epithelial motility through the
paradigm of the jamming and unjamming transition. During the
unjamming transition (UJT), an epithelial collective transforms
from a jammed phase where cells behave solid-like, toward an
unjammed phase where cells flow in a fluid-like manner. In both
the jammed and unjammed phases, the cellular collective retains
intact epithelial junctions and remain in a confluent state where
there are no gaps between cells.

The UJT paradigm complements the existing mechanism of the
epithelial-to-mesenchymal transition (EMT).3,20–24 During EMT,
an epithelial cell progressively acquires mesenchymal character-
istics that, in the limit of full EMT, lead to bulk dissociation and
single-cell, dispersed, mesenchymal migration. This transition to
a migratory state is defined by disruption of apico-basal polarity
and cell-cell junctions. Graded changes along this axis define ep-
ithelial plasticity often described in terms of partial EMT or hybrid
E/M states.25 Therefore, understanding the interplay of UJT and
EMT in the mechanics and organization of a multicellular collec-
tive is crucial.

In the past two decades, a number of computational ap-
proaches have been proposed to understand the emergence of col-
lective behaviors in multicellular systems. In particular, a class of
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cell-based models known as vertex models has been proven effec-
tive for capturing epithelial mechanics.26–29 In the vertex model,
each cell is represented as a deformable polygonal inclusion, with
edges and vertices shared by neighboring cells. This class of mod-
els necessarily assumes that exactly three cells meet at any vertex
in an epithelial tissue and no gaps exist between cells, i.e. the
tissue exists at the confluent limit. In the most common version,
the dynamical degrees of freedom are the vertex locations. On
the other hand, in a confluent Voronoi model, a cell i is param-
eterized by the corresponding cell center ri, and cell shapes are
determined by Voronoi tessellation based on the cell centers {ri}.

Several previous studies have explored the connections
between the aforementioned EMT and tissue-level unjam-
ming.17,30,31 This is particularly important in the context of par-
tial EMT, which has also been shown to give rise to collective (as
opposed to individual) cell motility.32 In general, it appears that
these processes represent distinct modes of “liquefaction”, but the
precise relationship between them has not yet been fully inves-
tigated. Previous efforts based on confluent Vertex or Voronoi-
based models have had difficulties dealing with this question, due
to the fact that these models specifically aim at simulating epithe-
lial cells. An ideal candidate model to address this open question
would have the ability to have both an unjamming transition and
EMT (or a combination of both) under suitable parameters.

In general, then, although confluent vertex models and
Voronoi-based approaches have successfully revealed the density-
independent rigidity transition in dense epithelial systems, their
ability to accurately describe cell movements and tissue proper-
ties in a low cell density is limited. Inspired by this limitation,
various efforts have proceeded towards devising different mod-
els to describe non-confluent biological tissues. One example is
provided by the cellular Potts model33, which has no difficulty
in generating nonconfluent phases if the cell-medium energy is
lower than cell-cell one. Next, a generalized version of the vertex
model allows for a deformable free-shape connected boundary
but cannot accommodate topology changes.34 In the Subcellular
Element model, each individual cell is composed of numbers of
“elements” which have short-range viscoelastic interactions, re-
sulting in adaptive cell shapes and intercellular spaces.35,36 Kim
et al add intermediate vertices into vertex model to allow for more
complex cell shapes, and further introduce extracellular spaces by
simulating them as “virtual cells”.37 Finally, Loewe et al. used a
multi-phase field model, in which cells are treated as deformable
and overlapping active particles, to allow for the emergence of
inter-cellular gaps.38 Many of these recent models require more
degrees of freedom and therefore are significantly more complex
than vertex-models.

In one recent effort to bridge the gap between confluent and
non-confluent tissue mechanics models while maintaining the
simplicity and ease of use of earlier vertex models, Teomy et al ex-
tended the confluent Voronoi approach to create a Finite Voronoi
(FV) model.39 Here, a maximal size is assumed for the cells,
which then guarantees that the resulting tissue becomes non-
confluent at a sufficiently low density. While there has been a
thorough study of the static morphological and thermal fluctu-
ations of the FV model, the lack of inclusion to date of active

forcing means that the dynamical organization of the multicellu-
lar structure and possible collective motility have remained unex-
plored.

In this work, we construct an Active Finite Voronoi (AFV)
model by incorporating into the FV model self-propelled active
forces.40,41 We systematically explore the interplay of activity and
intercellular mechanical interactions and comprehensively map
out the different emergent phases. In addition to recapitulat-
ing the previously observed confluent unjamming/jamming be-
haviors, we discover that activity and cell-cell interactions can
also drive the tissue to undergo an epithelial-mesenchymal tran-
sition. Interestingly, the model exhibits a rich set of epithelial and
mesenchymal morphological and dynamical phases. In fact, we
reveal six different phases defined by an aggregation-segregation
transition, a dynamical jamming-unjamming transition, and an
epithelial-mesenchymal transition. The existence of these phases
and the transitions between them could potentially provide novel
insight into recently observed tissue behavior.

2 Model
In a conventional Voronoi tessellation, space is partitioned based
on the shortest distance between pairs of points. This allows
Voronoi tessellations to tile all of space. At the edge of a cluster
of points, the neighborhood of points will extend to spatial infin-
ity, giving rise to unbounded cell sizes. For this reason, conven-
tional Voronoi-based models typically employ periodic boundary
conditions. In order to explore non-confluent regimes, following
previous studies39,42,43, the FV model augments a conventional
Voronoi tessellation by introducing a length scale l, which sets
the maximum neighborhood belonging to any point.39 In other
words, every cell lies entirely within a circle of radius l about
the center. The resulting cell boundaries consist of both polygo-
nal segments (contacting edges, shown as blue lines in Fig. 1)
and circular arcs (non-contacting edges, shown as pink curves in
Fig. 1): On one hand, cells separated by a distance less than 2l
will still have contacting edges determined by the conventional
Voronoi tessellation. On the other hand, for edges that are more
than l from cell centers, cell boundaries are replaced by circu-
lar arcs of radius l. This allows cell-unoccupied regions and in-
tercellular gaps to arise naturally when two neighboring centers
are more than 2l away. As in the standard Voronoi model, the
cell center positions {ri} are the dynamical degrees of freedom
and the cellular structure are determined by the aforementioned
combination of Voronoi tessellation and length scale l.

To incorporates the mechanics of the cell layer, we follow pre-
vious vertex-based model approaches27,44 and write an energy
function to, which captures cell-cell interactions and single cell-
mechanics. Specifically,

Ẽ =
N

∑
i=1

[
KA(Ãi − Ã0)

2 +KPP̃i
2]
+λ (c)∑2l(c)+λ (n)∑ l(n), (1)

where KA and KP are the area and perimeter elastic moduli. {Ãi}
and {P̃i} are cell areas and perimeters, and A0 is the preferred
area. The first term arises from resistance to cell volume change.
The second term KPP̃i

2 results from energy cost of cortex defor-
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mation, due to the presence of proteins and other molecules such
as actin and myosin that provide structural support to the cellu-
lar semi-permeable membrane.27,44 λ (c) and λ (n) are correspond-
ingly cortical tensions on contacting edges (cell-cell interfaces)
and non-contacting edges (boundary edges).

In epithelial cells, non-contacting edges tend to carry higher
tension than contacting edges45. This cortical tension differ-
ence origins from feedback between adhesion molecules and cy-
toskeletal dynamics. The normal projection of cortical tension on
non-contacting edges (cell-unoccupied region interfaces) is bal-
anced by cortical elasticity; the tension required for this force
balance is lower for contacting edges (cell-cell interfaces) due
to the contribution of adhesion from neighboring cells. The fac-
tor 2 in the third term of Eq. 1 comes from the fact that each
contacting edge is shared by two cells. Using the relationship
∑N

i=1 P̃i = ∑N
i=1 L̃i

(n)
+∑2l(c), where L̃i

(n) is the total length of non-
contacting edges in the i-th cell, the above equation can be sim-
plified to

Ẽ =
N

∑
i=1

KA(Ãi − Ã0)
2 +KP(P̃i +

λ (c)

2KP
)2 +(λ (n)−λ (c))L̃i

(n)− (
λ (c)

2KP
)2,

(2)

where the last term is a constant and can be dropped. This
equation can be further simplified in two ways: On one hand,
l can be used as the length unit in the system in order to non-
dimensionalize the perimeter and area quantities, i.e. let Pi = P̃i/l,
L(n)

i = L̃i
(n)

/l, Ai = Ãi/l2, and A0 = Ã0/l2 be all dimensionless.

We also introduce P0 = − λ (c)

2KPl as the dimensionless preferred cell
perimeter, which indicates the relative strength of extensile ten-
sion on contacting edges versus elastic contractile tension. A high
P0 value may result from a high cortical tension on the edge, i.e.
high |λ (c)|, which is typical in fluid-like epithelial states; or it may
reflect a weak membrane elasticity, i.e. small KP, which is com-
mon in mesenchymal states. On the other hand, KA is extracted
from the tensions and elastic coefficients, which gives kP =KP/KA,
along with Λ = (λ (n) − λ (c))/KA, the normalized tension differ-
ence coefficient between contacting edges and non-contacting
edges. A large Λ value will encourage cells to form cell-cell in-
terfaces with neighbors and eliminate intercellular gaps in order
to reduce the total length of non-contacting edges. The inclusion
of Λ is similar to the inclusions of the cell-medium interaction in
the cellular Potts models.46 With these transformations, the sim-
plified effective energy function can be expressed as

E =
N

∑
i=1

(Ai −A0)
2 + kP(Pi −P0)

2 +ΛL(n)
i . (3)

The mechanical interaction force experienced by cell i is de-
fined as the gradient of Eq. 3, i.e. Fi = −∇iE. In addition to Fi,
we implement polarized self-propulsion force on each cell. Fol-
lowing the Self-Propelled Voronoi model40,41, we assign to cell
i a polarity vector n̂i. The cell i feels a self-propulsion force of
constant magnitude v0/µ directed along n̂i, where the mobility
µ is the inverse of a frictional drag. Taken together, these forces

cell center
triple junction vertex
noncontacting edge
contacting edge
self-propulsion direction

Fig. 1 An example of a tissue snapshot from the AFV model illus-
trating its salient features. The red dots denote the cell centers. The
blue lines represent contacting edges shared by two cells, and the pink
curves represent non-contacting edges which are circular arcs with radius
l. Triple junction vertices that connect three cells are indicated by hol-
low purple dots. The cyan arrows indicate the polarity directions of the
self-propulsion force applied on the cell centers. Note that isolated cells
are circular in shape.

control the over-damped equation of motion of each cell center

dri
dt

= µFi + v0n̂i. (4)

In actual biological systems, the polarity can depend on a variety
of cues from a cell’s past history and from interactions with neigh-
bors.47 Here we adopt a simplified approach and let the polarity
orientation n̂i = (cosθi,sinθi) obey rotational diffusion, given by

∂θi = ηi(t),
⟨
ηi(t)η j(t ′)

⟩
= 2Drδ (t − t ′)δi j, (5)

where ηi(t) is a white noise process with zero mean and vari-
ance 2Dr. The magnitude of angular diffusivity Dr determines
the memory of stochastic noise of the self-propulsion direction,
leading to a polarity persistence time scale τ = 1/Dr. When Dr is
small, the polarity direction n̂i changes slowly and leads to more
persistent self-propelling force. For large Dr ≫ 1, the correspond-
ing persistence time scale τ → 0 is much shorter than other dy-
namical time scales in the system, and Eq. (5) approaches simple
memory-free Brownian motion. In the SPV model, it has been ob-
served that increasing Dr can significantly decrease tissue fluidity
at a fixed cell motility, highlighted by the finding that a solid-
like tissue at large Dr can be fluidized simply by reducing its Dr

value.40,48

To study cell dynamics at medium density, we simulate a con-
stant number (N = 400) of cells under periodic boundary con-
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dition with a box size L such that the packing fraction equals
ϕ = 0.5 = Nπ/L2. The advantage of this choice compared to
open boundary condition is that it conserves the density of self-
propelled cells even with high diffusivity, and simulates scenar-
ios where cells freely leave and enter the field of interest while
the overall cell count is relatively stable. In this paper, the re-
sults shown correspond to kP = 1, Dr = 0.1, and Λ = 0.2 which
reflects a relatively small difference between contacting and non-
contacting edge tensions, unless otherwise specified. We choose
A0 = π to reflect the preferred area for an isolated cell. Changes of
these parameters do not qualitatively change the phase diagram
but merely shift the locations of phase boundaries. We initialize
systems as one large connected cluster and relax it to steady state
at zero temperature with P0 ranging from 4 to 8.8. We then turn
on v0 with values ranging from 0 to 2.7 and conduct numerical
simulations using molecular dynamics. We typically perform 106

integration steps with a step size dt = 0.01 using Euler’s method.

3 Motility and cell-cell interactions induce a
clustering transition

Migrating cells transition between dispersed individual and clus-
tered multi-cellular collectives during embryonic development,
tumor progression, and wound healing.49 Although the contri-
bution of these transitions to motility and coordinated behaviors
are well-characterized for a confluent scenario, the behaviors for
a non-confluent low-density scenario is poorly understood. As
vertex-based models29 focus on scenarios where tightly packed
cells cover the entire surface and form confluent epithelial mono-
layers, the ability of these models to simulate how cell connectiv-
ity affect global dynamics and tissue properties are limited. On
the other hand, a previous study using the FV model39 has not
analyzed the structural organization of cell clusters over time nor
included active forcing. These are clearly important aspects of
tissue behavior.

Here, we characterize cell clustering by first identifying the “gi-
ant cluster”,50 which is the largest connected cluster within the
cellular system, and then analyzing the normalized giant cluster
size, defined as

NGC

N
≡ number of cells in the giant cluster

total cell number N
∈ (0,1],

which serves as an order parameter for cluster formation. For any
instantaneous configuration, we consider two cells to belong to
the same contiguous cluster if they share a contacting edge (pre-
sented as blue straight edges in Fig. 1), or equivalently, when the
distance between their centers is less than 2l. In Fig. 2(a), we plot
the NGC/N as a function of the motility parameter v0, for tissues at
various values of P0 and fixed Λ = 0.2. A motility-driven dispersal
transition is observed: at low v0, cells form a single giant cluster
corresponding to NGC = N. Larger v0 values cause a break-up into
smaller clusters, indicated by a decreasing NGC/N value. We ob-
serve that the dispersal transition occurs for all P0 values tested,
where the sharpness of the transition depends on P0. Intriguingly,
all curves intersect at a common point v∗0 ≈ 1.85, which serves as
a crossover independent of P0. For v0 < v∗0, NGC/N decreases as
P0 increases; when v0 > v∗0, the behavior is flipped and NGC/N in-

creases with P0. Based on these observations, we hypothesize that
the behavior of NGC/N below and above v∗0 can be described by a
scaling relation

NGC/N = G
(

v0 − v∗0
Pα

0

)
, (6)

where G denotes a common scaling function. We replot all data
in terms of NGC/N vs v0−v∗0

Pα
0

based on the above ansatz in Fig.
2(a) bottom-left inset, and obtain a collapse to a master curve
with v∗0 = 1.85± 0.06 and α = 1.50± 0.12. The existence of this
collapse suggests that the transition will always occur at a motility
threshold

vs(P0) = v∗0 − cPα
0 , (7)

where c = 0.06±0.005 is a positive constant obtained through fit-
ting to the location where NGC/N drops below 99%. In addition,
we plot the number of clusters as function of motility v0 in Fig.
2(a) top-right inset. The curves confirm the above observations
that at low motility regime, cells remain in a large cluster, and
the cluster number remains close to 1. At larger v0, large clusters
start to break down into smaller pieces, indicated by an increasing
cluster number. Then Eq. (7) is shown in Fig. 2(b) which serves
as a phase boundary between clustered and dispersed states. The
clustered region is characterized by a high NGC/N value and low
cluster number. When the dispersal transition point is exceeded,
NGC/N starts to drop and the number of contiguous clusters in-
creases, indicating entry into the dispersed region. In practice,
we label tissues with NGC/N < 0.99 as being in the dispersed state
indicated by blue dots, and those with NGC/N ≤ 0.99 as being in a
clustering state indicated by red squares. We also have included
representative snapshots of the two states.

The crossover point reveals an interesting regime in the phase
diagram (v0 = v∗0 ≈ 1.85) where the system always possesses a
giant cluster of a fixed size (NGC/N ≈ 0.7) regardless of the value
of P0. Given that this point occurs at a fairly large value of the
motility, it leads to the question of how a large cluster size is
maintained. We therefore analyzed the cluster size distribution
(CSD) p(n) for different P0 values at the crossover point v0 = v∗0.
Fig. 2(c) shows that the functional form of the CSD is dependent
on P0. At P0 = 4, the CSD initially increases as a power-law of
n, and then decreases at medium cluster sizes with a power law
decay of n−1.25 before finally reaching NGC. When P0 = 8, the
power-law decay has the form n−1.75, suggesting a faster decay
as cluster size increases. Similar exponents have been found in
other active matter systems with clustering or motility induced
phase separation.51–56 The broadness of the CSD suggests that
these systems do not have a typical cluster size, indicating the
need for a multi-scale analysis.

Having quantified the steady-state mean size of the cluster, we
now shift our focus to the temporal fluctuations in cluster sizes.
As illustrated in the simulation videos provided in the Supple-
mentary Materials, cell clusters can exhibit significant dynamism.
Over time, cells may aggregate and disintegrate from a cluster,
reflecting a highly dynamic process. The temporal fluctuation of
NGC/N for two representative cases is shown in Fig. 3(a). For a
clustered state (v0 = 1 and P0 = 4), where the giant cluster is sta-
ble, the NGC/N trace is a flat line equals to 1. On the other hand,
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Fig. 2 Formation of multicellular clusters in the AFV model. (a) The normalized giant cluster size NGC/N as a function of v0 at different P0 and at
Λ = 0.2. An initially connected tissue undergoes a dispersion transition at a critical activity vs(P0). Here the colors correspond to the legend in panel
(b). (a-left-inset) NGC/N vs (v0 − v∗0)/Pα

0 for different P0 values, which are indicated by the curve colors. (a-right-inset) The number of contiguous
clusters as a function of v0 for different P0. (b) Tissue clustering phase diagram in the v0-P0 plane for Λ = 0.2. The red data points correspond to
the clustered state, and the blue points correspond to dispersed tissues. The black line corresponds to vs(P0). The two sample tissue snapshots are
from P0 = 4.2,v0 = 0.1 (clustered state) and P0 = 4.2,v0 = 2.1 (dispersed state). The red dots in the snapshots are cell centers, the blue lines are
contacting edges between adjacent cells, and the pink arcs are the non-contacting edges. The black rectangles annotate the periodic boundaries of
our computational domain. (c) The probability distribution function (PDF) for the cluster size for N = 400 systems is shown at v0 = v∗0. The dashed
line and dot dashed line correspond to power-laws with exponents respectively of −1.25 and −1.75, as visual aids.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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0

50

100 (c)

Fig. 3 The fluctuation in NGC/N for dispersed states. (a) Two sample
NGC/N traces at v0 = 1. The solid lines correspond to realizations of P0 = 4
and P0 = 8, respectively. The cyan dashed line indicate the average value
of P0 = 8 as visual aids. (b) The NGC/N average values of different P0
at v0 = 0.1 and v0 = 1, respectively, with the shaded band representing
the standard deviation. (c) The autocorrelation time of the giant cluster
size, τNGC , at different P0 and v0 = 1. For P0 < 5, the τNGC values go to
infinity and are not displayed on the plot.

as shown in Fig. 3(a,b), in a dispersed state, the giant cluster
size experiences continuous fluctuations as clusters dynamically
form and breakup. As cells interact and coalesce, larger clusters
emerge, resulting in an increase in the giant cluster size. How-
ever, the instability of cell contacts in such a state causes these
clusters to be inherently transient. Over time, the clusters disin-
tegrate, leading to a reduction in the giant cluster size. We also
investigate the temporal evolution of cluster sizes with using the
autocorrelation time τNGC of the giant cluster size. Fig. 3(c) shows
τNGC for v0 = 1, when P0 < 5 the giant cluster size NGC is always
equal to N and the autocorrelation time is infinity. When P0 > 5
the system enters dispersed state, and as P0 increases the autocor-
relation time decreases, indicative of a tendency towards unstable
cluster and faster cluster size fluctuations.

4 Epithelial-Mesenchymal Transition Driven
by Cell-Shape Changes and Motility

In a confluent epithelial layer, cells pack without intercellular
gaps, and triple junctions exist between any trio of three neigh-
boring cells. On the other hand, a classical signature of EMT is
the loosening of tight epithelial tissue organization. This is ac-
complished by transcriptional suppression of E-cadherin, a pro-
totypical adhesion molecule responsible for maintaining cell-cell
adherens junctions, as well as the downregulation of other adhe-
sion molecules such as claudins.21,57 Indeed, tissues undergoing
EMT exhibit decreased tight junctions58,59 and increased intercel-
lular gaps17; in the developmental biology context, these changes

Journal Name, [year], [vol.],1–10 | 5

Page 5 of 10 Soft Matter



(a)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

4

5

6

7

8

P
0

(b)
Epithelial

Mesenchymal

4 6 8
0.0

0.4

0.8

1.2

1.6

2.0

2.4

0

0.2

0.4

0.6

0.8

1
(c)

(d)

Fig. 4 Tissue confluency properties. (a) Ω [defined in Eq. (9)] as
a function of v0 for various P0 values ranging from 4 to 8.8 with an
increment of 0.2. The curve color corresponds to the tissue P0 value. The
black arrow indicates the curve ordering with increasing P0. (b) Tissue
confluency phase diagram for Λ = 0.2 in the v0-P0 plane. The marker
color indicates the tissue Ω value. The black dashed line corresponds
to Ω = 0.5 and is used as a boundary between epithelial/confluent state
and mesenchymal/nonconfluent state. (c-d) Illustrative snapshots of a
nonconfluent/confluent hexagonal tissue, respectively, used for our mean-
field analysis.

can be imaged in vivo.60 In other words, when cells lose their ep-
ithelial character as they become mesenchymal, triple junction
vertices will be lost and gradually replaced by the presence of in-
tercellular gaps.17,61 This morphology change reduces tensions
transmitted at cell-cell junctions and eventually helps enable cell
movement.23,62

Based on these observations, we searched for an order parame-
ter that could reflect the ratio between triple junction vertices and
inter-cellular gaps in order to quantify the degree of “epithelial-
ness” of a cell layer. Euler’s polyhedron formula asserts that for a
completely confluent cluster of N( j) cells in open space, the num-
ber of triple junction vertices V ( j)

3 equals to E( j)
c −N( j)+1, where

E( j)
c is the number of contacting edges. When inter-cellular gaps

develop, V ( j)
3 will decrease and deviate from E( j)

c −N( j)+1. Thus,
a natural confluency order parameter for cell cluster j can be de-
fined as

ω( j) =
V ( j)

3

max(E( j)
c −N( j)+1, 1)

∈ [0,1], (8)

where the denominator has a lower bound of 1 to avoid dividing
by 0 when the cluster is made of a linear string of cells. The
order parameter ω( j) = 0 for nonconfluent clusters without any
triple junction vertex, and ω( j) = 1 for confluent clusters. Then,
for a system containing multiple contiguous clusters, the global
confluency order parameter can be defined as weighted average
of ω( j)

Ω =
∑ j N( j)ω( j)

∑ j N( j)
. (9)

The behavior of Ω as a function of P0 and v0 is shown in Fig.
4(a). When P0 is low, cells are close-packed with each other, re-
sulting in confluent epithelial tissues with Ω ∼ 1. As P0 increases,
tissue confluency is gradually lost, indicated by a decreasing Ω.
The cell motility v0 has a weak yet opposite effect on Ω for sys-
tems with different P0; cell motility enhances inter-cellular gaps
at low P0 while it tends to eliminate inter-cellular gaps at high P0.
In Fig. 4(b), we use Ω = 0.5 as the threshold to distinguish an
epithelial state, where triple junctions are formed at a dominant

fraction of the cell-cell interface inside clusters, and a mesenchy-
mal state, where intercellular gaps are preferred. The E/M phase
boundary is nearly vertical, indicating a strong dependence on P0.

To better understand the nature of the epithelial to mesenchy-
mal transition in this model, we utilize a simple mean-field cal-
culation at zero motility. Consider a simple case of a hexagonal
cell packing. As illustrated in Fig. 4(c-d), each cell has exactly 6
neighbors whose centers are located on the vertices of a regular
honeycomb lattice whose center coincides with the central cell
center. Each contacting edge has length ε, and the correspond-
ing central angle equals 2θ where ε = 2sinθ . When θ < π/6,
inter-cellular gaps exist instead of triple junction vertices. As the
non-contacting perimeter and area of each cell are given by

L(n) = 2π −12θ , (10)

A = (π −6θ)+3sinθ cosθ , (11)

we can determine the mechanically stable configuration by find-
ing the minimum of Eq. (3) with respect to the angle θ . A simple
calculation yields

0 =
1
N

∂E
∂θ

= 24kP(1− cosθ)(12θ −12sinθ +P0 −2π)

+24sin2 θ(6θ −3sin2θ +A0 −2π)−12Λ. (12)

The confluency transition is predicted to occur when the solu-
tion to Eq. (12) is given by θ = π/6. For the parameter set used
in this paper (Λ = 0.2, A0 = π, kP = 1), this condition gives the
critical point of P0 = 5.73, below which the system is confluent.
This estimate provides a reasonable approximation for the phase
boundary between epithelial and mesenchymal states in Fig. 4(b),
in the limit of v0 → 0. Nevertheless, this mean-field analysis is a
simplification as it captures the EMT as a clear-cut switch rather
than a spectrum.

5 Glassy dynamics in confluent and non-
confluent regimes

So far we have characterized the behavior of the model based
on static, structural properties of the multicellular organization.
Next, we analyze the dynamical behavior of the model. Previ-
ous studies have suggested that cells have the ability to transi-
tion from solid-like to fluid-like state via separate pathways. For
example, during UJT, a tissue can fluidize while remaining con-
fluent.9,13,14 While during EMT17,23, abolition of the epithelial
character is a necessary precondition for promoting cell migra-
tion. Here, a natural question arises; while dispersed states must
be fluid-like, are all clustered phases solid-like? Further, do the
structural transitions observed in our model coincide with dynam-
ical transitions?

To answer this question, we characterize the dynamics of cell
motion in our system by measuring the mean-squared displace-
ment (MSD). In order to exclude the contribution of collective
rigid-body translations and rigid rotations of clusters, we com-
pute the MSD based on the relative displacement of cells with re-
spect to their nearest-neighbors. In Fig. 5(ab), we plot the MSD
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Fig. 5 Tissue glassy properties. (a) MSD traces for different P0 ranging
from 4 to 8, with Λ = 0.2 and v0 = 0.4. (b) MSD traces for different
v0 with a fixed P0 = 5.6. (c) De f f as a function of v0 for different P0.
The black dashed line corresponds to De f f = 10−8. (d) Tissue diffusivity
phase diagram as a function of P0 and v0. Orange data points correspond
to glassy tissues with vanishing De f f ; green points correspond to flowing
tissues (finite De f f ).

as a function of time lag ∆t for systems with different P0 and v0

values. For small v0 values, cells are caged at long time scales, as
indicated by the plateau of MSD. We also plot the total number of
T1 transitions in Fig. 6, suggesting arrested motility due to caging
effects and broken ergodicity, both of which are characteristic sig-
natures of glassy dynamics. As v0 increases, cells begin to uncage
and the MSD increases asymptotically as MSD ∝ ∆tβ , where β ∼ 0
for P0 ≤ 4 and β ∼ 1 for P0 ≥ 7.

Following previous studies on tissue glassy dynamics40, we use
the self-diffusivity Ds = lim∆t→∞ MSD(∆t)/(4∆t) as an order pa-
rameter to distinguish glassy and fluid states. We ran simulations
for 104 time units and used ∆t = 5000 to calculate Ds, which is
much longer than the typical caging time scale in fluid state. The
calculated Ds is presented in units of D0 = v2

0/(2Dr), the free diffu-
sion constant of a self-propelling cell, to accommodate the effect
of varying motility. Then, the effective diffusivity De f f ≡ Ds/D0

is used as an order parameter to distinguish glassy (jammed) and
fluid (unjammed) states. The behavior of De f f at different P0

and v0 is shown in Fig. 5(c). For a given low v0 value, the or-
der parameter De f f does not necessarily follow the ordering of
P0 values; At large v0 regime, high P0 systems always correspond
to high De f f values. In Fig. 5(d), we plot phase diagram of cell
dynamics in the v0-P0 plane according to De f f : The glassy states
correspond to a finite De f f below a noise floor of 10−8, and the
unjammed states correspond to De f f that exceeds this threshold.

The position of the dynamical phase boundary suggests that
the energy barrier for cell rearrangements is lower than that for
cluster breakup. This difference gives raise to the existence of
stable fluid-like clusters, within which cells exchange neighbors
frequently yet stay as members of the same connected cluster.
This possibility is in good agreement with experimental observa-
tions of bulk epithelial colonies, for example Madin-Darby canine

102 103
100

101

102

Fig. 6 The cumulative T1 number traces for different P0 ranging from 4
to 8 with Λ = 0.2 and v0 = 0.4.

kidney (MDCK) cells form a confluent epithelial sheet through a
highly motile expanding process lasting for one week.63,64

Next we also use the number of cell rearrangements as an alter-
native indicator of tissue fluidity. To this end, we generalize the
concept of a T1 transition for use in the AFV model: In confluent
vertex- or Voronoi-based models, a system of N cells possesses 3N
edges, and each cell rearrangement occurs as a T1 event, which
involves the elimination of an existent edge and formation of a
new edge. As the total edge number is no longer conserved in the
AFV model, edge elimination and new edge formation can happen
independently. To generalize the method to count cell rearrange-
ments, we consider the independent elimination or formation of
an edge each as half of a T1 event; this choice will give the usual
T1 transition number for confluent states65. In addition, the elim-
ination and formation of a new edge between a given pair of cells
will be taken to cancel out each other, and contribute 0 to the T 1
counting rather than 1. This choice is necessary because cell con-
tacts are “shallow” in some jammed mesenchymal systems, where
a pair of cells could keep forming and breaking a short contacting
edge due to local fluctuations. In Fig. 6, we show some sam-
ple traces of the total T1 rearrangement counted in such a man-
ner. The T1 traces confirm the existence of jammed/unjammed
phases, as discussed in the main text. For systems in a jammed
state, e.g. P0 = 4 at v0 = 0.4, the T1 number trace suggests the cells
are caged by their neighbors. On the other hand, for systems in
an unjammed state, the T1 rearrangement number increases over
time, indicating a diffusive behavior.

6 Discussion and Conclusions
In this work, we have introduced a new approach to tissue dy-
namics, referred to as the Active Finite Voronoi (AFV) model.
This model retains the simplicity of the active Voronoi/vertex-
based approach, which has made it a very popular strategy for
studying confluent epithelial systems. However, the addition of a
maximal size for cells allows the system to dynamically determine
the degree of confluency as a function of the system parameters.
The observation of the E/M transition using our model extends
the behavior of the vertex-based models studied previously. The
traditional vertex model, constrained to be confluent, exhibits a
transition to a fluid-like phase at high P0, and there is only a
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Fig. 7 Summary of phase diagram. (a) Sketch of the phase diagram with all three phase boundaries, on the v0-P0 plane for Λ = 0.2. This structure is
qualitatively robust for all values of Λ. (b) Sample snapshots of four dictinct phases. The (P0,v0) values for each state are: Clustered Epithelial phase
(4,0.1); Clustered Mesenchymal phase (8.8,0.1); Dispersed Epithelial phase (4.4,2.6); Dispersed Mesenchymal phase (8.8,2.6). Note that clustered
state could be glassy or unjammed, but the dispersed state must be unjammed.

confluent and fluid-like phase for high P0 systems. In contrast,
our new model allows for the observation of a new non-confluent
phase wherein cells are given the possibility of developing inter-
cellular gaps. Furthermore, the confluency transition is not neces-
sarily coincident with the tissue dispersal and glassy transitions.
As we have seen, this enables the system to exhibit an epithelial-
mesenchymal transition, as has been observed in developmental
biology, wound healing, and cancer metastasis.

In general, the AFV exhibits three phase transitions and thereby
defines six different possible phases, as shown in Fig. 7(a). One
critical parameter is the preferred perimeter, P0. On the low P0

side, triple junction vertices are energetically preferred, indicat-
ing an epithelial state; On the high P0 side, cell-cell interfaces are
dominated by inter-cellular gaps, suggesting that tissues are in a
mesenchymal state. Parallel to these two states, when v0 is low,
tissues stay in glassy (clustered and dynamically arrested) state;
by increasing v0, cell rearrangements become more frequent and
tissues can enter unjammed (clustered and flowing) state; finally,
when v0 is high, cells are no longer able to stay connected, and
tissues transition to a dispersed state which much be flowing. We
show some sample instantaneous tissues snapshots in Fig. 7(b).
Sample videos of these six phases are included in Supplementary
Materials.

In the AFV, isolated cells, whether fully disconnected or shal-
lowly linked with others, by design, retain a round shape. This
aspect of the model is a simplification, given that in experimental
observations, cells devoid of epithelial connectivity often exhibit
a more spindle-like form. For future exploration, it would be ben-
eficial to incorporate a version of the AFV model that provides
cells with additional degrees of freedom, such as elongation. This
enhancement would permit cells to assume non-circular shapes
when isolated.

In this work, we did not consider cell proliferation and apop-
tosis in our model. Should cell density increase overall due to
cell division or apoptosis, we anticipate that the tissue would
experience density-driven jamming66. However, it’s also likely
that a real tissue would manifest contact inhibition of locomo-
tion67 as cell density rises, corresponding to a reduction in v0

with increased density. Intriguingly, even in situations where tis-
sue homeostasis is maintained through an equilibrium between
cell division and apoptosis, the tissue would inevitably fluidize
due to the constant injection of energy from cell division68. In-
corporating changes in number density would introduce an addi-
tional dimension to the phase diagram of AFV. This could be an
engaging avenue for future exploration. Concerning cell-matrix
interactions, our model adopts a simplified approach, encapsulat-
ing only the viscous friction between the cell and the extracellular
matrix or substrate. It could provide valuable insights to expand
our analysis and incorporate a more comprehensive model for
the viscoelastic cell-matrix interactions, possibly paralleling the
approach employed by Ajeti et. al.69

It is worth mentioning that all of these phase transitions are re-
versible. For example, by changing v0 from 0.2 to 2, systems with
P0 = 4 undergo a dispersal transition characterized by breaking
apart of the bulk. Once the v0 value is reset to 0.2, small con-
tiguous clusters gradually merge into bigger clusters, once they
collide during drifting. Given a long enough time, the system is
always able to revert back to the clustered state, even though the
final merged clusters have some morphological differences from
the original ones; for example, there are more holes inside the
clusters, and the contour shapes are more irregular. Thus, there
can be some level of microscopic hysteresis, but none at the level
of the macroscopic phase structure.

There are a variety of experimental systems that can be studied
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with this new model. Wong’s group has demonstrated49 that un-
der the right conditions cells can form disconnected fractal clus-
ters, similar in principle to those illustrated in Fig. 1. In a simple
animal (Trichoplax adhaerens70), overall motility can introduce
enough stress to cause fracture of the epithelial tissue; amazingly,
the fracture can transition from brittle to ductile behavior.71 Fi-
nally, the issue of the detachment of cell clusters from primary
tumors is very much at the heart of trying to understand the ini-
tial stages of the metastatic process.72–74 The AFV can be used to
predict cluster size distributions and thereby provide a check on
the accuracy of previous attempts46 to accomplish this task.
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