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Abstract

We perform coarse-grained (CG) molecular dynamics (MD) simulations to investigate the 

self-assembly of collagen-like peptide (CLP) triple helices into fibrillar structures and percolated 

networks as a function of solvent quality. The focus of this study is on CLP triple helices whose 

strands are different lengths (i.e., heterotrimers), leading to dangling ‘sticky ends’. These ‘sticky 

ends’ are segments of the CLP strands that have unbonded hydrogen-bonding donor/acceptor sites 

that drive heterotrimeric CLP triple helices to physically associate with one another, leading to 

assembly into higher-order structures. We use a validated CG model for CLP in implicit solvent 

and capture varying solvent quality through changing strength of attraction between CG beads 

representing the amino acids in the CLP strands.  Our CG MD simulations show that, at lower 

CLP concentrations, CLP heterotrimers assemble into fibrils and, at higher CLP concentrations, 

into percolated networks.  At higher concentrations, decreasing solvent quality causes i) the 

formation of heterogeneous network structures with a lower degree of branching at network 

junctions and ii) increases in the diameter of network strands and pore sizes. We also observe a 

nonmonotonic effect of solvent quality on distances between network junctions due to the balance 

between heterotrimer end-end associations driven by hydrogen bonding and side-side associations 

driven by worsening solvent quality.  Below the percolation threshold, we observe that decreasing 

solvent quality leads to the formation of fibrils composed of multiple aligned CLP triple helices, 

while the number of ‘sticky ends’ governs the spatial extent (radius of gyration) of the assembled 

fibrils. 

Keywords: collagen-like peptides, self-assembly, networks, biomaterials, coarse-grained 

simulations
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1. Introduction

Peptides are one of the major building blocks of biological systems (e.g., extracellular 

matrix of tissues and organs) and act as a template for synthetic biomimetic materials with 

controllable structure, physical properties, and responsiveness to stimuli. The programmable 

structure due to peptide self- or directed assembly and their resulting properties can be tuned by 

varying chemical composition (i.e., choice of amino acids), sequence, and length (i.e., number of 

amino acids). Further, their ability to change structure in response to external stimuli  (e.g., heat,1 

and light2) and or/solvent conditions (e.g., solvents’ chemistry, pH,3 and salt4) makes these 

peptide-based soft materials ideal for drug delivery, cell culture, and tissue engineering. One such 

class of self-assembling peptides of interest to the biomaterials community is collagen like peptides 

(CLPs), also denoted as collagen mimetic peptides (CMPs). CLPs are biomimetic polymers that 

mimic the naturally occurring extracellular matrix protein, collagen. CLPs or CMPs are made up 

of repeat units of amino acid triplets, (X-Y-G), where X and Y are usually proline (P), and 

hydroxyproline (O), respectively, and G is glycine. Like native (natural) collagen, CLP exhibits 

hierarchical structure with CLP single strands forming triple helices primarily due to inter-strand 

hydrogen bonding and the CLP triple helices assembling to form fibrils and networks of fibrils in 

aqueous solutions due to a combination of hydrophobic interactions and hydrogen bonding. 

The self-assembly of CLPs into triple helices and the higher order fibrillar assembly in 

aqueous solutions can be further manipulated with a multitude of covalent or noncovalent 

mechanisms which stabilize interactions between individual strands and their subsequent 

interactions between triple helices. For example, Hartgerink and coworkers have utilized lateral 

(i.e., radial) and axial salt bridges within triple helices to stabilize assembled triple helical, fibril 

structure, and network assembly.5, 6 Such studies have shown that charged residues at the ends of 
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the CLP strands serve as ‘sticky ends’ of the CLP trimer helix which in turn promote fibrillar 

assembly into fibrils via electrostatic interactions and assembly of fibrils into networks 

(hydrogels). Similarly, Pal et al. synthesized two oppositely charged CLP-based pentapeptides that 

self-assembled to form self-supporting hydrogels at either acidic or basic pH, respectively, 

depending on overall surface charge.7 Mixtures of the two oppositely charged peptides resulted in 

the formation of self-supporting hydrogels at physiological pH and thus, enhanced their potential 

for biomedical applications. Other studies have shown that other driving forces such as metal-

ligand binding and π-π stacking interactions can also be controlled to facilitate fibrillar and 

network assembly of CLPs in aqueous solutions. For example, Pires et al. designed a collagen-

based peptide containing three distinct metal-binding moieties (nitrilotriacetic acid, histidine, and 

bipyridyl) that self-assembled into a three-dimensional network through the bidirectional 

coordination of metal ions.8 The use of noncovalent interactions as physical crosslinks also offers 

the ability to create responsive, dynamic biomaterials with reversible thermo-responsive 

crosslinks, such as CLPs as crosslinkers in PEG-based hydrogels.9 

Over several decades, the self-assembly behavior of charged and metal-binding CLPs in 

dilute aqueous solutions has been studied extensively, as described above. In contrast, self-

assembly of CLPs into higher order structures such as fibrils and networks purely using amino 

acids’ inherent hydrogen bonding ability and solvent-mediated physical interactions (e.g., 

hydrophobic, hydrogen bonding), both of which are easier for researchers to tune/tailor, has 

received less attention. Some experimental studies have examined CLP triple helices assembling 

to form micron-long fibrils via hydrogen bonding due to the presence of uncharged, hydrogen 

bonding ‘sticky ends’ in the triple helix.10, 11 Experimental reports have described the use of 

cysteine residues to cross-link triple helices into staggered helical registers (i.e., relative alignment 
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of CLP strands within the triple helix) which expose hydrogen bonding groups at the ends of the 

triple helix.10 Such covalently associated, uncharged sticky ends result in assembly of triple helices 

via hydrogen bonding to produce fibrils. Similar reports by Hartgerink and coworkers11 on CLP 

polymers synthesized via native chemical ligation showed that triple helices with sticky ends 

resulting from dispersity in polymerization also demonstrated fibrillar assembly with fibril lengths 

on the order of microns. Computational studies by Taylor et al.12 showed how sticky ended CLP 

triple helix architecture with varying sticky end length, number of sticky ends, and CLP chain 

lengths can be used to tailor the propensity of fibrillar and percolated network assembly. While 

there are experimental and computational reports of hydrogen bonding-mediated assembly of 

CLPs into higher order structures (fibril and networks) in aqueous environments,6 fewer studies 

have examined the additional impact of solvent quality on this hydrogen bonding driven CLP 

higher order structure and morphology. 

CLPs are often synthesized in organic solvents and there have been reports of effects of 

solvent identity and quality for a limited range of systems, specifically effects of solvent quality at 

the triple helical and fibrillar length scales of CLP self-assembly.13-15  Studies of collagen films by 

Kuznetsova et al. showed that the swelling behavior of such collagen films differed greatly 

depending on the hydrogen bonding propensity of the solvent.13 Moreover, their experimental 

swelling curves showed hard shell repulsion between triple helices for solvents with low hydrogen 

bonding propensity (e.g., ethanol, 2-propanol, and NN-dimethylformamide) and softer repulsion 

for solvents with high hydrogen bonding propensity attributing these to the ability of the solvent 

to form a hydration network mediated via hydrogen bonds surrounding CLP triple helices. Other 

reports by Fiorani et al. examined the impact of solvent conditions [e.g., trifluoroethanol (TFE) 

versus dilute acetic acid (AcOH) solvents] on electrospun collagen fibrils and concluded that 
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nonaqueous solvents result in fibers with a low content of triple helices as opposed to natural 

(pristine) collagen.14 Similarly, experimental reports of staggered triple helical registers by Raines 

and coworkers10 were achieved in nonaqueous solutions (mixtures of acetic acid and methanol) 

and showed fibrillar assembly with fibril diameters on the order of a single triple helical diameter, 

as opposed to other studies of CLP fibrillar assembly with diameters on the order of hundreds of 

nanometers16 in aqueous systems. Clearly, previous studies have demonstrated that solvent identity 

can be used to further control CLP assembly at multiple length scales (triple helix, fibril).  

In this study, using coarse-grained (CG) molecular dynamics (MD) simulations we explore 

the impact of solvent quality on the self-assembly of hydrogen bonding driven assembly of CLP 

triple helices with varying strand lengths (i.e., CLP heterotrimers). The solvent and its quality on 

the CLP strands are modeled implicitly using attractive-repulsive (Lennard Jones potential) or 

repulsive-only (Weeks Chandler Andersen potential) effective interactions between the CG beads 

representing the CLP strands’ amino acids. We also examine the impact of CLP heterotrimer 

design – specifically, if the CLP strand length variation is manifested at one end (‘one sticky-

ended'), or on both ends (‘two sticky-ended’) - on the resulting CLP assembled structure. At higher 

concentrations of CLP in solution, our CG MD simulations show that as the solvent quality on 

CLP heterotrimers worsens, they form more heterogenous percolated CLP networks with larger 

fibril diameters and pore sizes than the CLP heterotrimers in better solvent quality. One sticky-

ended CLP heterotrimers form network structures with larger pore sizes with deceasing solvent 

quality versus two sticky-ended CLP heterotrimers, indicating the utility of using solvent quality 

and CLP design as handles for controlling CLP’s fibrillar network structure. We also note that 

similar network structures to those seen in this study can be obtained from linear chains with 

attractive/patchy sites.17-20 However, the architecture of the sticky ended CLP triple helix  has 
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distinct differences from that of a simple linear polymer chains in terms of flexibility (e.g.,  intact 

sections of the CLP triple helix are stiffer than melted sections of the triple helix) and functionality 

(hydrogen bonding sticky ends).  Therefore, it is not straightforward to predict a priori how the 

competition between hydrogen bonding and solvent quality would impact self-assembled 

structure. Moreover, we explore in this study solvent quality as a driving force for self-assembly 

which is underutilized and not well understood within the context of CLP-based biomaterials.

This paper is organized as follows. First, we describe our CG model, MD simulation 

details, and relevant structural analyses in this study. Then, we describe the results of our CG MD 

simulations focused on how solvent quality, CLP strands’ design, and CLP concentrations impact 

the CLP heterotrimer higher order assembly into network morphologies. Finally, we summarize 

our results and implications in future/ongoing experiments, in the conclusions section. 

2. Approach

2.1 Model

In this study we use the coarse-grained (CG) CLP model initially developed by Condon 

and Jayaraman.21 In that CG model, each (POG) repeat unit is represented using five coarse-

grained beads: a proline backbone bead (PB), proline hydrogen bonding acceptor bead (PH), 

hydroxyproline backbone bead (OB), glycine backbone bead (GB), and glycine hydrogen bonding 

donor bead (GH). For this study we modify that CLP CG model to incorporate effective attractive-

repulsive or repulsive-only interactions between backbone beads to mimic the impact of (implicitly 

represented) solvent quality on the assembly of sticky-ended, CLP heterotrimer triple helices 

(Figures 1a and 1b). 
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Figure 1. a) Coarse-grained model representation of CLP and the amino acid sequences for a CLP 
triple helix with one and two sticky ends resulting from exposed hydrogen bonding groups due to 
different chain lengths of the three CLP strands in the triple helix.  b) Dashed lines show the 
interactions between CLP segments - hydrogen bonding interactions between H-bonding donors 
and acceptors (top) and effective solvent-induced CLP backbone-backbone interactions (bottom); 
these interactions are the driving forces for CLP triple helix assembly into networks. c) Schematics 
showing head-to-tail assembly of CLP triple helices due to hydrogen bonding of sticky ends and 
side-to-side assembly of CLP triple helices due to backbone-backbone attraction resulting from 
selected solvent quality. d) Simulation snapshots of CLP triple helices assembled into fibrillar 
clusters at low concentration (1mM) and percolated networks at high concentration (25mM). These 
snapshots are taken from the simulation trajectory at the end of the 10 million-timestep production 
run for CLP triple helices with the worst solvent quality considered in this study.

In our CG CLP model, all backbone (BB) beads have a diameter of 1.0 σ and a mass of 3.0 

m while H-bond beads have a diameter of 0.3 σ and a mass of 1.0 m. All distances in our CG 

model are specified in terms of  and all masses in terms of an arbitrary m as the model σ = 0.5 nm

was not designed to capture the correct dynamics of these CLP systems. All energy terms are listed 

in terms of .ε = 0.1 kcal/mol

For each CLP chain, adjacent BB beads are connected using a harmonic bond potential 

with a bond length of 0.5 σ and force constant of 1000 ε/σ2. Each H-bond bead is connected to its 

“parent” BB bead using a harmonic bond potential with a bond length of 0.37 σ and force constant 
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of 1000 ε/σ2. The SHAKE algorithm is used to constrain all BB-HB bond lengths.22 To mimic the 

rigidity of the polyproline type II conformation of the CLP strands,23 there is a harmonic angle 

potential between three adjacent BB beads with the angle constant set at 20 ε/radian2 and 

equilibrium bond angle set at 180° (i.e., π radians). To ensure that H-bond formation occurs 

perpendicular to the backbone, a H-bond bead-parent BB bead-adjacent BB bead angle potential 

is included with a force constant of 300 ε/radian2 and equilibrium angle of 90°. To capture the 

directionality of H-bond beads with respect to neighboring H-bond beads along the same strand, 

there are two H-bond bead—BB bead—BB bead—H-bond bead dihedral angle potentials,

                                             (1)𝑈𝑑𝑖ℎ(𝜑) =  𝑘𝑑(1 + cos (𝜑 ―  𝜑0))

in which the dihedral constant kd is set at 15 ε and the reference dihedral, φ0 is set at –120° for 

(GH-GB-PB-PH) dihedrals and 120° for (PH-PB-GB-GH) dihedrals.

Non-bonded H-bond donor (D) - acceptor (A) interactions are represented using the 

Lennard-Jones (LJ) potential,24

                                             (2)𝑈𝐻𝐵
𝐷 ― 𝐴(𝑟) =  𝜀𝐻𝐵

𝐷 ― 𝐴[(𝜎𝐻𝐵

𝑟 )12
― (𝜎𝐻𝐵

𝑟 )6]
where  is the interaction strength between D and A beads and is set at 50.4 ε and σHB is the 𝜀𝐻𝐵

𝐷 ― 𝐴

diameter of a H-bond bead. A cutoff of  is used with a switching function taken from 1.9𝜎𝐻𝐵

GROMACS25 and implemented in the LAMMPS package that smoothly ramps both the force and 

potential to zero at . We note that with this specific model, we are aiming to describe the 2.0𝜎𝐻𝐵

assembly resulting from hydrogen bonding and place the D and A beads accordingly. However, it 

would likely be possible to use similar attractive beads in a different orientation to represent other 

assembly mechanisms (metal-ligand binding or π-π stacking interactions, for example).

We also include Lennard Jones interactions between backbone beads (PB, OB, and GB) to 

mimic interactions between CLP triple helices due to worsening solvent conditions. 
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                                                                                  (3)𝑈𝐵𝐵 ― 𝐵𝐵(𝑟) =  𝜀𝐵𝐵[(𝜎
𝑟)12

― (𝜎
𝑟)6]

where increasing interaction strength  is used to mimic decreasing solvent quality and a cutoff 𝜀𝐵𝐵

of 2.5σ is used for all BB-BB interactions. 

All other pairwise interactions besides the H-bond donor-acceptor interactions and CLP 

backbone bead-backbone bead interactions, are modeled using the purely repulsive, Weeks-

Chandler-Andersen (WCA) potential.26 

                          (4)𝑈𝑖𝑗(𝑟) =  { 4𝜀𝑖𝑗[(𝜎𝑖𝑗

𝑟 )12
―  (𝜎𝑖𝑗

𝑟 )6] +  𝜀𝑖𝑗 ; 𝑟 < 2
1
6𝜎𝑖𝑗

 0                                                        ;𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where σij is the arithmetic mean of the diameters of beads i and j, and εij, the interaction strength, 

is set at 1.0 ε.  For donor-donor and acceptor-acceptor interactions, σii is set at 0.7 σ instead of 0.3 

σ to ensure that a donor HB bead only forms an H-bond with a single HB acceptor bead, and vice 

versa. Section S.1 in the Supplementary Information includes tables with a summary of the bonded 

and nonbonded potential parameters for the CG CLP model (Tables S1 – S5). 

Since the model we use in this study is a phenomenological CG model, the form of pair-

wise interaction potentials is not chosen based on chemistry but instead a choice of a mathematical 

expression of the U(r) that reproduces the desired phenomenon. Such a model for homotrimeric 

CLP triple helices has successfully captured experimental trends in melting transition of CLP triple 

helices as a function of CLP design21 (length and amino acid sequences) and has also successfully 

been used to explore the self-assembly of sticky-ended heterotrimeric triple helices at multiple 

lengths scales (helix, fiber, network) in aqueous solutions12.  In this study, we also use an implicit 

solvent model due to the significant increase in computational resources that would be required to 

simulate explicit solvent for the large system sizes (110σ = 55nm) explored in this study. Explicit 

solvent simulations would require approximately 6 million additional coarse-grained beads per 
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system and would make exploring a large design space (i.e., solvent quality and CLP design) 

computationally intractable. 

2.2 Parameters Varied

In this study, we focus on CLP triple helices which have three CLP strands of different 

lengths (the leading strand, middle or intermediate strand, and lagging strand, from longest to 

shortest), resulting in ‘sticky ends’ that can interact with other ‘sticky ends’ via hydrogen bonding. 

We examine CLP triple helices with a total number of 36 (POG) repeat units per triple helix and a 

sticky end length of 6 (POG) units. With this number of (POG) units and sticky end length, the 

length of the leading strand is 18 (POG) units, the length of the middle strand is 12 (POG) units, 

and the length of the lagging strand is 6 (POG) units, giving the sequence (POG)18-(POG)12-

(POG)6. As done in Taylor et al.’s work, we investigate both one sticky-ended and two sticky-

ended heterotrimeric triple helices.12 For a one sticky-ended design, the entire offset of 6 repeat 

units is placed on a single end of the helix while for a two sticky-ended design half of the offset (3 

repeat units) is placed on each side of the triple helix. Thus, both a one sticky-ended helix and two 

sticky-ended helix each have the same total sticky end length and same number of available 

hydrogen bonding groups. The choice of the triple helices with 36 total (POG) units and a sticky 

end length of 6 (POG) units over other CLP sizes and sticky end lengths is dictated by our previous 

work, which showed longer sticky ends had the highest proficiency for assembling into percolated 

networks, independent of the number of (POG) units in the triple helix.12 The design parameters 

explored in this study such as the number of sticky ends and CLP concentrations are also inspired 

by previous experimental studies by Hartgerink and co-workers5, 6 and Kloxin and co-workers27, 

28. Going beyond our previous work, in this study, we vary the effective Lennard-Jones interaction 
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strength between backbone (BB) beads, , between 0 (corresponding to a WCA potential 𝜀𝐵𝐵

between backbone beads) and 0.3ε to mimic relatively good (low ) and worse solvent 𝜀𝐵𝐵

conditions (high ). We focus most of the results and discussion on the network-forming solution 𝜀𝐵𝐵

conditions (i.e., high concentration of CLP in solution) to understand how the varying BB 

interactions impact the features of the network structure. We only briefly discuss the low 

concentration results at the end of this paper. 

2.3 Simulation Details 

We perform Langevin dynamics simulations in the NVT ensemble using the LAMMPS 

simulation package.29 Based on the work of Taylor et al.,12 all simulations are performed at T* = 

3.0; this temperature is below the melting temperatures of the CLP triple helices calculated using 

simulations with this CLP CG model and ensures that 100% of triple helices are intact.  For the 

WCA backbone-backbone attraction and weak backbone-backbone LJ attraction, , an 𝜀𝐵𝐵 = 0.1𝜀

initial configuration is obtained by randomly placing intact CLP triple helices in a cubic simulation 

box of size 110 σ with periodic boundary conditions. For systems with stronger backbone-

backbone LJ attractions, , initial configurations are obtained from final 𝜀𝐵𝐵 = 0.2𝜀,0.3𝜀

equilibrated configurations of CLP systems with weaker LJ attraction. In other words, final 

equilibrated snapshots from  are used as initial configurations for , and final 𝜀𝐵𝐵 = 0.1𝜀 𝜀𝐵𝐵 = 0.2𝜀

equilibrated snapshots from   are used as initial configurations for . This 𝜀𝐵𝐵 = 0.2𝜀 𝜀𝐵𝐵 = 0.3𝜀

protocol mimics a simulated annealing approach that is useful to avoid kinetic trapping that one 

may observe if the simulations are run directly at the higher attraction strength from a random 

initial configuration. For all systems, we ensure that results from different independent simulation 

trials of the same system are reproducible and report the error between independent simulation 
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trials. Small variability in structural data between multiple trials for the same system suggests we 

have likely avoided kinetic trapping.

In all simulations the friction coefficient is set to 10 τ, where 0.001 τ is approximately 6 fs, 

guided by previous work with similar systems.30 A two-level RESPA31 integrator is also 

implemented so that non-bonded and bonded interactions are integrated with a time step of 0.001 

τ and 0.0005 τ, respectively. All systems are first equilibrated for 108 timesteps followed by a 107 

timesteps-long production run during which configurations are collected every 100,000 timesteps. 

In these simulations the CLP triple helices self-assemble head-to-tail via the H-bonding 

interactions between CLP beads in the ‘sticky ends’ and assemble side-to-side via backbone bead-

backbone bead attraction (Figure 1c). At low concentrations, the self-assembled structures are 

finite clusters (Figure 1d) of CLP helices with head-to-tail and side-to-side assembly the extents 

of which depend on the dominant interaction. As the concentration increases, the clusters grow in 

size and eventually form percolated networks (Figure 1d).
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2.4 Analyses

2.4.1. Network Structure Characterization 

Figure 2. Schematics illustrating the various morphological features that we calculate to 
characterize the assembled CLP network structure observed at CLP concentrations 15, 20, and 
25mM. These networks have junctions where multiple CLP triple helices physically interact via 
the hydrogen bonding and/or solvent-induced attractive interactions, with network strands 
connecting these junctions being either a single CLP triple helix or multiple aggregated CLP 
helices. The network structure is quantitatively described by the distributions of pore sizes (ξ), 
network strand lengths (L), and network strand diameters (D), as well as the fractal dimension and 
lacunarity. 

At CLP concentrations of greater than 5 mM, Taylor et al.,12 found the formation of a 

percolating network. In this study, at concentration above this percolation threshold of 5mM, we 

analyze various aspects of the percolated network structure (Figure 2). For each analysis technique 

described in Section 2.4.1, we perform the analysis every one million timesteps over the course of 

the ten-million-timestep production run, corresponding to 10 total snapshots for analysis. This is 

repeated for three independent trials. Generally, we find that the variation between trials is greater 

than the variation between the timesteps of an individual trial, so we compute the mean over the 

ten analyzed timesteps for each trial and report the mean and standard deviation of the trial means.
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Network pore size distribution: We first compute the network pore size probability distributions, 

P(ξ) vs. ξ. We accomplish this by randomly sampling 1000 coordinates in the simulation box for 

each frame and defining the pore size for each sampled coordinate as the diameter of the largest 

sphere that avoids overlap with the surrounding coarse-grained CLP beads and encompasses the 

randomly selected coordinate; this calculation is  inspired by the methods of Wang et al. on DNA 

crosslinked hydrogels32 and methods of Bhattacharya and Gubbins on porous silica.33 This method 

has also been used to quantify pore size distributions in a wide range of other material types, 

including polymeric solutions and particulate systems.34, 35 

We also analyze the fractal dimension, lacunarity, network strand length distribution, and network 

strand diameter distribution (as shown in schematics in Figure 2). We calculate these structural 

features because these have been shown to impact the properties of fibrillar networks, such as the 

transport of  solvents, nanoparticles, or other chemical species through the network and the 

mechanical properties of the network, both of which would be important for CLP networks used 

in biomedical applications.36-38

Fractal dimension: Fractal dimension (see Figure 2) quantifies the exponent with which the mass 

or volume of a system scales with length scale, as described by 

                                                            (5)𝑚~𝑅𝐷𝑓  

where m represents the mass of a system, R represents the length scale, and  is the fractal 𝐷𝑓

dimension. To calculate fractal dimension, we use the box counting tool implemented in the 

PoresPy package.39 We include the specific details regarding the box-counting method of 

estimating fractal dimension and examples of the calculation in the Supporting Information 

Section S.2. The values of fractal dimension for 3-dimensional systems, in general, range from 1 

to 3, with a fractal dimension of 1 corresponding to a thin rod shape, and a fractal dimension of 3 
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corresponding to a solid cube or sphere. For our specific case of CLP networks, the fractal 

dimension can be used as an indicator of both the size of the network strands and the branching of 

the network. Given equal levels of branching, a network with higher diameter network strands will 

have a higher fractal dimension, and given two networks with similar network strand diameters, 

the one with greater branching will have a higher fractal dimension.

Lacunarity: Lacunarity (Figure 2) describes the heterogeneity of an assembled structure at 

different length scales.  Mathematically, the lacunarity is computed on a binary grid representation 

of the structure and involves breaking the structure into cubes containing different numbers of 

voxels. For each cube size, the distribution of the number of voxels valued 1 (representative of the 

CLP network in our case) is computed, and the lacunarity at that cube size is reported as the 

squared ratio of the standard deviation of the distribution to the mean of the distribution. The 

lacunarity values, in general, range from 1 (at the length scale of the entire voxel representation) 

to  (at the length scale of a single voxel), where  is the total number of 𝑛𝑣𝑜𝑥𝑒𝑙𝑠/𝑛𝑣𝑜𝑥𝑒𝑙𝑠 = 1 𝑛𝑣𝑜𝑥𝑒𝑙𝑠

voxels and  is the number of voxels valued 1 in the grid representation of the structure.  𝑛𝑣𝑜𝑥𝑒𝑙𝑠 = 1

Higher values of lacunarity indicate a greater level of heterogeneity. For the lacunarity calculation, 

we use our in house code based on the method described by Sebők, et al.40 Additional details 

regarding this method and our specific implementation are included in the Supporting Information 

Section S.2.
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Figure 3. Flowchart for our graph-based analysis of assembled CLP network structures. From left 
to right, we start with the x, y, and z coordinates of the CLP coarse-grained beads (part a). Then 
we convert the x, y, and z coordinates into a voxel representation (part b). This voxel representation 
is used to compute the fractal dimension, Df, and lacunarity. We then extract the skeletonized 
representation (part c) where junctions are shown in red. The skeletonized representation is then 
converted to a graph representation (part d). Lastly, we construct a graph based on the positions of 
the simulation beads (part e), where each purple node represents a simulation bead, and edges 
connect nearby beads. The voxel representation (part b) and the bead graphs (part e) are used in 
conjunction to compute network strand lengths, l and diameter, D. 

Network strand length and diameter distributions: For the network strand length and diameter 

calculations, we extract a graph representation of the network assembly, and use the graph and 

simulation bead coordinates to compute the network strand lengths and fibril diameters. We 

summarize the graph-based analysis of CLP network assemblies in the flow diagram shown in 

Figure 3 and in the text below; each individual step is described in greater detail in Supporting 

Information Section S.2c. 

First, we construct a binary voxel representation of the simulation, where a voxel is 

assigned the value 1 if any part of a simulation bead is within the voxel and 0 if no beads intersect 

the voxel. For all simulations, we use a voxel size of 1 σ. The fractal dimension and lacunarity are 

computed using grid-based methods on this voxel representation. We then use a skeletonization 
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procedure to thin the voxel representation,41 extracting the medial axes of the network structure. 

We follow the skeletonization with a creation of a graph based on the skeletonized representation 

with junctions in the network represented as nodes, and strands in the network represented as 

edges. Each voxel in the skeleton is added to the graph as a node, with edges connecting to any 

other voxels in the representation that are in the neighboring 26 sites. All nodes with degree 2 are 

removed, iteratively joining the adjacent nodes until the graph contains no nodes with 2 connected 

edges. This process reduces the graph, such that each node is a junction in the network, and each 

edge is a network strand, providing a wholistic graphical representation of the simulation snapshot.

The skeletonization procedure can result in ‘blobs’ of many voxels surrounding true 

junctions in the network (examples of these artifacts are shown in the Supporting Information 

Section S.2). We remove artifacts from the voxel graph by clustering together all adjacent voxels, 

replacing them with a node in the graph with the average position of the cluster, and connecting 

that node to all other nodes in the graph that shared an edge with any node in the original cluster. 

Second, the voxel representation could lead to two nearby simulation beads being classified as 

connected, when they are nearby and not in contact (we show some instances of this occurring in 

the Supporting Information Section S.2). To remedy this issue, we construct another graph based 

on the simulation beads themselves, where each simulation bead is represented as a node, and 

beads within a cutoff distance of 2σ are connected by edges. We use only OB beads for the 

construction of both graphs to reduce the computational intensity of the analysis. For each edge in 

the voxel graph, we compute the shortest path between the two corresponding nodes in the bead 

graph using Dijkstra’s algorithm implemented in the NetworkX Python package.42, 43 If no path 

exists between the two nodes, we discard the edge from the graph and do not use it for further 

analysis.
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Using the voxel graph, which now has an accurate graphical representation of the assembly, 

we link the two graphs by mapping each node in the voxel graph to the nearest bead coordinate in 

the bead graph. The network strand length is computed for each edge again using the shortest path 

length between the two node beads along the bead graph. To compute the diameter of a network 

strand, we similarly map each voxel along an edge of the voxel graph to its nearest beads. We 

compute the direction vector of the strand using the beads at either end of the strand and compute 

the diameter as twice the furthest distance of any bead in the network strand to this vector. To 

avoid inaccuracies resulting from a tortuous network strand, we break long network strands into 

shorter segments and repeat this calculation on each segment, taking the final diameter of a 

network strand as the average of the diameters computed for the shorter segments of the network 

strand.

2.4.2. Assembled CLP Clusters’ Structural Characterization

At CLP concentrations below the percolation threshold, we observe clusters of CLP 

heterotrimers. To quantify the finite sizes of these clusters and the number of heterotrimers in each 

cluster, we compute the radius of gyration of each cluster of CLP heterotrimeric triple helices, 

Rg,cluster, as well as the number of helices per cluster, Nhelix,cluster. Two CLP triple helices are defined 

as being part of the same cluster if a) there exists at least a single hydrogen bond between the two 

helices with a hydrogen bond defined as a pair of PH and GH beads that are separated by a distance 

of 0.45 σ or less, or b) there exists an inter-helix BB-BB pair separated by a distance of 2.5 σ or 

less. By looping through all pairs of triple helices, we identify clusters as groups of triple helices 

that satisfy the above criterion. Then, the radius of gyration of each cluster of CLP heterotrimeric 

triple helices, Rg,cluster, is calculated as

                                                                                                     (6)𝑅𝑔,𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =  
1
𝑁∑

𝑖|𝑟𝑖 ― 𝑟𝐶𝑂𝑀|2  
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where N is the number of CLP beads in the cluster, ri, is the position of bead i, and rcom is the 

cluster’s center of mass. We compute weighted probability distributions of Rg,cluster and Nhelix,cluster 

such that the probability of each bin is weighted by its respective value (Rg,cluster or Nhelix,cluster). For 

all calculations, we focus on clusters with at least two helices per cluster and calculate weighted 

distributions of Rg,cluster and Nhelix,cluster. For each analysis technique described in Section 2.4.2, 

three independent simulation trials each consisting of 100 independent configurations are pooled 

to generate probability distributions of radii of gyration of CLP clusters (Rg,cluster) and number of 

helices per clusters (Nhelix,cluster). The 100 independent configurations for each trial correspond to 

a 107 time step production run with configurations stored every 100,000 time steps.  In this work, 

we emphasize the qualitative trends in how aggregate sizes decrease or increase as a function of 

CLP design and solvent quality rather than numerical values, as the numerical value of cluster 

sizes are a function of the system size (i.e., number of CLP helices simulated)

3. Results and Discussion

In this study, we explore the effects of solvent quality on the self-assembly of sticky-ended, 

heterotrimeric CLP triple helices. Previous work by Taylor et al.12 explored the impact of peptide 

designs such as sticky end lengths, number of sticky ends, CLP concentration, and chain length 

(i.e., (POG) family) on the thermal stability of the triple helix and the assembly of helices into 

fibrillar structures and supramolecular networks. In their work, Taylor et al.12 assumed that 

hydrogen bonding was the dominant driving force via which triple helices assembled to form fibril 

and network structures, as compared to other effects such as solvent-induced attractions of triple 

helices. The dominance of hydrogen bonding is in alignment with experimental reports of solvent 

conditions, such as solutions of acetic acid, methanol, and mixtures of acetic acid and methanol, 
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which promote head-to-tail assembly of triple helices via hydrogen bonding at sticky ends rather 

than side-to-side assembly via solvent induced attractions (e,g., hydrophobic interactions). We 

explore in this study the competition between decreasing solvent quality (leading to increasing 

effective CLP helix-helix attraction) and hydrogen bonding strength and the result of such 

competition on CLP structure and morphology. 

We first examine CLP concentrations above the percolation threshold of sticky-ended CLP 

systems, determined by Taylor et al.,12 and understand the impact of solvent quality on 

supramolecular assembly in CLP networks, and then explore CLP concentrations below the 

percolation threshold to determine the impact of solvent quality on fibrillar assembly in CLP 

solutions. 

Figure 4. Representative snapshots from simulations of one and two sticky-ended CLP 
heterotrimers with sticky end length of 6 POG units and CLP triple helix made of 36 POG units, 
at different solvent qualities modeled as BB-BB interactions: WCA (repulsive only) and Lennard 
Jones strength  = 0.1, 0.2, and 0.3  at a CLP concentration of 20mM. Snapshots are taken from 𝜀𝐵𝐵 𝜀
the simulation trajectory at the end of the 10 million time steps production run. 
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Figure 5. Snapshots of certain sections of the percolating network to show how CLP heterotrimeric 
triple helices assemble to form network strands and network junctions. In all images, individual 
CLP triple-helices are shown in their own color, and in (a) and (b), the large red beads denote the 
location that the graph-based algorithm identifies as the junctions for the given network strand.  
Short network strands with lengths around 6-10σ result from CLP heterotrimers forming junctions 
with lengths approximately equal to the length of the lagging CLP strand (shortest CLP strand) of 
the CLP heterotrimer (a). Longer network strands with lengths around 16-20σ result from CLP 
heterotrimers forming junctions with network strand lengths approximately equal to intermediate 
CLP strand length in the CLP triple helix (b). CLP helices can assemble due to hydrogen bonding 
at sites on the end of individual CLP strands or side-to side as a result of backbone-backbone 
attraction. An example of the former, with network strand diameter ~3σ (c), and an example of the 
latter, with network strand diameter ~7σ (d).  All images are from snapshots of 20mM networks 
of one sticky-ended CLP helices at the end of the 10 million timestep production run. (a) and (b) 
are with WCA interactions (good solvent), and (c) and (d) are with 𝜀𝐵𝐵 = 0.2 𝜀.

3.1 Effect of Solvent Quality on Structural Features of CLP helices Assembled into 

Percolated Networks at High Concentrations
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Before we describe our results it is important to state that a network strand is different from 

the CLP strand in a heterotrimer. Based on our observation, a network strand can be composed of 

a part of a single CLP triple helix, an entire CLP triple helix, parts of multiple CLP triple helices, 

or multiple complete CLP triple helices. We show these ideas via some representative snapshots 

of network strands of different length and diameter and the associated CLP triple helices in Figure 

5. For this discussion, it is also useful to remind the reader that the CLP heterotrimeric triple helices 

considered in this study have three CLP strands of different lengths, a leading (long) strand with 

18 (POG) units, a middle (intermediate) strand with 12 (POG) units, and a lagging (short) strand 

with 6 (POG) units (as described in Section 2.2). Considering the equilibrium bond lengths for the 

bonded backbone P, O, and G beads, these CLP strands have lengths of approximately 9, 18, and 

27 σ, respectively.

In our simulations we observe that with decreasing solvent quality (WCA to increasing 𝜀𝐵𝐵

), simulation snapshots show fibrillar network structures with increasing network strand diameters 

and pore sizes for one sticky-ended triple helices (top row, Figure 4). For two sticky-ended CLP 

heterotrimers, we also observe an increase in network strand diameters and pore sizes with 

decreasing solvent quality (bottom row, Figure 4); however, as solvent quality worsens the two 

sticky-ended triple helices exhibit smaller network strand diameters and pore sizes than one sticky-

ended triple helices do. There are no differences between one and two sticky-ended triple helices 

in terms of network strand diameter and pore structure at good solvent conditions (WCA). 

Next, we compute network strand lengths for CLP systems with varying number of sticky 

ends, CLP concentration, and solvent quality. We first compare the distributions of network strand 

lengths for varying CLP concentration, solvent quality, and number of sticky ends in Figure 6. 

Under good solvent conditions (WCA backbone interactions), we observe two primary peaks in 
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the distribution of network strand lengths, independent of CLP concentration and number of sticky 

ends. Networks composed of one sticky-ended and two sticky-ended CLP triple helices have a 

primary peak at approximately 9 σ and a secondary peak at about 18 σ. We show examples of 

individual CLP triple helices assembling into network strands of these lengths in Figure 5a and 

5b to aid in visualization.  

As solvent quality worsens to intermediate values of  ( ), for both one 𝜀𝐵𝐵 𝜀𝐵𝐵 = 0.1, 0.2 𝜀

and two sticky-ended CLP triple helices and at all concentrations, we observe shorter network 

strands becoming more prominent, while longer network strands (associated with the secondary 

peak) become less prominent. This transition could be the result of these longer network strands 

beginning to assemble in a side-to-side fashion, with shorter strand lengths becoming more 

frequent as branches in the network occur more frequently from staggered side-to-side assembly 

of CLP triple helices. As solvent quality worsens further to , the propensity for short 𝜀𝐵𝐵 = 0.3 𝜀

network strand lengths decreases and we see an increase in the population of larger network strand 

lengths, seen as a decrease in the primary peak height at shorter strand lengths and longer tails in 

the strand length distribution. Despite this shift to larger strand lengths, the mode of the strand 

length distribution remains below 10 σ, indicating that the networks still assemble with many 

smaller strands.
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Figure 6. Distribution of network strand lengths, L, observed for the networks formed from CLP 
triple helices at 15, 20, and 25mM. The top row plots correspond to results from one sticky-ended 
CLP helices while the bottom row plots correspond to two sticky-ended CLP helices; each column 
corresponds to the value of CLP concentration as indicated. In each plot, the results for each 
solvent quality are depicted with a dark red curve (  = 0.3 ; worst solvent), light red curve (  𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵
= 0.2 ), cyan curve (  = 0.1 ), dark blue (WCA interaction; good solvent). For each simulation, 𝜀 𝜀𝐵𝐵 𝜀
we compute the mean length distribution over ten snapshots collected every one million timesteps 
for the 10 million timesteps of the production simulation. Error bars represent the standard 
deviation of these means across three independent trials as described in the methods section. 

To understand the impact of CLP design, concentration, and solvent quality on the side-to-

side assembly of triple helices and resulting network strand dimensions, next we examined strand 

diameters (Figure 7). Independent of CLP concentration, as solvent quality worsens, one sticky-

ended triple helices form fibrils with larger network strand diameters (Figures 7a – 7c). A similar 

trend is observed for two sticky-ended triple helices (Figures 7d – 7f).  As solvent quality worsens, 

one sticky-ended triple helices display larger network strand diameters than two sticky-ended triple 

helices, in agreement with their respective simulation snapshots (Figure 4). In contrast to networks 

formed from one sticky-ended triple helices, networks with two sticky-ended CLPs maintain a 

higher number of network strands with diameters of approximately 3-4 σ as the solvent quality 
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worsens (  = 0.2 and 0.3 ). This indicates that the strands of two sticky-ended networks have a 𝜀𝐵𝐵 𝜀

higher tendency to be composed of a single CLP triple helix than networks of one sticky-ended 

triple helices. This is likely because having sticky ends at both ends of the CLP triple helix 

promotes head-to-tail assembly over side-to-side assembly as the triple helices assemble into 

networks.

Figure 7. Distribution of network strand diameters, D, observed for the networks formed from 
CLP triple helices at 15, 20, and 25mM. The top row plots correspond to results from one sticky-
ended CLP helices while the bottom row plots correspond to two sticky-ended CLP helices; each 
column corresponds to the value of CLP concentration as indicated. In each plot, the results for 
each solvent quality are depicted with dark red curve (  = 0.3 ; worst solvent), light red curve 𝜀𝐵𝐵 𝜀
(  = 0.2 ), cyan curve (  = 0.1 ), dark blue (WCA interaction; good solvent). For each 𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵 𝜀
simulation, we compute the mean diameter distribution over ten snapshots collected every one 
million timesteps for the 10 million timesteps of the production simulation. Error bars represent 
the standard deviation of these means across three independent trials as described in the methods 
section. 

We have also computed the pore size distribution of the network structures resulting from 

CLP heterotrimeric triple helix assembly. The pore size distribution is known to affect transport 

of particles and other chemical species through the network as well as the mechanical strength of 
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fibrillar networks.38 When helices assemble in a good solvent, the pore sizes follow a relatively 

narrow distribution centered at approximately 10 σ (Figure 8). At all concentrations and regardless 

of one or two sticky-ended CLP, as the solvent quality worsens, the network pore sizes increase. 

At = 0.1 , the distributions exhibit larger tails than at WCA (good solvent), while maintaining 𝜀𝐵𝐵 𝜀

a similar mode (peak location), indicating that most of the pores remain the same size, but we 

begin to see instances of larger pores occurring as solvent quality worsens. 

Under good solvent conditions, the pore size distributions are similar between networks of 

one and two sticky-ended CLP helices. However, when in a worse solvent, the two CLP helix 

designs show significant differences in pore sizes. At higher values, we see substantial growth 𝜀𝐵𝐵 

of the pore sizes and greater differences between the networks assembled from one and two sticky-

ended CLP helices. While the networks of two sticky-ended CLP helices maintain a mode pore 

size less than 50σ, the one sticky-ended counterparts show broader, flatter distributions with pore 

sizes approaching the simulation box size. We include plots directly comparing the pore sizes one 

and two sticky-ended CLP helices in Figure S11. 

Figure 8. Distribution of pore sizes, ξ, observed for the networks formed from CLP triple helices 
at 15, 20, and 25mM. The top row plots correspond to results from one sticky-ended CLP helices 
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while the bottom row plots correspond to two sticky-ended CLP helices; each column corresponds 
to the value of CLP concentration as indicated. In each plot, the results for each solvent quality are 
depicted with a dark red curve (  = 0.3 ; worst solvent), light red curve (  = 0.2 ), cyan 𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵 𝜀
curve (  = 0.1 ), and dark blue (WCA interaction; good solvent). For each simulation, we 𝜀𝐵𝐵 𝜀
compute the mean pore size distribution over ten snapshots collected every one million timesteps 
for the 10 million timesteps of the production simulation. Error bars represent the standard 
deviation of these means across three independent trials as described in the methods section. 

In the analysis of networks, the fractal dimension can be used as an indicator of both the 

size of the network strands and the branching of the network. Given equal levels of branching, a 

network with larger diameter strands will have a higher fractal dimension, and for two networks 

with similar fibril diameters, the one with greater branching will have a higher fractal dimension. 

We report the computed fractal dimensions in Figure 9. For all systems studied in this paper, we 

see a decrease in fractal dimension as solvent quality decreases. Since a worsening solvent quality 

is associated with an increase in strand diameters (Figure 5), we can attribute this decrease in 

fractal dimension to a lower degree of network branching. Visually we can see the decreasing 

fractal dimension (less branching) with worsening solvent, in the snapshots in Figure 4; there are 

more side-to-side aggregation at worse solvent conditions, resulting in network strands that have 

larger diameters and branch less frequently. We also see that this fractal dimension decrease is 

more substantial for networks formed from one sticky-ended CLP triple helices than for those 

formed from two sticky-ended CLP triple helices, as indicated by the slopes seen in adjacent panels 

of Figure 9. 

The contrast in the behavior of network pore sizes and fractal dimension between one and 

two sticky-ended networks as solvent quality worsens can be explained by the propensity of each 

type of CLP triple helix to assemble head-to-tail or side-to-side. Two sticky-ended triple helices 

have a higher tendency to assemble in a head-to-tail fashion as a result of the hydrogen bonding 
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sites on both ends of the triple helix, resulting in a network that is more branched with smaller pore 

sizes. In contrast, one sticky-ended triple helices have a higher tendency to assemble in a side-to-

side fashion since they only have hydrogen bonding sites on one end of the helix which ultimately 

results in a network that exhibits less branching and larger pores.

For assembled networks of both one and two sticky-ended CLP helices and all investigated 

solvent qualities, the fractal dimension is positively correlated with the CLP concentration. This 

result makes sense, as higher CLP concentration leads to CLP helices being in closer proximity, 

which will increase the tendency for a highly branching network. 

Figure 9.  The fractal dimension for each CLP concentration and for one and two CLP sticky ends. 
For each simulation, we compute the mean fractal dimension over ten snapshots collected every 
one million timesteps for the 10 million timesteps of the production simulation. Error bars 
represent the standard deviation of these means across three independent trials as described in the 
methods section. For each data point, the solvent quality improves as the color changes from dark 
red to light red to cyan to dark blue (corresponding to  values of 0.3 , 0.2 , 0.1 , and WCA, 𝜀𝐵𝐵 𝜀 𝜀 𝜀
respectively). Light gray dotted lines show linear fits to the data to enable easier comparison of 
the rate at which fractal dimension decreases as solvent quality worsens.
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Lacunarity describes the heterogeneity of an assembled structure at different length scales. 

Lacunarity values range from 1 (which occurs at the length scale of the entire voxel representation) 

to  (which occurs at the length scale of a single voxel), with higher values of 𝑛𝑣𝑜𝑥𝑒𝑙𝑠/𝑛𝑣𝑜𝑥𝑒𝑙𝑠 = 1

lacunarity indicating a greater level of heterogeneity. In Figure 10 we see that for all CLP 

concentrations and sequences studied, the lacunarity increases across all length scales as the 

solvent quality worsens. The one sticky-ended CLP triple helices form assembled networks that 

are more heterogenous at larger length scales than their two sticky-ended counterparts, as indicated 

by their higher lacunarity values at length scales approaching the simulation box size. The direct 

comparison between the lacunarities of one and two sticky-ended CLP helix networks is shown in 

Figure S13.

Figure 10. Lacunarity curves observed for the networks formed from CLP triple helices at 15, 20, 
and 25mM. The quantification of the length scale used for the x-axis is described in more detail in 
the Supporting Information. The top row plots correspond to results from one sticky-ended CLP 
helices while the bottom row plots correspond to two sticky-ended CLP helices; each column 
corresponds to the value of CLP concentration as indicated. In each plot, the results for each 
solvent quality are depicted with a dark red curve (  = 0.3 ; worst solvent), light red curve (  𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵
= 0.2 ), cyan curve (  = 0.1 ), dark blue (WCA interaction; good solvent). For each simulation, 𝜀 𝜀𝐵𝐵 𝜀
we compute the mean lacunarity distribution over ten snapshots collected every one million 
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timesteps for the 10 million timesteps of the production simulation. Error bars represent the 
standard deviation of these means across three independent trials as described in the methods 
section. 

3.2. Effect of Solvent Quality on Assembly of CLP helices at Low Concentration.

We also investigate the impact of solvent quality on CLP triple helix assembly at CLP 

concentration of 1 mM, which is well below the percolation threshold quantified in our previous 

work.12 At this concentration of 1 mM we observe formation of finite fibrillar clusters of CLP 

helices. 

We observe that a moderate solvent quality results in partially aligned one sticky-ended 

CLP heterotrimeric triple helices within fibrillar structure (Figure 11a), while further decreasing 

solvent quality results in enhanced alignment of triple helices within fibrils (Figure 11b). As 

expected, simulations snapshots also indicate the formation of fibrils with a larger number of 

helices per cluster with decreasing solvent quality, yielding a system with a less disperse 

arrangement of CLP helices. Similar results are seen in simulation snapshots for two sticky-ended 

triple helices, in which dispersed, fibrillar structures are observed at good solvent qualities (Figure 

S8a) and compact clusters of CLP triple helices with highly aligned triple helices within a single 

cluster arise with worsening solvent quality (Figure S8b). 

Next, we quantify sizes of clusters of heterotrimeric triple helices assembled via a 

combination of hydrogen bonding and solvent-induced interactions, in terms of the radius of 

gyration of the assembled cluster, Rg,cluster, and number of helices per cluster, Nhelix,cluster. We 

observe minimal effects of decreasing solvent quality on Rg,cluster (Figure 11c) for one sticky-ended 

helices, indicating that at lower concentrations, decreasing solvent quality does not increase the 

radius of gyration (spatial extent) of clusters, despite the enhanced side-to-side contacts. This is 
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the result of helices packing more tightly in the cluster so that a larger number of helices can 

associate via side-to-side contacts to form fibrils, while the overall size or radius of gyration of the 

cluster is unaffected.  In agreement with this hypothesis, we observe an increase in the number of 

helices per cluster (Figure S8c). For two sticky-ended triple helices, we observe that worsening 

solvent quality results in clusters of triple helices with smaller radii of gyration (Figure 11d). The 

smaller Rg,cluster values arise due to the compact and tighter packing of CLP triple helices within 

fibrils with increasing interactions between backbone beads. Like the one sticky-ended triple 

helices, two sticky-ended triple helices form clusters with a greater number of helices per cluster 

with decreasing solvent quality (Figure S8d). Therefore, although the spatial extent of fibrillar 

structures decreases in size with decreasing solvent quality for a two sticky-ended design, more 

helices are assembling to form a tightly packed cluster. 
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Figure 11. Simulation snapshots of one sticky ended coarse-grained CLP triple helices and 
weighted probability distributions of radii of gyration of the cluster, Rg,cluster  for one and two sticky 
ended heterotrimeric CLP triple helices as a function of solvent quality at a CLP concentration of 
1 mM. Snapshots for each solvent quality are depicted with a red curve (  = 0.3 ; worst solvent), 𝜀𝐵𝐵 𝜀
blue curve (  = 0.1 ), and black curve (WCA interaction; good solvent).  Weighted distributions 𝜀𝐵𝐵 𝜀
of radii of gyration are shown for c) one sticky ended and d) two sticky ended CLP triple helices.

4. Conclusion

4.1. Summary of this computational study 

In this study, we examined the impact of solvent conditions on the self-assembly of CLP 

triple helices into fibrillar structures and percolated networks. Specifically, we studied CLP triple 

helices made with different CLP strand lengths with POG repeating units in all strands; the 

differences in CLP strand lengths within the same triple helix lead to ‘sticky ends’ that have 

exposed hydrogen bonding donor or acceptor groups. We elucidated the extent to which hydrogen 

bonding between CLP heterotrimer triple helices and the solvent quality impact the structure of 

CLP triple helix assembly into clusters and networks for one sticky-ended and two sticky-ended 

CLP heterotrimers.

Using coarse-grained molecular dynamics simulations, we simulated the assembly of CLP 

triple helices in an implicit solvent and varied the solvent quality by changing the effective 

interactions between the CG beads representing the CLP strands’ amino acids. At higher 

concentration, we compared the structures of the CLP networks composed of different CLP triple 

helix designs, at different solvent qualities, through the distributions of network strand lengths and 

diameters, pore size distributions, fractal dimensions, and lacunarity (heterogeneity) of the 

simulated self-assembly of CLP heterotrimers into networks. At lower concentrations, we 

computed the distribution of numbers of CLP triple helices in each assembled cluster and the 

effective size of each cluster (via the radius of gyration).
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At CLP concentrations above the percolation threshold, we observed that a decrease in 

solvent quality results in more heterogeneous networks with a lower degree of branching, 

quantified by the lacunarity and fractal dimension, as interactions between individual CLP triple 

helices become more dominant. We also observed an increase in the diameter of network strands 

and pore sizes within the network as solvent quality worsens. There was also a nonmonotonic 

effect of solvent quality on network strand length (distance between physical crosslinks) in which 

intermediate solvent quality favored smaller network strand lengths, followed by larger network 

strand lengths observed for the worst solvent quality.  When comparing the networks assembled 

from one and two sticky-ended CLP helices, we found that at good solvent qualities, the two 

assemble into networks that are similar. As the solvent quality worsened, differences between the 

one and two sticky-ended networks emerged, with one sticky-ended networks showing lower 

branching, greater heterogeneity, and larger and broader network strand diameter and pore size 

distributions. 

At CLP concentrations below the percolation threshold, we observed that solvent quality 

played a larger role in increasing the number of helices per cluster as compared to the radius of 

gyration (i.e., spatial extent) of clusters of one sticky-ended CLP heterotrimers. For two sticky-

ended CLP heterotrimers, simulations showed larger numbers of helices per cluster with 

decreasing solvent quality but also showed more tightly packed helices with smaller radii of 

gyration per cluster. 

Next, we offer the implications of the above design rules and future work involving the use 

of solvent quality to study nanoparticle diffusion in heterogeneous networks and leveraging 

solvent quality as a means for tailoring network structure and mechanical properties of polymer 

networks.
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4.2.  Implications of CLP fibrillar network’s structural features on macroscopic 

properties

The rational design of percolated networks (e.g., hydrogels) for various applications requires a 

fundamental understanding of the impact of molecular design and solution conditions on the 

resulting features of assembled network structure such as distribution of pore sizes, physical 

crosslinks (junctions) density, branching at the crosslinks, and distributions of network strand 

lengths and network strand diameters. For example, hydrogels are frequently used as carriers for 

drug delivery with the pore structure of the network governing drug storage, diffusion, and release 

kinetics.38, 44 Studies have shown that defects in polyethylene glycol-based networks result in 

anomalous nanoparticle (quantum dot) diffusion; specifically, nanoparticles smaller than the 

average pore size were found to be immobile in  highly defective networks with an open network 

structure.38  The defective network resulted in bimodal pore size distributions, leading to 

entrapment of small particles in regions within the hydrogel that have below average pore sizes. 

In our study in this paper, we have demonstrated that pore structure and network heterogeneity 

(lacunarity) for hydrogen bonding driven network formation of CLP heterotrimers can be tuned 

via varying solvent quality, potentially allowing for creation of networks with desired 

heterogeneity and enabling future studies on the effects of network heterogeneity on 

drug/nanoparticle diffusion.

The importance of solvent quality on polymer networks has also been demonstrated in 

several studies in which non-aqueous solvents have been used to tailor the mechanical properties 

of polymer networks.45-47 Ahn, et al. demonstrated that the addition of glycerol/water mixtures to 

alginate hydrogels resulted in loss of intra-chain alginate hydrogen bonding and enhanced chain 
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flexibility.47 Moreover, glycerol improved the solvent quality for the alginate molecule while also 

promoting entanglement of alginate molecules with neighboring chains and superior mechanical 

properties. While our study in this paper has focused on short, unentangled peptide chains, our 

simulations suggest that good solvent quality may promote smaller pore sizes and potentially 

enhanced mechanical properties, in alignment with studies demonstrating that networks with larger 

pores result in mechanically weak networks due to the large amounts of void volume.48, 49 Other 

studies have shown that trace amounts of organic solvent (methanol) in water-organic solvent 

mixtures promote robust fibrillar assembly of short amyloid peptide fragments containing di-

phenylalanine motifs, while such peptide fragments are insoluble in water.50 These results mirror 

the simulation results in our study in this paper which show a higher propensity for large diameter 

fibrils with decreasing solvent quality. Mechanical models, such as the one developed by 

MacKintosh, Käs, and Jamney,37 have also been used to explain the scaling of the shear modulus 

with respect to the mesh size, fibril stiffness, entanglement length, and temperature in a broad 

range of semiflexible fibrillar networks.36, 51, 52 Specifically, their model states the shear modulus 

scales with the inverse square of the network mesh size. The geometric mesh size has been shown 

to be roughly equivalent to the mean pore size in polymeric solutions,34 so we expect qualitatively 

similar scaling of the modulus based on our computation of the pore size distribution.

Overall, this work highlights the complex interplay between solvent quality and CLP 

design in governing CLP self-assembly into networks and offers design rules regarding the impact 

of solvent conditions on CLP assembled structure and morphology. The computational work in 

this paper is meant to guide experimentalists on ways to tailor peptide network structure using 

polypeptide architecture, polypeptide concentration, and solvent quality with widespread 
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applications including the design of mechanically robust, fibrillar hydrogels with tailorable drug 

delivery capabilities. 

Supporting Information. Includes additional details for analysis implementation of fractal 

dimensions, lacunarity, graph-based analysis of network strand lengths and diameters. Additional 

simulation snapshots, cluster size analyses (radii of gyration of clusters, Rg,cluster, and number of 

helices per cluster, Nhelix,cluster), and figures directly comparing results for different CLP designs 

(one vs. two sticky ends) are reported.
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