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Range and strength of mechanical interactions of force
dipoles in elastic fiber networks†

Abhinav Kumar,a David A. Quint, b and Kinjal Dasbiswas ∗a

Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most
notably shape change, division and locomotion. These forces may be transmitted over long range
through the cytoskeletal medium - a disordered, viscoelastic network of biopolymers. The resulting
cell size scale force chains can in principle mediate mechanical interactions between distant acto-
myosin units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force
transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice net-
work, where fibers are represented as linear elastic elements that can both bend and stretch, and the
contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of met-
rics, we show how two such contractile force dipoles interact with each other through their mutual
mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we
quantify how forces propagate through the network from a single anisotropic force dipole by analyzing
clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain
energy with distance from a force dipole. We show that predominant fiber bending screens out force
propagation, resulting in reduced and strongly network configuration-dependent dipole interactions.
On the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions
that recapitulate the predictions of linear elasticity theory. By characterizing the differences between
tensile and compressive force propagation in the fiber network, we show how inter-dipole interaction
depends on the dipoles’ mutual separation and orientation. The resulting elastic interaction energy
may mediate a force between multiple distant dipoles, leading to their self-organization into ordered
configurations. This provides a potential pathway for active mechanical force-driven structural order
in elastic biopolymer networks.

1 Introduction
Mechanical forces generated in the cytoskeleton of animal
cells underlie essential functions such as cell motility1, shape
change2,3 and cell division4. These forces are exerted by molec-
ular motors of the myosin II family which bind to and slide
actin filaments5. Actin filaments, together with other semiflexible
biopolymers, constitute the cytoskeleton of the cell: a disordered,
cross-linked, viscoelastic network of fibers that supports the gen-
eration and transmission of mechanical forces6. Cells use these
forces to deform and sense their mechanical micro-environment,
which allows elastic substrate-mediated mechanical communica-
tion between cells7–9, in addition to communication via chemical
signaling. Similarly, there is evidence that myosin II motors may
sense and interact with each other through mechanical strains
that they generate in the cytoskeletal medium, leading to self-
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organized, structures with long-range (i.e., beyond molecular size
scale) order in the cell cytoskeleton10,11.

A minimal, coarse-grained model for cellular force distribution
at both spatial scales, whether exerted by individual actomyosin
units in the cytoskeleton, or by whole cells adhered to an ex-
tracellular matrix, is a contractile force dipole embedded in an
elastic medium12,13. The spatial distribution of the deformation
generated by such a force dipole, for example how far strain prop-
agates from the position of the dipole, depends on the mechanical
properties of the medium. For fibrous networks such as the extra-
cellular matrix comprising collagen or fibrin, it has been shown
that the force transmission can be longer-ranged than in a linear
elastic medium14,15. It has been suggested that the softening of
fibers under compression through buckling, together with stiffen-
ing under tension, can drive the enhanced range of force trans-
mission16–19. How forces propagate from an active, contractile
force dipole through a heterogeneous elastic medium, and how
that facilitates mechanical interaction between a pair of distant
force dipoles, are therefore significant biophysical questions. This
is analogous to elastic interaction of defects that act as sources of
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stress in passive materials20, and are found to play a role in the
organization of other disordered media such as granular pack-
ings21.

At time scales too short for cytoskeletal remodeling to occur,
the cytoskeleton behaves as an elastic material that can sustain
and transmit mechanical stresses22. The disordered cytoskeleton
can therefore be modeled as a network of elastic fibers that re-
sist both stretching and bending with elastic moduli, µ and κ,
respectively23–25. In the limit where the fibers are significantly
shorter than the persistence length, thermal fluctuations may be
ignored and an athermal, linear elastic model for the fibers may
be used to describe the cytoskeletal network instead of the non-
linear, entropic elastic constitutive relations of semiflexible poly-
mers25. Note that the model may be easily extended to incorpo-
rate nonlinear constitutive relations that more realistically model
cytoskeletal filaments. However for small deformations that oc-
cur far from the dipole, the force-extension relation of each fiber
is likely to remain in the linear regime.

A convenient modeling strategy to generate such an elastic net-
work with a disordered architecture is to start from a triangular
lattice and then to remove bonds at random, with a probability
p of bonds being present, which corresponds to a specific aver-
age coordination number, ⟨z⟩= 6p26–29. The macroscopic elastic
properties of such a network depend on the single fiber mechan-
ics as well as the network geometry, particularly the coordination
number. The macroscopic response of the network to shear is
controlled by the rigidity percolation threshold for networks with
“central force” springs. “Central force” (CF) implies equal and op-
posite forces on a pair of nodes along the bond connecting them,
with no transverse forces such as from resistance to bending. This
is theoretically predicted to be pT

CF = 2/3, just from Maxwell’s
constraint counting argument in 2D for a triangular lattice30, cor-
responding to a coordination number of z = 4. This transition has
been numerically verified to occur at pN

CF ≈ 0.6631, below which
a 2D triangular network of central force springs loses its rigidity
and becomes completely floppy. Such a rigidity percolation with
changing coordination number is a generic phase transition in
disordered elastic materials, occurring in network glasses32 and
colloidal gels33, in addition to fiber networks.

Below the central-force isostatic limit (p < pCF ), an elastic net-
work may be stabilized by the bending stiffness of fibers, here rep-
resented by the energy cost of changing angles between collinear
bonds in the triangular lattice. Slender fibers would rather bend
than stretch when stressed, as a result of their small bending to
stretching stiffnes ratio ( κ/(µl2) ≪ 1). The p < pCF regime al-
lows such stretch-free deformation modes. While not completeley
floppy, these soft modes are characterized by very low mechanical
energy that scales with κ. When diluted even further, a 2D trian-
gular lattice of fibers with finite bending modulus (κ > 0), exhibits
the rigidity percolation transition, with shear modulus becoming
G = 0 at the bending isostatic threshold, pb ≈ 0.4427,28,34,35. The
rigidity percolation threshold may be further lowered by impos-
ing additional constraints, such as bond torsion28.

Multiple computational network mechanics studies have used
triangular lattices for understanding how network connectivity
and fiber mechanics interplay. Our choice of using a lattice allows

us to compare directly our results with these previous studies, as
well as being guided by the well known rigidity percolation tran-
sitions for triangular lattices found in previous studies17,27–29.
Lastly, there are a few examples in cellular system where actin is
organised in structures which are anisotropic such as those found
in lamellopodia and stress fibers. For example, in the leading
edge of the lamellopodia, F-actin branching proteins give rise to a
densely connected and anisotropic actin network36,37.

When both fiber bending and stretching are taken into ac-
count, there is an intermediate dilution regime pb < p < pCF ,
where the network response to shear is dominated by fiber bend-
ing modes, leading to a scaling of the shear modulus with the
bending stiffness, G ∼ κ 27,28,32,38. The network deformations
in this regime involve bond rotations along the shearing direc-
tion without stretching, and are therefore qualitatively differ-
ent, from the stretching-dominated, over-coordinated (p > pCF )
regime, where the shear modulus is much higher and scales with
the fiber stretching modulus, G ∼ µ. The nonlinear elastic prop-
erties of under-coordinated fiber networks are demonstrated by
their “stress-strain” curves, which stiffen dramatically by orders of
magnitude, as the network transitions under shear from the bend-
ing to stretching-dominated regime39. Close to this transition,
the bending and stretching modes are coupled. This “bend-stretch
coupled” regime can be wider if the ratio of bending to stretch-
ing moduli increases27. Realistic biopolymer networks, such as
occurring in the cytoskeleton of living cells or in purified actin
gels, are expected to have a typical coordination number in the
range of 3 < z < 4 (0.5 < p < 0.67), where 3 and 4 correspond
to a branch point or fibers crossing, respectively39,40. This puts
biopolymer networks in the under-coordinated regime but close
to criticality, and allows for strong stiffening response to shear.
A similar stiffening transition has been shown to occur for bulk
deformations41.

Bending-dominated disordered fiber networks are character-
ized by spatially heterogeneous deformations. These depart sig-
nificantly from affine (uniform strain) behavor, and cannot thus
be captured by a continuum linear elastic model. We explore the
range of force transmission from a source force dipole model-
ing the active contraction generated by myosin motors, through a
2D disordered elastic network in various regimes. In contrast to
these recent works17,42–44 which study force transmission from
large, isotropic force distributions (modeling cells in extracellular
matrix), we focus on small, anisotropic force dipoles that deform
networks of linear elastic fibers that linearly stretch, compress and
bend. We aim to study the consequences of fiber bending sepa-
rately from fiber buckling. Such scenarios may arise in networks
with smaller forces and thicker fibers, that make fiber buckling
less likely45. Past works have extensively studied the macroscopic
elastic properties of such networks, including the rigidity perco-
lation transition,25,28,29,46, the local response of the network to
force monopoles or dipoles embedded within the network23, and
the effect of nonlinear elasticity of individual biopolymers arising
from softening due to buckling17 and stiffening under stretch-
ing16,42. In this work, we aim to investigate the mechanical in-
teractions that may arise between a pair of such force dipoles,
and the role that fiber bending plays in this process. As a pre-
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lude to this, we quantify how forces spread through the network
from one dipole. We then show how such a pair of force dipoles
may interact at long range (more than a few dipole lengths away)
through their mutual deformations of the intervening elastic net-
work. Such interactions leading to the mutual attraction and
alignment of force dipoles may underlie the self-organization of
initially disordered actomyosin units into ordered structures such
as stress fibers in the cytoskeleton26,47.

2 Model
We model the elastic medium as a regular hexagonal lattice
(of equilateral triangles) from which bonds can be randomly
removed to model disordered fiber networks. Such a lattice
(Fig. 1a) represents an actin fiber network where a set of collinear
bonds is understood to represent a fiber. Each bond between
a pair of nodes can stretch or compress with respect to its ini-
tial rest configuration (Fig. 1b). Fiber bending is implemented
through the rotation or relative change of angle between two
collinear bonds. Individual bonds in this model do not bend or
change shape. The actin network may be deformed by myosin
motor activity. Each actomyosin unit, comprising a myosin mo-
tor aggregate and the actin filaments it binds to, is modeled as a
contractile force dipole: a pair of equal and opposite forces ap-
plied at two nearby nodes. We create a force dipole by applying
equal and opposing forces at two selected nodes in the network
(1a inset). In depleted networks, we also make sure that bonds in
the vicinity of the force dipole are not removed, to allow efficient
force transmission and to prevent large node displacements due
to local floppy modes. The nodes on which we apply forces are
shown as green circles and the direction of forces are shown by
red arrows. This application of a force dipole mimics how myosin
motors contract the actin cytoskeleton 29,48.

The network deformation is calculated by minimizing its to-
tal mechanical energy, which includes the elastic energy stored
in the network from the stretching, compression and bending of
bonds28, as well as the work done by the force dipole in moving
pairs of corresponding nodes towards each other17 :

Et = Es +Eb +Ed =
µ

2 ∑
⟨i j⟩

(ri j − r0)
2+

κ

r0
∑
⟨ jik⟩

2sin2(θ jik/2)+ ∑
⟨mn⟩

F ·δmn

(1)

where µ and κ are the stretching and bending moduli respec-
tively, ri j represents the length of the bond connecting two neigh-
boring nodes, and r0 is its rest length, set to unity for all bonds in
our system. Fiber bending is modeled by angular springs at every
pair of collinear bonds, which are defined by the three nodes, j, i
and k, with ith node being central. For each such pair of collinear
bonds, we impose an energy cost, Eb, jik = (2κ/r0)sin2(θ jik/2) for
deviations from collinearity, which is the discretized form of the
bending energy in the worm-like-chain model for semiflexible
polymers. The dipole energy is the scalar product of force applied
on and the separation vector between the pair of nodes compris-
ing the dipole, which need not in general be along a bond. Here,
δmn is the separation vector connecting the mth and nth nodes that

comprise one force dipole. The force is central and always along
the separation vector δmn , though myosin motors may also act
transversely to fibers49. In this work, unless otherwise stated, the
dipole nodes are chosen to be 4 units apart, i.e. δmn = 4r0.

Our 2D triangular network of nodes connected by bonds has
periodic boundary conditions along both x and y directions. The
lattice size used for the simulations is 64× 64, unless stated oth-
erwise. Force is applied incrementally to the nodes of the dipole.
At each step of force application, we use the conjugate gradient
method to minimize the energy of the network given in Eq. 1
and find its new configuration52. The energy tolerance to ac-
cept the new configuration as being the energy minimum is set to
2× 10−6. The process is repeated up to a maximum force value
and for a fixed number of force iterations. For the results reported
here, forces were applied at increments of f0 = 0.04 to each dipole
node, for a total of 10 steps. The resulting force applied is then
f = 0.4. Typical deformed network configurations obtained in our
simulations for one and two dipole cases are shown in Fig. 1d-g.

For an elastic fiber, the bending modulus κ = π

4 Ea4 depends on
the Young’s modulus E and the fiber radius, a45. The stretch-
ing modulus is µ = πEa2. We define a nondimensional ratio
of bending to stretching, which depends on the fiber length:
κ̃ = κ/(µl2) = 1

4 a2/l2. For an actin filament that has a diame-
ter of 7 nm6, and is of length l ∼ 10 µm (an upper bound for
cells), we estimate κ̃ ∼ (a/l)2 ∼ 10−6. For shorter filaments with
lengths l ∼ 1µm or l ∼ 100 nm, such as those found in the actin
cortex4, this value is larger, κ̃ ∼ 10−4 and κ̃ ∼ 10−2, respectively.
This range of values is consistent with bending to stretching ratios
previously used for modeling actin filaments28,50.

Using the worm-like chain model for semiflexible polymers, we
estimate a thermal fluctuation induced strain of ε0 = l/(6lp)

25.
For an actin filament of length l ∼ 1 µm and known persistence
length lp ∼ 17 µm, this strain has value of ε0 ∼ 10−2, while for
l ∼ 100 nm, ε0 ∼ 10−3. We use this as a threshold strain to iden-
tify the range of force transmission from the source dipole in our
model fiber networks. The elastic force corresponding to this
strain is µ · ε0 ∼ κl/(6lpa2) ∼ kBT/(6a) · (l/a), which for l ∼ 100
nm, a = 7 nm and kBT ≈ 4 pN · nm is the thermal energy scale
at room temperature, gives a value of the characteristic value of
force ∼ pN. This is comparable with the force produced by a non-
muscle myosin motor minifilament with 10 heads, each produc-
ing a force of pN, with a duty ratio of ∼ 10%51. Thus, a force of
f = 0.4 applied in the simulation corresponds to ∼ 0.4 pN, while
the separation of 4 units corresponds to 4l ∼ 400 nm, which is
indeed the typical size scale for an actomyosin contractile unit in
stress fibers of the cellular cytoskeleton10.

3 Results

3.1 Single dipoles in over-coordinated networks

We first consider the case of a single force dipole in a nearly uni-
form triangular lattice of springs. To examine how the force prop-
agation in the network is affected by a small amount of disorder,
we dilute the network by randomly removing bonds, while stay-
ing in the stretching-dominated regime (p ≥ 0.67 or z ≥ 4). Since
this procedure may result in many different specific network re-
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Fig. 1 Elastic fiber network model and representative minimum energy configurations from simulation. (a) An example hexagonal lattice (comprising
equilateral triangles) of size 64×64 with bonds randomly removed according to the bond occupation probability, p = 0.8. The two nodes marked in
green are those on which a pair of equal and opposite forces, f , here along the x−axis, are applied to create a force dipole. (a: inset) Zoomed in
version of (a) with red arrows indicating the direction of the dipole forces. (b) Schematic illustrating the stretching, compression and bending of bonds
that contribute to mechanical energy in the model. Each bond, when present between neighboring nodes, is modeled as a linear (Hookean) spring
with a uniform rest length and stiffness, µ. Each pair of collinear bonds is associated with an angular spring of stiffness κ that penalizes deviations in
angle between the two bonds from the original value, and represents fiber bending stiffness. Buckling and other forms of elastic nonlinearity of bonds
are ignored, which is justified for small forces and stiff fibers. (c) A representative simulation result for a p = 0.8 network (shown in a) deformed by
a single dipole, with value of force, f = 0.4. The colorbar shows strain values for stretched (blue) and compressed (red) bonds. Bonds that carry a
strain magnitude above a threshold value |ε0| = 0.003 are highlighted in bold. The bonds with relatively very high/low strains, usually found at the
dipole, are plotted as black dashed lines to ensure that there is appreciable color gradient visible for the remaining bonds. (d) Zoomed in view of the
region around the force dipole in the network of (c), showing bonds with strains higher than the threshold in thick red (compressed) or blue (tensile).
(e) Same as (d), but for a p = 0.6 network. Fiber bending through local rotation of bonds is more pronounced, while the tension and compression
of bonds is less, than in (d). (f,g) Strain plots produced by two canonical pairwise dipole configurations: separated along (x−axis) and transverse to
(y−axis) the dipole axis, respectively. In the cases shown here, all bonds are present (p = 1) and strain threshold, ε0 = 0.003. In this work, we show how
the mechanical interaction between a pair of force dipoles through their mutual deformations of the elastic network, varies with inter-dipole spacing
(dx or dy) and configuration. The dipoles are expected to be driven towards more favorable configurations characterized by lower elastic energy of the
network.

alizations, we simulate four different networks at each value of p
to show the fluctuation in strain and cluster trends. In each case,
we ensure that we do not have any singly-connected nodes, to
prevent dangling bonds. The effective bending stiffness is set to
be very small in relation to stretching, κ̃ = 10−6. We show rep-
resentative simulated network configurations for three different
bond dilution factors in Figs. 2 a, b, c. Corresponding simulations
for the uniform lattice are shown in Fig. S1. Although such an
ordered lattice of springs is not a faithful representation of real
fiber networks, it is important to understand and benchmark the
model response to force dipoles.

In all cases, stretched (compressed) bonds are colored in blue
(red). As seen here, a force dipole creates primarily stretched re-
gions along its axis, i.e., to its left and right. Similarly, the dipole
compresses the network in the transverse direction, in this case,
above and below it. Additionally, strongly strained bonds beyond
a chosen threshold are highlighted in bold. For the results pre-
sented here, the threshold value is set to ε0 = 0.003. This is com-

parable to our estimate for strain induced in a semiflexible actin
polymer by thermal fluctuations alone. We verified that the re-
sults do not qualitatively change for a smaller strain threshold
(Fig. S2).

To quantify the spatial extent of force propagation in the net-
work from the force dipole, we analyze clusters of nodes that are
connected to strongly strained bonds. The nodes participating in
such a cluster are colored blue in Fig. 2 a, b, c. A cluster is de-
fined to be a set of nodes, with positions ri, that share at least
one bond with magnitude of strain above a threshold value. The
cluster nodes may or may not be directly connected to the dipole
nodes, though in practice we observe that most highly strained
bonds form a single, large, connected cluster that includes the
dipole nodes. The radius of gyration for a cluster with N nodes is
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Parameter Symbol Simulation Value Physical Value
Fiber length l ∼ 1 10µm,1µm,100nm

Bending rigidity κ̃ 10−6,10−4,10−2 17 µm · kBT
Dipole force f 0.4 0.4 pN

Table 1 Model Parameters By changing the bending-to-stretching stiffness ratio, we represent three different typical actin fiber lengths4,6. These
ranges of bending-stretching ratios have been used in previous works28,50. The parameters listed here allow us to investigate rigid as well as floppy
networks. The dipole force is comparable to that produced by a nonmuscle myosin motor minifilament51.

p = 0.9p = 1.0

(a) (b) (c)
(d)

(e) (f)

p = 0.8

Fig. 2 Tensile cluster around single dipole in a regular lattice and also slightly diluted, stretching-dominated networks. (a-c) Representative
configurations of tensile clusters at p = 1, 0.9 and 0.8 for Network 2 show that clusters elongate along the dipole or x−axis as bonds are removed.
(d) Number of nodes in the cluster (N), (e) Radius of gyration of cluster (Rg), and (f) R2

g/N, a measure of compactness of cluster shape, all as
functions of the bond occupation probability p in the stretching dominated (p > pCF = 0.67) regime. While cluster size (d,e) is apparently insensitive
to network connectivity in the stretching dominated regime, the cluster shape becomes less circular as network connectivity is reduced. The value of
shape parameter, R2

g/N, for a circular region is shown by a thick black line.

defined below in the standard way,

Rg =

√√√√ 1
N

N

∑
i=1

|ri − rc|2 (2)

where ri is the position of the ith node in the cluster, and rc =
1
N ∑

N
i=1 ri is the center of mass of the cluster.

As we deplete the uniform lattice in Fig. 2, there is an increase
in the number of nodes participating in the tensile cluster along
the axis of the dipole that manifest as branching “force chain”
structures. These subnetworks of highly strained bonds are vi-
sual examples of the mechanical heterogeneity of disordered net-
works. They imply that strain is concentrated in some bonds in-
stead of varying smoothly with distance from the dipole. While
we do not track each force chain individually as in Refs.42,53,
our clustering analysis gives a rough measure of the force chain
length in the form of the Rg. This increase in cluster extent along
the axis of the dipole can be attributed to the fact that most of the
stretched bonds (blue) lie to the left and right of the force dipole

(Fig. S1). At the same time, because some bonds are randomly
removed, nodes that made up the tensile cluster in a uniform net-
work may not be a part of the cluster anymore.

We notice in Figs. 2 d,e that the cluster size does not show
any significant change as the network is diluted, though there is
possibly a slight increase in the average Rg. This suggests that
while there are fewer bonds near the dipole as p decreases, there
are new bonds, that previously did not participate in the tensile
cluster,that now become highly strained. Altogether, these two
effects keep the size of the cluster roughly constant. However,
the cluster shapes clearly become more anisotropic as bonds are
diluted (decreasing p).

To quantify the trends in cluster shape, we introduce a param-
eter R2

g/(Nr2
0) that measures the deviation of cluster shape from

a compact circle. Higher values of this parameter correspond to
more anisotropic or branched shapes. This metric for quantifying
changes in cluster shape is also insensitive to variations in net-
work heterogeneity (compare Figs. 2 e,f) so that analysis of dif-
ferent network realizations at the same value of p will be straight
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forward.
We show in Fig. 2 f that this shape parameter increases with

progressive bond dilution. It remains well above the limiting
value for a circular region in a 2D triangular network,

√
3/4π =

0.137 (Fig. S3), which is marked by the horizontal line in Fig. 2f.
We also show in Fig. S1 that cluster size increases with dipole

force. This is expected since the strain in a linear elastic medium
induced by a force dipole is proportional to the dipole stress, and
thus its force density.We also also show that the cluster becomes
slightly less elongated as the force increases (Fig. S1 g), saturat-
ing at a force of about 0.26. In all cases, we ensure that there are
no unphysical metastable states when minimizing the network
energy. This is done by changing the force value by different step
sizes, which we show all result have the same values of final en-
ergy (see Fig. S4).

Since the force dipoles induce anisotropic elastic deforma-
tions, we expect different spatial distributions for compressed and
stretched bonds. To characterize this difference, we now consider
compressive clusters that comprise nodes connected to bonds
with larger compressive (negative) strain, ε < −ε0, in Fig. 3. For
the uniform (p = 1) network shown in Fig. 3a, the cluster is al-
most circular in shape. This structure is different from tensile
clusters Fig. S1 which are anisotropic with major axis aligned
along the dipole direction. It is also notable that “island” clusters
and ring like structures are formed when the network is depleted.
These are seen for the p = 0.9 case shown in Fig. 3b, and become
more pronounced at p = 0.8 in Fig. 3c. These ring like structures
are a signature of compressive clusters in our simulations, while
the tensile clusters have linear force chain like structures (Fig. 2).
We further verify in Fig. S5 that the size of a compressive cluster
increases linearly with increasing force as expected. The shape
parameter, R2

g/N, for the compressive cluster in a p = 1 network
is unaffected by force and remains very close to the circular value
(horizontal line), as shown in Fig. S5b.

Similar to tensile clusters, we expect two competing effects
that affect the size of compressive clusters as we deplete the net-
work. First, the removal of bonds tends to decrease the direct
connection of a node with the dipole. Second, the presence of
fewer bonds leads some compressive bonds, which had strains
below −ε0, to take up more load and participate in the cluster.
These two effects seem to balance and result in no net systematic
change in cluster size with small amounts of depletion, as shown
in Fig. 3d,e. Lastly, we show in Fig. 3f that depletion increases the
shape anisotropy, R2

g/N, corresponding to the clusters becoming
less circular. This deviation from circularity is due to the voids
as well as islands forming for the compressive clusters, as seen
in Fig. 3 c. We also note that the shape parameter is appreciably
lower for the compressive clusters (R2

g/N ≈ 0.15− 0.25) than for
the tensile clusters (R2

g/N ≈ 0.25−0.33) in Fig. 2. Altogether, we
show that the propagation of compressive strains from the dipole
is qualitatively different from that of tensile strains. This may af-
fect the way a second, test dipole interacts with the first dipole.
Since a contractile dipole lowers the network deformation when it
is in a stretched region, these strain maps may guide the favorable
position of a second dipole with respect to the first. However, our
results suggest that such favorable configurations of two dipoles

may be sensitive to the specific network.

3.2 Single dipole in under-coordinated networks

Upon further dilution of bonds, specifically for p< pCF ≈ 0.67, the
network enters an under-coordinated regime. There are many
available low-energy bending modes for such networks, which
allow nodes to move in response to the dipole forces such that
collinear bonds bend, but stretching (or compression) of bonds
is minimal. In this bending-dominated regime, at p = 0.6, , we
see in Fig. 4a that the tensile clusters are small (N ∼ 50 here
compared with N ∼ 200 in the stretching-dominated regime) in
all of the networks at κ̃ = 10−6. Increasing the bending stiffness
relative to stretching to κ̃ = 10−4 does not have a pronounced
effect, either on cluster size or on the shape parameter, as seen
in Figs. 4a-b. These cluster trends are easily seen in the sam-
ple network configurations shown in Figs. 4c-d. Significantly
compressed (red) or stretched (blue) bonds occur only in the im-
mediate vicinity of the force dipole. Some of these bonds (deep
red and blue) carry higher strain because the dipole nodes are lo-
cally over-coordinated. Away from the dipole, the bonds are not
strained but the network shows significant bending deformations.
This is because local clusters of bonds can easily rotate to reduce
strains, especially in regions of lower local connectivity.

However, a qualitatively and quantitatively different behavior
is seen, when the bending to stretching stiffness ratio increases
to κ̃ = 10−2. Figs. 4a-b show that both cluster shape and
anisotropy are significantly enhanced at this value of κ̃. Com-
pressive clusters show a similar behaviour (see Fig. S6). This is
visually confirmed by the sample simulated network configura-
tion shown in Fig. 4e, which resembles the tensile cluster seen for
a single dipole in the stretching-dominated regime. Both tensile
and compressive force chains are clearly seen to extend from the
dipole nodes. This suggests, that due to the higher energy cost
of bending, the bonds are not as free to rotate and relax stretch-
ing as for the lower κ̃ networks. In fact, previous simulations
show the existence of such a bend-stretch coupled regime, where
both bending and stretching deformations occur in response to
network shear25. The network shear modulus in this intermedi-
ate regime scales with both κ and µ. These works showed that
the bend-stretch coupled regime occurs in the transition between
the bending (low p) and stretching (high p) dominated regimes
, and that the range of p-values over which this regime occurs
grows wider as the bending to stretching ratio, κ̃, is increased25 .
Motivated by the prediction for the existence of the bend-stretch
regime close to the transition point, we simulate the network de-
formation at p = 0.67 ≈ pCF for the lower κ̃ = 10−6. Indeed, we
see that for this case (Fig. 4f), the bend-stretch coupled behav-
ior characterized by moderately large cluster size is restored. The
measurement of cluster shape (Fig. 4b) also shows a quantitative
agreement between networks that are stiff to bend (κ̃ = 10−2) at
p = 0.6, and and networks that are softer to bend (κ̃ = 10−6) but
are closer to the bending-stretching transition, p = 0.67. Thus,
the bend-stretch regime occurs either when network connectiv-
ity approaches pCF , or when it remains in the under-coordinated
regime p < pCF but has higher bending stiffness κ̃. Our simula-
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(a) (b)
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(c) (d)

(e)

p = 0.8p = 1 p = 0.9

Fig. 3 Compressive strain cluster around a single dipole in slightly diluted, stretching-dominated networks. (a-c) Clusters of nodes (green) connected
to highly compressed (strain below prescribed threshold, ε0 <−0.003) in typical network configurations. (a) Cluster for p = 1 is approximately circular.
(b,c) Clusters deviate from a compact circle to having ring like and disconnected structures upon bond dilution. (d) Number of nodes in the cluster
(N) shows no clear trend with increasing dilution of the network. (e) Radius of gyration, Rg increases slightly with increasing dilution. (f) R2

g/N, a
measure of cluster shape, deviates from circularity as we deplete the network. However, compressive clusters are still more circular than tensile ones
even when the network is depleted (Fig. 2f). The thick black line shows the value for a circular cluster.

tion results show that large compressive and tensile force clusters
emerge in the bend-stretch coupled regime, as seen also in sim-
ulations of networks under shear where force clusters get bigger
as the transition p = pCF is approached. These clusters restore
long-range force transmission through the network, making them
comparable with the stretching-dominated cases.

3.3 Strain distribution for single dipoles

In addition to force clusters, we may quantify the range of strain
propagation in the network in terms of the rate of decay of elastic
strain energy with distance from the dipole. In order to measure
the average strain energy density at a given radial distance from
the dipole, we consider annular regions of increasing radii rang-
ing from R = 4−40, each of thickness ∆R = 2, and centered mid-
way between the nodes of the single dipole, as shown in Fig. 5a.
The maximum radius of the annular region is set by the total lat-
tice size, which was chosen to be L = 96 for this particular mea-
surement, in order to allow a wider range of distances. We then
calculate the average strain energy in all bonds in the kth ring
as Ek

strain = µ/2⟨ ε2
i j⟩, where i, j represent all adjacent nodes con-

nected by bonds in the kth ring, and εi j = (ri j/r0 −1) is the corre-
sponding bond strain. Ek

strain is thus the mean strain energy stored
in the kth annular region.

From this analysis, we find that the strain energy decays as a
r−4 power law with distance for a uniform network as seen from
Fig. 5b. This is expected from linear elasticity theory because the
strain energy density Estrain ∝ ε2, where the continuum strain field

induced by a force dipole in an infinite, 2D elastic medium decays
with distance as ε ∝

1
r2 . Taken together, this predicts Estrain ∼ r−4.

See Appendix B for the continuum linear elasticity derivation of
the strain for a force dipole. We find that on introducing small
amounts of disorder (p < 1), the strain energy decay begins to
deviate from this r−4 scaling. For example, the inset of Fig. 5b
shows the strain energy decay for p = 0.8 for a specific network
realization (Network 1). In general, we find that the strain energy
decay remains a power law of the form r−m, with the decay ex-
ponent m remaining close to that of the uniform p = 1 network in
stretching-dominated regime as shown in Fig. 5c. For stretching-
dominated networks, the rate of decay of strains increases with
increasing depletion, as seen from the power law decay exponents
in Fig. 5c. The relatively higher localisation of strains in the vicin-
ity of the dipole for more depleted networks leads to a higher rate
of decay in the strains away from the dipole.

While the stretching-dominated networks all show power law
decays of strain with distance, bending-dominated networks be-
have qualitatively differently, as shown in Fig. 5d for the four
networks with p = 0.6 and κ̃ = 10−6. In these networks, the strain
decays faster at larger distances compared to smaller distances
and there is no single power law regime. On comparing with
the representative strain map for this case shown in Fig. 4c, we
suspect that this may be because while bonds very close to the
dipole can be strongly stretched or compressed, the long-range
response is dominated by bending of bonds. In this region, the
mean strain energy of the bonds decays rapidly, as the bonds are
barely stretched. The decay of elastic energy with distance is thus
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p = 0.67
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p = 0.6

p = 0.6 p = 0.6

Fig. 4 Strain cluster around single dipole in highly diluted, bending-dominated networks. All plots are for four network realizations, diluted below
the isostatic limit. The network deformation is dominated by low energy (floppy) modes involving bonds bending (rotating) in preference to stretch-
ing/compressing. (a) Number of nodes (red data) and radius of gyration (blue data) in each tensile cluster show two distinct regimes: for κ̃ = 10−6

and 10−4, the clusters are very small compared to the high bending stiffness κ̃ = 10−2, case. Low bending stiffness case (κ̃ = 10−6) at the bend-stretch
transition point, p = 0.67) behaves like higher bending stiffness case. (b) Cluster shape parameter Rg

2/N also shows a gap between the higher bending
stiffness, κ̃ = 10−2,and lower bending stiffness cases. Low bending stiffness case (κ̃ = 10−6) at the bend-stretch transition point, p = 0.67) behaves like
higher bending stiffness case. (c,d,e) Tensile clusters in the same network at different bending stiffness values, κ̃ = 10−6,10−4 and 10−2. The network
at κ̃ = 10−2 allows tensile/compressive strains to be transmitted farther than for networks in the pure bending regime. (f) This response is similar to
the bend-stretch coupled regime accessed by keeping κ̃ = 10−6 and increasing p to pCF = 0.67.

very different for the bending-dominated network from a contin-
uum, linear, elastic theory prediction, due to the non-affine nature
of deformations in this regime54,55. A similar behavior of slower
decay of displacements at short distances and faster decay at long
distances is seen in collagen gels 56.

To further analyze the spatial decay of strains and to character-
ize the mechanical heterogeneity of these networks, we measure
the strain distribution of tensile bonds. In Fig. 6, the fraction of
stretched bonds is plotted against the corresponding value of ten-
sile strain normalized by the threshold value, ε/ε0. The color bar
indicates the distance of the corresponding bonds from the cen-
ter of the dipole, suggesting a continuous variation in bond strain
with distance. We expect compressed bonds to be similarly dis-
tributed (not shown). For networks in the stretching-dominated
regime, p > pCF ≈ 0.67 shown in Figs. 6a-b, we expect the bond
strains to closely follow that made by an affine deformation. As
we go further in radial distance r from the center of the dipole,
the number density of available bonds at that radius increases as
n(r) ∼ r, while linear elasticity theory predicts that the strain de-
cays as ε ∼ r−2 ( Appendix B). Together, these predict a n(ε)∼ ε−2

scaling of number of bonds with strain, shown as the dashed line
in the strain distributions. We see that the stretching-dominated
networks follow this affine prediction very closely, except at very
low strains (ε < 10−1) corresponding to a large number of distant
bonds without significant strain, and at high strains, correspond-

ing to the few bonds very close to the dipole. These account for
only a few bonds per value of strain and thus do not contribute to
the continuous ε−2 strain distribution.

As we go through the stretching to bending-dominated transi-
tion (Fig. 6c-d), the number of significantly strained bonds de-
creases. In Fig. 6c, we show the strain distribution for Network
1 in the bend-stretch coupled regime (p = 0.67). Here, the num-
ber of bonds with low strain (seen in the leftmost bin of the his-
togram) is comparatively more than the networks with p = 0.8
and p = 1. Other networks in this regime have similar distribu-
tion profiles as well. For bending-dominated networks at p = 0.6
(Fig. 6d) and p = 0.48 (Fig. S7) , almost all bonds ( 92%) have
very small strains in the ε/ε0 < 10−2 bin. These represent all
bonds beyond a distance of ≈ 10 from the dipole, as seen from
the color bar. We thus note a qualitative difference in the strain
distributions of the bending-dominated networks. which show
an absence of intermediate strains that are not very high or very
low. This shows up as a noticeable gap in the range of normalized
strain values between ε ∼ 10−2 − 10−1. We show in Fig. S8 that
this gap in strain values increases with increasing bond dilution.

Overall, we find that the stain energy decays as a power law
function of radial distance for the stretching-dominated (p> 0.67)
networks, while the bending-dominated (p < 0.67) networks do
not follow a single power law. Increasing the depletion of bonds
in networks leads to an increase in rate of decay of strain energy
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Fig. 5 Decay of strain energy in network bonds with distance from a single dipole. (a) The strain energy from stretching/compression of bonds is
calculated over annular regions of width ∆R = 2, shown in different colors in the undeformed, uniform network. To increase sampled distances from
the force dipole (center), we consider simulation box of increased size L = 96. (b) Mean strain energy, Ek

strain = µ/2⟨ε2
j ⟩, averaged over each jth bond

in the kth annular region, vs radius of the annulus, Rk, for a uniform network. Green circles are measured from simulation data, while the dot-dash
line shows for comparison, a decay rate in strain energy of r−4, predicted from linear elasticity theory. Inset: strain energy decay with radial distance
in Network 1 for disordered network with p = 0.8. (c) For depleted networks in the stretching regime, we plot the exponents of the best fit power law
for decay of strain energy vs distance, for all four network realizations, against the corresponding p values. The value of slopes are close to the value
of −4 for uniform networks, decreasing slightly with bond dilution. (d) Mean strain energy in each annulus vs. radius of annular region, for networks
in the bending-dominated regime (p = 0.6). There is no single power law regime in the decay of strain energy, which shows slow decay close to the
dipole, and then more rapid decay at larger distances. The strain energies are also lower in value when compared to networks in the stretching regime
(see b), showing that bending screens out strain propagation making it shorter-ranged.

(Fig. 5). This is because the removal of bonds leads to bonds
near the dipoles being strained more than in uniform networks
(compare Figs. 6 a and b). The strain distribution was quite ho-
mogeneous in stretching- dominated networks. However, we find
an absence of intermediate strains in bending -dominated cases.
To further quantify the networks’ response to applied contractile
forces, and interaction between two force dipoles, we next exam-
ine strain clusters formed by two dipoles.

3.4 Strain clusters for two dipoles

We now consider the combined network deformations by a pair
of dipoles, which could be positioned in a variety of configura-
tions. This will help identify how the deformations by one dipole
affect the other, and potentially elucidate long-range mechanical
interactions between myosin motors in the cytoskeletal network.
We will consider two dipoles oriented along the x−axis, but which
could be separated along their axes by a distance dx, or transverse
to their axes, by a distance dy. A third possibility, when the sec-
ond dipole is rotated to be perpendicular with respect to the first,
is shown in Fig. S9. This was done to study dipoles that are not
along the principal lattice directions.

In uniform networks with two dipoles placed along the x−axis,
we find that tensile as well as compressive cluster size generally

tends to increase with separation between dipoles (Fig. 7). At
close distances, there is a large region of overlap between the
tensile strain clusters produced by both dipoles. As the distance
increases, this region of overlap decreases in size leading to a
higher net number of nodes that participate in the two-dipole
cluster. There is also a secondary effect that changes the num-
ber of nodes in the tensile cluster with separation. At small dx,
the combination of two dipoles causes more bonds along the ver-
tical direction to also become highly tensile. As dx increases, this
effect decreases, and the cluster becomes more localized along
the x−axis. The decrease in tensile bonds on the vertical axis and
increase in tensile bonds between the two dipoles as dx increases,
compete to decrease and increase the cluster size, respectively. It
is this competition that presumably leads to a decrease of N when
the separation changes from dx = 12 to dx = 16 in tensile clusters
seen in Fig. 7e. At the farthest distance we sample, the size of the
cluster is larger than twice the size of a tensile cluster formed by
a single force dipole (Fig. S1).

In the compressive case, the two dipoles form a unified single
cluster at small separation (Fig. 7 b). However, as distance in-
creases, the two clusters become disconnected (Fig. 8 b). This
disconnect, whose onset is marked by a dip in the cluster size at
dx = 16 in Fig. 7f is followed by creation of two clusters that are
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(a) (b)

(c) (d)

p = 1
p = 0.8

p = 0.6p = 0.67

Fig. 6 Strain distribution suggests bending modes decrease force transmission. Each plot shows the normalized number of tensile bonds plotted against
the corresponding bond strain (normalized by the threshold value), with colorbar indicating the mean distance of bonds in a given bin from the force
dipole. Here, “tensile bond fraction” denotes the fraction of stretched bonds within a strain bin normalized by the total number of stretched bonds.
(a) Strain distribution for a uniform network (all bonds present). (b,c) Strain histograms for Network 1 at p = 0.8 and 0.67 respectively (Network 2, 3
and 4 also show similar results). Networks with p = 1 and 0.8 are well within the stretching regime. Here the strain distributions show a continuous
increase in strain as distance from dipoles decreases. However, for p = 0.67, the number of bonds in the lowest strain bin is higher than those for
p = 1 and 0.8. At the same time, the number of highly strained bonds is smaller. This suggests that bending reduces strains in this network (Network
2, 3 and 4 also show same result) and hints at the presence of a bend-stretch coupled regime. (d) Strain distribution for four network realizations at
p = 0.6. Bonds in these networks that are very close to the force dipole are highly strained while all other bonds have very little strain. The bonds
at intermediate distances have very low strains because bending screens the long-range transmission of strain. These bonds lie in the first bin of the
histogram with minimum strain and the mean distance of each bond in this bin is higher than 2.

independent of each other. The total number of nodes that make
up these two clusters is approximately equal to twice the size of
a compressive cluster formed by a single dipole. Due to this, N
reaches a maximum and does not change in value at dx = 20 and
24. This suggests that there is no significant interaction between
the two dipoles at this distance. Combined with the size increase
in tensile clusters, this shows that the two force dipoles interact
through tensile bonds at large distances and compressed bonds
do not play a role.

3.5 Two dipole cluster interactions

We now aim to quantify how the presence of a second dipole
modifies the tensile and compressive force clusters created by the
first dipole. To do so, we consider simulations performed for three
cases: dipole 1 (left) alone, diple 2 (right) alone, and both dipoles
1 and 2 present (Fig. 8). We focus on how the presence of the
dipole 2 on the right modifies the cluster around dipole 1 on the
left. Equivalently, we could have considered the effect of dipole
1 on the cluster around dipole 2, but in general this could be dif-
ferent because of the difference in local network structure around
the dipoles in the bond-diluted cases. However, since we present
these results for slightly diluted (p > 0.8) networks, these fluctu-
ations are expected to be small. This expectation is supported by

our observation of similar trends in four different specific realiza-
tions of the diluted networks. The fluctuations are expected to
grow for bending-dominated networks, which we do not consider
in the current analysis, because the cluster of strained bonds is
very small in these cases (Fig. 4).

In Fig. 8, nodes are colored differently depending on whether
they belong to the cluster arising in a single dipole or a two-dipole
simulation. For concreteness, let us define C12 as the set of nodes
in the tensile cluster when both dipoles 1 and 2 are present, while
C1 and C2 are clusters when only dipole 1 or only dipole 2 is
present, respectively. The blue nodes shown in (Fig. 8 a) are com-
mon to the cluster formed by dipole 1 or dipole 2 alone, as well
as to the cluster formed by the combined effect of both dipoles
1 and 2: (C1 ∪C2)∩C12. The black nodes belong to the com-
bined cluster of both dipoles (C12), but are not present in single
dipole clusters induced by dipole 1 or dipole 2: C12 − (C1 ∪C2).
So the black nodes show that cluster size increases due to interac-
tion between the two dipoles. Their number is a measure of the
extent of positive interaction or reinforcement between the two
dipoles . Magenta nodes belong to the cluster induced by dipole
1, but are not present in the combined cluster of the two dipoles:
C1 −C12. Therefore, the number of magenta nodes is a measure
of the negative interaction or shielding effect of dipole 2 (right)
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Fig. 7 Tensile and compressive cluster analysis for two dipoles in a uniform network. (a) Tensile clusters formed by two dipoles with separation dx = 8.
(b) Compressive clusters formed by two dipoles with separation dx = 8. (c) Tensile clusters formed by two dipoles with separation dx = 24. Tensile
clusters formed by two force dipoles are connected at all distances we can sample in our simulation box. (d) Compressive clusters formed by dipoles
with separation dx = 24. When there is a small separation between the force dipoles, the compressive clusters form one large cluster, but separate on
increasing distance between dipoles. (e) The size of the tensile cluster increases with increasing separation between the two dipoles. However, there
is a small dip in the number of nodes as the separation increases from 12 to 16. As separation increases, more nodes that lie between the dipoles
become available for cluster formation. At the same time, the extent of the cluster along the y−axis decreases since there is less overlap between the
tensile regions formed by the two dipoles. (f) The size of compressive clusters increases with increasing separation between the two dipoles. But,
when the separation between dipoles is 16 and larger, the clusters are disconnected. This leads to a dip in cluster size at dx = 16, after which at larger
distances, the cluster size does not change as a function of separation.

on the cluster of dipole 1 (left).

Tensile clusters induced by two dipoles separated by dx = 8
(Fig. 8a) show positive reinforcement in cluster size due to the
presence of the the right dipole (more black nodes than magenta).
However, compressive clusters made by the two dipoles at the
same separation show almost no positive reinforcement (Fig. 8b).
Instead, the magenta nodes are more abundant than the black
nodes. Thus, the right dipole seems to shield nodes that would
have been a part of the compressive cluster of the left dipole. To
quantify the interaction, we calculate the difference in the num-
ber of nodes that belong to the single cluster of the two-dipole
system and the number of nodes that occur in the cluster of dipole
1 alone or dipole 2 alone: ∆N = n(C12)− n(C1 ∪C2). This quan-
tity, normalized by the corresponding number of nodes in a single
dipole cluster, is a measure of the positive or negative interaction
between two dipoles. Tensile clusters show positive interference
(∆N > 0) for all separations along the x−axis (Fig. 8 c). However,
∆N for compressive clusters shows both positive and negative in-
terference depending on separation distance (Fig. 8 d). At a sepa-
ration of dx = 16 along the x−axis, the dipoles make two separate
compressive clusters (Fig. 8 b), instead of a single large cluster
formed when they are closer such as at dx = 8. The shielding of
the dipole 2 (right) on the cluster formed by the dipole 1 (left) is
clearly seen as the magenta nodes in Fig. 8 b. This shielding effect

is maximum when dx = 16 as shown by the minimum in ∆N/N1

in Fig. 8d and decreases as the two dipoles move further apart.
Interaction between dipole strain clusters in slightly depleted net-
works that are in stretching regime (p = 0.8) show similar trends
in ∆N as uniform networks (Fig. 8 e,f).

We also similarly quantify the effect of dipole 2 (on the top)
on the cluster formed by dipole 1 (on the bottom), when the two
dipoles are separated along y−axis (Fig. 9). Tensile clusters show
positive interference for short distances and ∆N, represented by
black nodes, is positive for dy = 6,10 (Fig. 9 e). However, at
dy > 14, the two dipoles form two separate tensile clusters instead
of a combined cluster, and the ∆N vanishes. This is different from
the case of separation of the two dipoles along their axis, where
the tensile clusters remain connected, even at large distances of
separation, and ∆N is substantial (Fig. 8 a,c,e). Our finding that
tensile clusters remain connected when the dipoles are separated
along their axes up to dx = 24 (six times dipole size in our model),
but lose connection at shorter distances when separated orthogo-
nal to their axes, is comparable to past simulation studies model-
ing cells in fibrous matrix18,57. These showed that a pair of cells
interact through fiber chains along their long axis up to a distance
of 6−10 cell diameters .

As opposed to compressive clusters formed by dipoles sepa-
rated along x−axis (Fig. 8 d), ∆N for compressive clusters when
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Legend

Node in tensile clusters of both, single dipole and two-dipole system

Node in compressive clusters of both, single dipole and two-dipole system
Node in two-dipole cluster, but not in single dipole clusters

Node in dipole 1 cluster, but not in two-dipole cluster 

Fig. 8 Cluster interaction analysis for two dipoles separated along x−axis in stretching-dominated networks. (a) Tensile cluster at dipole separation
dx = 16. Nodes that are part of the cluster formed by both dipoles but were not a part of the cluster made when only a single dipole was present
are colored in black. Nodes that are not a part of the two dipole cluster but were a part of the cluster formed by dipole 1 (left) alone are colored in
magenta. These black and magenta colored nodes show how the cluster formed by the left dipole is influenced by the presence of the right dipole.
The blue nodes occur in both the cluster formed by two dipoles and in one of the two single- dipole clusters. The presence of the right dipole 2
increases the extent of the tensile cluster of left dipole to its left along the x−axis. (b) Compressive cluster formed by two dipoles at a separation
of dx = 16. The magenta nodes around dipole 1 on the left, show that the presence of dipole 2 on the right, reduces the cluster formed by dipole 1
- suggesting an antagonistic effect that “shields” some nodes from the presence of dipole 1. (c-f) Quantification of the effect of one dipole on the
strain cluster of the other, ∆N, as a function of separation between two dipoles. Here, ∆N = N12 − (N1 ∪N2) where N12 is the number of nodes in the
two-dipole cluster, while N1,2 are number of nodes in the cluster when only dipole 1 or dipole 2 is present. (c) In a uniform network (p = 1), as the
dipole separation increases, new nodes between the dipoles are available to form a combined tensile cluster, while there is a decrease in the combined
stretching of the two dipoles, resulting in non-monotonic behavior. (d) ∆N for compressive clusters as a function of distance in a uniform network. A
single shared cluster exists between the dipoles at dx = 8 and 12, while at dx ≥ 16, the cluster separates into two different clusters. The shielding shown
in (b) leads to a reduced two-dipole cluster when compared to isolated single dipole clusters. (e) ∆N for tensile clusters as a function of distance in
a disordered network in the stretching regime (p = 0.8). In some networks, the cluster size made by two dipoles can be much larger than the sum of
individual clusters of each dipole, indicating network-specific effects upon bond dilution. (f) ∆N for compressive clusters as a function of distance in
disordered networks in the stretching regime (p = 0.8) shows a similar behavior seen for compressive clusters in a uniform network in (d), with the dip
corresponding to cluster separation.

the dipoles are separated along y−axis shows only positive inter-
ference (Fig. 9 f). ∆N for slightly diluted networks shows a behav-
ior similar to that found in uniform networks (Fig. 9 e). However,
∆N for compressive clusters in diluted networks for dipoles sepa-
rated along y−axis shows negative interference (Fig. 9 h), which
was not seen in the case for uniform networks. Moreover, com-
pressive clusters show positive reinforcement when dipoles are
separated along the y−axis (Fig. 9 c,d,f,h) while clusters formed
by dipoles separated along x−axis showed a more pronounced
shielding effect (Fig. 8 b,d,f).

3.6 Two dipole interaction energy

In analogy with electric charge or defects in an elastic medium,
the interaction energy for a given configuration of two force
dipoles is the extra elastic energy of the medium when both
dipoles are present, in comparison to when only one of them is

present. We calculate this interaction energy as,

Eint(0,d) = E12(0,d)−E1(0)−E2(d) (3)

where E12 is the total elastic energy of the network with both
dipoles at a prescribed separation d. E1(0) and E2(d) represent
the total elastic energy of the network when dipole 1 alone is
present at the origin, and when dipole 2 alone is present at a po-
sition d, respectively. Since we consider a triangular lattice with
periodic boundary conditions, the system is translationally invari-
ant. Thus, the choice of the origin of coordinates is unimportant,
and only the relative separation of the two dipoles matters. A neg-
ative (positive) value of Eint indicates a favorable (unfavorable)
interaction between the two dipoles.

In Fig. 10a-b, we placed two contractile dipoles along the x-
axis in a uniform network, and varied their relative separation:
first, along the x−axis and then, along the y−axis. We find that
when the dipoles are separated along the x−axis, the interaction
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Fig. 9 Cluster interaction analysis for two dipoles separated along y−axis in stretching-dominated networks. (a) When the dipoles are separated by 8
rows on the y−axis, the two dipoles make one connected large tensile cluster. The black nodes show that this cluster has many nodes that were not a
part of the tensile cluster formed by the individual dipoles, thereby indicating a reinforcing interaction between two dipoles. (b) The two dipoles have a
single connected cluster even when y separation increases to 14 rows. For larger distances, the cluster divides into two disconnected clusters. (c) Two
dipoles when separated by 14 rows form one large cluster. (d) At a separation of 22 rows, the two dipoles still form one connected cluster. However,
the region of overlap is small. Beyond this distance, the two dipoles form two separated clusters. (e-h) Measure of cluster interaction vs separation
distance between two dipoles: ∆N = N12 − (N1 ∪N2) where N12 is the cluster size when two dipoles are present and N1,2 are cluster sizes when only one
of either of the dipoles is present. (e) For tensile clusters in uniform network, ∆N decreases with increasing separation . This is because tensile regions
are found primarily to the left and right of the dipoles and the region of overlap of tensile cluster decreases with increasing y distance between the two
dipoles. After the cluster separates into two clusters for dy ≥ 18, ∆N does not show much variation. (f) For compressive clusters in uniform network,
∆N shows a non-monotonic behavior. As the separation increases, new nodes between the two dipoles become available for the cluster. However, there
is also a decrease in combined compression of the two dipoles which leads to this non-monotonic behavior. (g,h) Tensile and compressive clusters for
two dipoles separated along y−axis in disordered networks in stretching regime show similar trends as seen in the corresponding plots of a uniform
network (e,f).

is favourable with negative interaction energy values. The inter-
action energy also weakens as the separation between the dipoles
increases, and is expected to tend to zero for infinite dipole sep-
aration. The negative interaction energy occurs as a result of the
second contractile dipole being placed in the region of the net-
work that is stretched by the first dipole (Fig. 2 a). The elastic
energy of some of the stretched bonds is therefore lowered in
the region of the second dipole. We have seen before (Fig. 7)
that tensile clusters mediate much of the interaction between two
dipoles at large distances in a uniform network. However, at small
distances, both tensile as well as compressed bonds mediate the
interaction. When we separate the dipoles along the y− axis, the
interaction is not favorable and the interaction energies are pos-
itive - indicating a repulsive force between the dipoles. In these
networks, compressive clusters mediate much of the interaction
between the two dipoles even at large distances, while tensile
clusters are clearly separated for cases of dipoles at large dis-
tances (Fig. 9 b,c). Of note, the decay of the interaction energy
for dipoles separated along their axis follows the d−2 behavior
predicted by continuum elasticity theory, whereas dipoles placed
transverse to their axis lack such a regular trend. This behav-

ior of interaction energy is not dependent on the direction of the
dipole forces being along a lattice symmetry direction, and is also
seen for dipoles aligned along the y− axis (not a lattice symmetry
direction) as confirmed in Fig. S10.

To obtain a local measure of interaction between the dipoles,
we also calculate the difference in spacing of the nodes of the
first dipole caused by the second dipole (Fig. 10). The second
dipole, when placed in a stretched region (to the right of the first
dipole), shows that this value is positive and decreases as the
separation between the two dipoles increases. The behavior is
opposite when we place the second dipole on the y−axis in the
compressed region above the first dipole. We also calculate the
interaction energy in slightly-depleted networks that lie in the
stretching-dominated regime (Fig. 11. These show a trend simi-
lar to that seen in uniform networks in Fig. 10. In the bending-
dominated regime, the fluctuations in interaction energy are too
strong to show any systematic trends. We thus show, that un-
less strongly depleted, pairwise dipole interactions exhibit regu-
lar trends with mutual orientation and separation, which predicts
favorable alignment of force dipoles along their axis.
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(b)

(c)

(d)

(e)

1

1

2

2

Fig. 10 Interaction between a pair of dipoles in a regular (p = 1) lattice. The interaction energy (a,b) is the extra elastic energy of deformation in the
fiber network when both dipoles are present in comparison to when only one of them is present. This is a global measure of interaction between two
dipoles. This interaction is negative when the two dipoles are separated along the x−axis(a). This indicates an attractive force between these dipoles.
The inset shows the fit of a power law which is close to the relation |Eint | ∼ d−2, expected for interaction between dipoles in 2D from linear elasticity
theory. (b) The interaction energy between dipoles when separated along the y−axis is positive, indicating a repulsive interaction between them. (c)
A schematic diagram that shows a local measure of interaction between the two dipoles, corresponding to how much a dipole node displaces in the
presence of the other dipole. (d,e) The measured values of local dipole interaction for separation along x-axis and y-axis respectively. As expected,
when an extra dipole is placed to the right of the first dipole, in a region with predominantly extensile bonds, ∆δ1 is positive. The opposite is true
when the extra dipole is placed above the first dipole, along the y−axis, where the first dipole produces a region of predominantly compressed bonds.
In both cases, the strength of the interaction decreases with increasing distance.

4 Discussion
Elastic fiber networks are ubiquitous in synthetic and biological
materials. Biopolymer networks such as actin in the cellular cy-
toskeleton or collagen and fibrin in the extracellular matrix of
tissue are subject to mechanical stresses - both external loading
and internal forces actively generated by molecular motors. In re-
sponse to such forces, these fibrous materials exhibit unique, non-
linear mechanical properties that are crucial to their biological
function and competing demands - such as the ability to remodel
as well as to preserve integrity58. Even if lacking the full molec-
ular complexity and structural hierarchy of biomaterials, elastic
fiber network models such as the one considered here, capture es-
sential aspects of their mechanical properties, such as an abrupt
stiffening transition under shear39 and long-range force trans-
mission17,18,59. In the present work, we not only addressed how
strain propagates through such a model elastic network from a
force dipole representing, for example, molecular motor activity,
but also investigated how two such dipoles may interact through
the strains that they generate.

In the first part of this work, we explored the range and hetero-
geneity of force transmission from a single local force dipole, in
the elastic network. We deployed several metrics to quantify the
spatial extent of force transmission: the size (number of nodes,
radius of gyration) and shape of connected clusters of stretched

and compressed bonds (Fig. 2, 3 and 4), the decay of strain en-
ergy with distance from the dipole (Fig. 5), and the distribution
of strains in different bonds (Fig. 6). We showed how these met-
rics depend on two key elastic network parameters: the bond
dilution probability and the dimensionless bending-to-stretching
stiffness ratio. Prior works have shown how the macroscopic re-
sponse of such bond-diluted elastic networks to external shear
depends on these parameters28. In particular, under-coordinated
networks (p < pCF ) with κ̃ ≪ 1 show a bending-dominated re-
sponse characterized by floppy modes consisting of easily rotat-
ing bond clusters. In this work, we examine how the force clus-
ters around single dipoles are modified under bond dilution. The
resulting heterogeneity of force transmission becomes visually ap-
parent in the tensile/compressive clusters for diluted networks in
Figs. 2 and 3. As bonds are removed, strains propagate through
increasingly branched and isolated paths in the network. The dis-
tribution of bond strains in Fig. 6d, for a p = 0.6 network, is
strongly influenced by heterogeneity: highly strained bonds are
present in the immediate vicinity of the dipole, while all other
bonds are essentially relaxed. This large variability in bond ten-
sion is also reflected in the different realizations of the networks.
While each of the four networks we simulated resulted in a differ-
ent tensile/compressive cluster around a dipole (Figs. 2 and 3),
they show similar trends, at least for stretching-dominated net-
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(a) (b)

Fig. 11 Interaction energies in depleted networks in stretching regime. (a) The interaction energies for dipoles separated along the y axis suggests
a repulsive force between the two dipoles which gets weaker as the separation increases. (b) The interaction energy between two dipoles separated
along x axis suggests an attractive force between the dipoles which decreases as the separation increases.

works. p > pCF . This heterogeneity, e.g. difference in the strain
of an individual bond between different network realizations, is
too strong for bending-dominated networks to see such consistent
trends.

While buckling under compression is a generic feature of slen-
der fibers, we here considered fiber bending in response to trans-
verse forces alone. For experimental networks, this may corre-
spond to having smaller dipole forces or thicker, laterally cross-
linked bundles of fibers. In networks with fiber buckling, bonds
transverse to the dipole axis will be under compression leading to
buckling and softening, such that the tensile force is focused along
longer, force chains. The asymmetry of fibers under tension and
compression due to buckling also results in different force distri-
butions behaving as effectively contractile at larger scales17. We
show that bending alone gives the opposite trend, and decreases
the range of force transmission. When floppy bending modes
are available, most fibers will respond to dipole force by bending
through bond rotations instead of bond stretching. This screening
of bond strains by bending results in an anomalous shortening of
the range of force transmission in the network, as shown by the
decay of elastic energy with distance from the dipole in Fig. 5.
While over-coordinated networks result in clear power law de-
cays of elastic strains with distance, as predicted for affine defor-
mations, the strain decay in bending-dominated networks did not
follow any clear power law. Overall, this suggests that bending
and buckling have opposite effects on the range of force trans-
mission. How these opposite trends compete in networks that
allow easy bending is an interesting question for future study.
The model may be easily extended to include such effects. For
illustration, we consider in Fig. S11 the effect of fiber buckling
modeled as a two-fold reduced stiffness under compression rela-
tive to tension. This captures the well-known “rope”-like behavior
of biopolymers, that are easy to compress but stiffer to stretch25

We find that, consistent with previous works17,42, fiber buckling
results in longer range propagation of tensile forces. Since bonds
transverse to the direction of “pulling” by the dipole buckle and
compress more, the longitudinal bonds are stretched more. Since
this effect of fiber buckling is well-studied in the literature, we
focus in this work on the effect of fiber bending on force trans-
mission.

While previous works have explored mechanical interactions
between two isotropic force distributions representing cells in an
extracellular matrix42, this is the first exploration of analogous
effects for a pair of anisotropic force dipoles representing the
contractility of myosin motors in the actin cytoskeleton, or at a
different scale, between two polarized cells in a fibrous extracel-
lular medium. Recent evidence from cell biology suggests that
such long-range mechanical interactions between myosin motors
may drive them into spatial registry across stress fibers10,60. In
general, mechanical interactions through an elastic medium may
direct the self-organization of the cell and tissue into ordered,
functional structures such as registered fibrils in muscle tissue61

or multicellular networks of endothelial cells62.

Many cell culture experiments that demonstrate mechanical in-
teractions between cells are carried out on linear elastic hydrogel
substrates13. However, natural biomaterials in the extracellular
matrix or cytoskeleton typically occur as fiber networks that are
strongly nonlinear in their mechanical response15. Such disor-
dered networks transmit forces heterogeneously at the scale of in-
dividual fibers that cannot be captured by continuum elastic mod-
els. These mechanical forces may direct the distribution of mo-
tors and crosslinkers in the cytoskeleton which can bind prefer-
entially to stretched actin filaments due to molecular catch bond
effects63. This can also influence how two cells change shape in
response to each other.

There are several biologically relevant mechanical features of
fibrous networks that we have not included for the sake of build-
ing a simple and general model that provides physical insight.
These include the asymmetry between compression and stretch-
ing of biopolymers, the enhanced range of force transmission due
to fiber buckling, anisotropy due to force-induced fiber realign-
ment, and other possible nonlinear elastic properties of individ-
ual fibers. Over long time scales the cytoskeletal network also
undergoes significant remodeling and can exhibit fluid flow64 -
such viscoelastic, plastic and poroelastic effects are also not con-
sidered in the present study We expect viscous effects to dissipate
the stress stored in the network. This will result in a loss of the
elastic interaction between dipoles, a main effect predicted by this
work. As such, our work should be seen in the context of elastic
networks, whether biological or synthetic, that enables propaga-
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tion of stresses.
Here, we quantified the elastic interactions that may arise be-

tween two distant force dipoles embedded in a fiber network us-
ing different metrics. We showed that they differently affect the
sizes and shapes of each other’s strain clusters, which can be con-
sidered to be their “regions of influence”, depending on their rel-
ative position and orientation. Clusters comprising stretched or
compressed bonds also showed qualitative differences. Specifi-
cally, when separated along their principal axis, one dipole rein-
forced stretching due to the other, but reduced the overall com-
pression. The elastic interaction energy between two dipoles fol-
lowed trends predicted by linear elasticity theory, for a uniform
lattice (Fig. 10). In particular, the two dipoles resulted in an en-
ergetically favorable (”attractive”) configuration when separated
along their principal axes, but resulted in an unfavorable (”repul-
sive”) configuration when separated in the transverse direction.
These trends were preserved in networks where a small amount
of disorder was introduced (p > pCF ). Both these results for elas-
tic interaction energy and reinforced tensile bonds in two-dipole
systems suggest that mechanical interactions between similarly
oriented actomyosin units may lead to their lining up to form a
stress fiber. Recent experiments do show that stress fibers are
built up from the initially disordered cytoskeleton through the
contractile myosin motor activity47.

However for diluted networks (p ≤ 0.6), it was not possible to
obtain such general trends in pairwise dipole interactions. The
elastic deformation energy in such bending-dominated networks
is very sensitive to the local network structure around the dipole,
and differs strongly from one network configuration to another.
Such strong strain and elastic energy fluctuations lead to the loss
of any trends on the average. This may suggest that once locally
dense, over-coordinated (corresponding to greater bond probabil-
ity) or strongly bundled regions (corresponding to greater bend-
ing stiffness) arise in a cytoskeletal network, such as through
cross-linking by actin binding proteins, mechanical interactions
may drive the actomyosin units towards alignment into ordered
structures. Such locally denser or “patchy” fiber network config-
urations have been recently shown to modify the rigidity perco-
lation threshold65. Correlated fiber patches are likely to confer
additional stability to diluted networks leading to longer-range
force transmission. Moreover, biopolymer networks like the cy-
toskeleton are often prestressed, such as due to the presence of
myosin motors. Motors pull out floppy modes and can make the
network rigid29, even if it is under-coordinated (p < pCF ). Such
networks may therefore be in the stretching-dominated regime
and allow long-range force transmission leading to dipole-dipole
mechanical interactions. In conclusion, our work shows that elas-
tic interactions can arise between distant force dipole in disor-
dered, fibrous media, and that their strength and range can be
enhanced by suppressing fiber bending.

Acknowledgements
AK and KD acknowledge support from the National Science Foun-
dation: NSF-CREST: Center for Cellular and Biomolecular Ma-
chines (CCBM) at the University of California, Merced: NSF-HRD-
1547848 and the NSF Science and Technology Center for En-

gineering Mechanobiology award (NSF-CMMI-154857). KD ac-
knowledges support from the National Science Foundation (NSF-
CMMI-2138672). The authors thank Jacob Notbohm for a critical
reading of the manuscript and useful comments.
DQ acknowledges that this work was performed under the aus-
pices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-07NA27344
(LLNL-JRNL-850515)

Appendix

Appendix A: Fiber network model energy and forces

We calculate for the whole network, stretching, bending and
dipole energies, given in Eq. 1. The network configuration at me-
chanical equilibrium is obtained numerically by minimizing the
total energy.

The stretching energy is given by a pairwise sum over nodes,

Es =
µ

2 ∑
⟨i j⟩

(ri j − r0)
2, (A1)

where i and j represent adjacent nodes that are connected by a
bond of rest length, r0 (set everywhere to 1 in our simulations).
ri j is the actual bond length after force dipoles have been applied
in the networks,

Fiber bending is represented by the relative change in angle be-
tween two collinear bonds. These bonds connected three nodes
denoted by j, i and k, with ith node being central. The total bend-
ing energy is given by the sum over all such node triplets wher-
ever connected by bonds,

Eb =
κ

2r0
∑
⟨ jik⟩

2sin2(θ jik/2), (A2)

with bond angle given by

sinθ jik =
|ri j × rik|
|ri j||rik|

(A3)

Here ri j and rik are the separation vectors connecting nodes i to
j, and nodes i to k, respectively.

The dipole energy is the scalar product of force applied to and
distance between nodes of the dipole.

Ed = ∑
⟨mn⟩

F ·δmn (A4)

Here δmn is the distance between mth and nth nodes that belong to
the force dipole, not necessarily adjacent. Force is always along
the separation vector between dipole nodes m and n. The total
energy Et is the sum of stretching, bending and dipole energies
given above.

The stretching force on the ith node due to the i j bond spring
is given by the derivative of the stretching energy with respect to
node position, and results in a central force,

F⟨i j⟩
s,i =−µ(ri j − r0)

ri j

ri j
(A5)

The force due to collinear ji and ik bonds bending on the central
ith node (in 2D) is given by the derivative of the relevant bending
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energy term in Eq. A2 with respect to displacement in the position
of the ith node.

F⟨ jik⟩
b,i =

2κ

r0

sinθ jik

cosθ jik

∂ sinθ jik

∂ri
, (A6)

where the gradient of the sine of the bending angle can be evalu-
ated from Eq. A3 as,

∂ sinθ jik

∂ri
= sgn(ẑ · (ri j × rik))

ẑ× r jk

|ri j||rik|

− sinθ jik
r̂i j

ri j
− sinθ jik

r̂ik

rik

(A7)

where sgn(x) = x/|x| represents the sign of the argument. The
forces on the side nodes, j and k, due to the bending of this an-
gular spring at the central ith node, are similarly evaluated, as

F⟨ jik⟩
b, j =

2κ

r0

(
tanθ jik

∂ sinθ jik

∂r j

)
,

F⟨ jik⟩
b,k =

2κ

r0

(
tanθ jik

∂ sinθ jik

∂rk

)
.

(A8)

Thus, every angular spring applies forces at three nodes. The to-
tal bending force at the ith node will then involve sets of three
connected, collinear bonds passing through i, given all relevant
bonds are present). This calculated force is used to displace each
node in the numeric conjugate gradient procedure to find the lo-
cal energy minimum configuration.

Appendix B: Continuum elastic response to force dipole in 2D

The uniform network, with all bonds present, undergoes affine
deformations in response to imposed shear forces. This response
is similar to that of a continuum elastic medium in 2D whose
shear and bulk moduli are related to the stretching stiffness of
each individual bond, µ. We give here the expected deformations
of an isotropic and homogeneous linear elastic medium in re-
sponse to a single force dipole. The stretching-dominated, affine,
network behavior is expected to be closely approximated by this
continuum model.

The displacement at a point x caused by a force acting at an-
other point (chosen, without loss of generality, to be the origin) in
a direction j on the surface of an infinite linear and isotropic elas-
tic medium in 2D is given by the appropriate Green’s function45,

ui(x) = Gik(x)Fk =
1+ν

4πY

(
(ν −3)δik log

(
|x|
a

)
+

(1+ν)
xixk

|x|2

)
Fk,

(B1)

where ui(x) is the displacement in the ith direction of the medium
at point x caused by the jth component of the force F at the
origin, and the relevant elastic constants are the 2D stretching
modulus Y and Poisson’s ratio, ν , of the elastic medium.

If instead of a point force, there is a pair of equal and oppo-
site forces that are separated by a small distance (corresponding
to the contractile actomyosin force dipole denoted by P) the dis-

placement is related to the derivative of the expression in the right
hand side of Eq. (B1) with respect to a spatial coordinate. The re-
sulting, relative deformation of the elastic medium is given by the
strain, which is a derivative of the displacement ui(x) in Eq. (B1),
ui j(x) = Pjk∂ j∂kGik, where usual Einstein summation convention
is implied.

For a dipole aligned along the x-direction, only the Pxx compo-
nent is present. The decay of strain with distance due to a dipole
can be easily seen as power counting. For an isotropic distribu-
tion of dipoles, the deformation depends on Gii ∼ Y−1 log(|x|/a).
The direction-averaged trace of the strain goes as,

uii ∼ ∂
2
kkG j j ∼

P
Y

1
r2 (B2)

and the corresponding elastic deformation energy density, ε ∼
Yu2

ii ∼ P2Y−1r−4. This explains the observed trend in the decay
of the direction-averaged strain energy as a function of distance
observed in Fig. 6.

The interaction energy between two dipoles considered in
Fig. 10 can be similarly derived within the framework of elas-
ticity theory. It is the work done by a dipole, Pα in deforming the
substrate in the presence of the strain created by a second dipole
Pβ , and is given by66,

Wαβ = Pβ

i j ∂ j∂lG
αβ

ik (rαβ )P
α
kl , (B3)

where rαβ = rβ − rα is the separation vector connecting the cen-
ters of dipoles α and β . Since interaction energy depends on the
strain created by one dipole, it also decays as r−2, like seen in
Fig. 10a.
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