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Confinement can be used to systematically tame turbulent dynamics occurring in active fluids.
Although periodic channels are the simplest geometries to study confinement numerically, the cor-
responding experimental realizations require closed racetracks. Here, we computationally study 2D
active nematics confined to such a geometry — an annulus. By systematically varying the annulus
inner radius and channel width, we bridge the behaviors observed in the previously studied asymp-
totic limits of the annulus geometry: a disk and an infinite channel. We identify new steady-state
behaviors, which reveal the influence of boundary curvature and its interplay with confinement. We
also show that, below a threshold inner radius, the dynamics are insensitive to the presence of the
inner hole. We explain this insensitivity through a simple scaling analysis. Our work sheds further
light on design principles for using confinement to control the dynamics of active nematics.

I. INTRODUCTION

Active matter describes a collection of constituents
that consume energy at the level of the individual units
to generate motion. Interactions between the units com-
bined with their motion result in emergent behaviors
that span scales much larger than those of the parti-
cles or their interactions, and would be thermodynami-
cally forbidden in equilibrium materials [1–3]. Suspen-
sions of such active units, termed active fluids, are a
paradigm to describe different biological systems such as
the cytoskeleton of cells [4], bacterial colonies [5] and tis-
sues and cell sheets [6–8]. Enabled by the continuous
conversion of chemical energy into mechanical work due
to biomolecular processes, these systems exhibit myriad
emergent functionalities that are crucial for their organ-
isms’ lifecycles, such as motility, division, self-healing,
and morphogenesis [9–14].

Active nematic liquid crystals, which are composed
of motile energy-consuming anisotropic units, provide a
promising platform to achieve similar capabilities in syn-
thetic or biomimetic systems [15]. However, bulk active
nematics exhibit chaotic turbulent-like flows that lack
long-range order [16–22]. Thus, they are unable to per-
form functions such as generating work or driving net
material transport without a means to suppress this tur-
bulence.

Confinement can control active flows [23–40], and en-
able harnessing them for transport and other functions
(e.g. [41–43]). The simplest confinement in 2D is that of
an infinite channel of finite width, computationally im-
plemented using periodic boundary conditions. It has
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FIG. 1. 2D active nematics confined to an annulus
geometry. (a) Snapshot of the microtubule-kinesin active
nematics system, obtained using fluorescence microscopy. (b)
Snapshot from a hydrodynamic simulation of the same sys-
tem. The lines indicate the director field lines while the color
corresponds to the scalar order parameter S. This color-map
is used to indicate S throughout this manuscript unless stated
otherwise. The magenta arrows indicate the positions and ori-
entations of + 1

2
defects.

been shown that, depending on the channel width and
activity level, active nematics in such channels exhibit
a variety of emergent states including ‘dancing’ defect
pairs and coherent flow along the channel [37, 44]. How-
ever, in experiments, such a channel can only be mim-
icked by physically joining its two ends, leading to a
curved racetrack or annulus geometry [27, 45–47], or
by finite-length ‘lanes’ in which end-effects may arise
[44, 45]. For instance, Fig. 1 shows a widely studied
active matter system of cytoskeleton-based 2D active ne-
matics [15, 48] confined to an annulus geometry. In bulk,
this system exhibits the widely studied phenomenon of
low Reynolds number turbulence [20, 39, 42, 45, 49–
55]. Experiments in the annulus geometry [46, 47] and
lane configurations [44] demonstrate that confinement
can tame this turbulence to generate ordered flows. How-
ever, despite these experiments and previous theoreti-
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cal investigations of active nematics confined in channels
[24, 28, 37, 43, 44, 56–58], disks [45, 46, 59, 60], and
annulus geometries [37, 46, 47, 61, 62], the influence of
channel curvature and finite channel length on emergent
behaviors is yet to be studied in detail.

In this work we use hydrodynamic simulations to sys-
tematically investigate 2D active nematics confined to
the annulus geometry. We vary the confinement shape
by changing the inner radius of the annulus for a fixed
width, going from a ‘disk-like’ annulus, with a small pin-
hole at its center, to a ‘channel-like’ annulus for which
the radius is much larger than the channel width (Fig.
3). We vary the confinement size by changing the width
of the annulus, and map out a shape-size phase diagram
of the dynamical steady states. This phase diagram con-
nects the previously observed steady states in disks and
channels, and reveals how the system behaves between
these two limits. In particular, the intermediate geome-
tries reveal previously unobserved states exhibiting net
material transport, which are stabilized by the positive
curvature of the inner wall of the annulus.

Further, we find that below a threshold inner radius,
annuli exhibit the same dynamics as the corresponding
true disks under a finite parallel anchoring on the nematic
director, despite the two systems being constrained to
have a different net topological charges by their boundary
conditions having boundary energetics that favor differ-
ent topological charges. We provide a theoretical expla-
nation for this observation and an estimate of the thresh-
old pinhole size based on the competing anchoring and
elastic energies at the hole. Finally, we find that the net-
transport state disappears at high anchoring strengths.
To understand these effects, we study the influence of ac-
tivity on the boundary layer at the walls [47, 59], which
uncovers a relationship between the anchoring strength
and the curvature. More broadly, these results advance
our understanding of how hydrodynamics and topological
constraints of boundary conditions control the behavior
of a confined active nematic.

II. MODEL DESCRIPTION

As in our previous work [59], we study a continuum
model of an active nematic described as a single incom-
pressible fluid with internal nematic symmetry [15, 63].
It has two fields: the nematic tensor order parameter←→
Q = ρS[~n ⊗ ~n − (1/2)

←→
I ] and a flow field ~u. Here, ~n

is the local orientation unit vector, S is the scalar order
parameter, and ρ is the density, which we assume to be
uniform and constant in the simulations throughout this
paper. In the limits of low Reynolds number and high
Ericksen number [64], the dynamics of this fluid is given
by

η∇2~u−∇P − α∇ ·
←→
Q = 0 (1)

along with the incompressibility constraint ∇ · ~u = 0.
Here, η is the dynamic viscosity and P is the pressure.

The third term is the leading order contribution from the

extensile active stress −α
←→
Q , with α defined as the activ-

ity. We use no-slip boundary conditions on the velocity
throughout this article, ~u|boundary = 0.

The dynamical equation for
←→
Q is given by

∂t
←→
Q +∇·(~u

←→
Q ) = (

←→
Q ·
←→
Ω −
←→
Ω ·
←→
Q )+λ

←→
E +γ−1←→H (2)

Here, Ωij = (∂iuj − ∂jui)/2 is the anti-symmetric vor-
ticity tensor, Eij = (∂iuj + ∂jui)/2 is the symmetric
strain rate tensor, and λ is the flow alignment parame-
ter. The final term is the relaxation of the nematic field
proportional to the variation of the nematic free energy,
Hij = −δF/δQij , with dissipation rate γ−1. The ne-
matic free energy for a confined system consists of a bulk
contribution and a boundary contribution.

The bulk contribution is the Landau de Gennes free
energy [63] FLDG given by

FLDG =

∫
Ω

d2r

{
C

(
−β1

2
QijQji +

β2

4
(QijQji)

2

)
(3)

+
1

2
K(∂kQij∂kQij)

}
.

In this work, we take the simple form, β1(ρ) = ρ− 1 and
β2(ρ) = (ρ + 1)/ρ2 so as to set up the isotropic (ρ < 1)
to nematic (ρ > 1) transition. We fix ρ = 1.6 throughout
this article, thus focusing on the far-from-critical nematic
phase. At the boundary, we use the Nobili-Durand an-
choring energy [9, 65]

FND =

∮
∂Ω

dr
1

2
E′A(Qij −Qb

ij)(Qji −Qb
ji), (4)

where
←→
Q b specifies the order and orientation at the

boundary and E′A specifies the anchoring strength. We
use parallel anchoring throughout this paper, and hence

set
←→
Q b = (t̂⊗ t̂−

←→
I /2), where t̂ is the local tangent vec-

tor to the boundary and
←→
I is the 2D identity matrix.

Thus, the relaxation term becomes

γ−1Hij =Dr(β1 − β2QklQlk)Qij +DE∂k∂kQij (5)

− EA(Qij −Qb
ij)|∂Ω,

where DE = K/γ, EA = E′A/γ and Dr = C/γ. Note that
this molecular field term should in principle give rise to
reaction stresses in the flow equation. However, for active
nematics, the reaction stress is negligible compared to the
active stress [66]. Thus, we consider the simple model
given here, where the flow is driven by active stresses
and enters the order parameter equation kinematically.

We identify the time scale T = 1/Dr and the length

scale L =
√
DE/Dr. We use these to non-dimensionalize

the equations, with the dimensionless operators ∂̄t =
∂t/Dr and ∂̄i = ∂i/

√
DE/Dr. This gives the dimension-
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less equations

∂̄t
←→
Q+∇̄ · (~̄u

←→
Q ) = (

←→
Q ·
←→̄
Ω −

←→̄
Ω ·
←→
Q )

+ λ̄
←→̄
E + γ−1

←→̄
H (6)

γ−1H̄ij =(β1 − β2QklQlk)Qij + ∂̄k∂̄kQij (7)

− ĒA(Qij −Qb
ij)|∂Ω,

∇̄2~̄u− ∇̄P − ᾱ∇̄ ·
←→
Q = 0 (8)

Here, the dimensionful quantities ~u and P are rescaled
to ~̄u = ~u

√
DEDr and P̄ = P/(Drη). The dimension-

ful parameters are rescaled as ĒA = EA/Dr, λ̄ = λ/Dr,
ᾱ = α/(ηDr) and finally the system dimensions R̄ =

R/
√
DE/Dr. In the following, we drop the overbars on

the parameters and implicitly assume this nondimension-
alization.

We start the simulations with zero velocity and uni-
form director field along a Cartesian axis with 1% noise.
We use the open source Python library FEniCS [67, 68]
to integrate the equations. The visualizations are made
using the open source visualization software Paraview
[69] or MATLAB [70]. Unless specified otherwise, we
use EA = 0.01 (weak anchoring) and α = α0 = 5 (strong
activity) in the simulations. For this activity, the sys-
tem reaches steady state within 500 simulation time units
even for the largest geometries investigated. Accordingly,
we simulate all the systems for a total of tf = 1000
time units and use the data from the last 10% of the
time for analysis. If we change the activity, we scale tf :
t′f = (α0/α)tf. For all simulations, we set dt = 0.1, and
we use a mesh with average linear element size ∆x ∼ 0.5,
with finer elements near inner holes.

III. RESULTS

A. Steady State Behaviors

We specify the size of the annulus by its width W , and
its shape with the ratio of the inner radius to the width,
Ri/W . We use Ri/W values from 0.01 (disk-like) to 3
(channel-like), and widths in the range W ∈ [4, 30] (see
Fig. 2 for some examples). For completeness, we also
simulate active nematic disks and flat periodic channels.
Here, the disk of radius R is thought of as an “annulus”
with W = R and Ri = 0, whereas a channel is thought
of as an “annulus” with width W and Ri → ∞. We
thus obtain a shape-size phase diagram for the 2D ac-
tive nematic confined to an annulus (see Fig. 3). We
consider weak anchoring (EA = 0.01) and strong activity
(α = 5). The system exhibits distinct dynamical steady-
states that vary as a function of the geometric parame-
ters. Sequences of snapshots characterizing the dynamics
for some of these states are shown in Fig. 2. Fig. 3 gives
a phase diagram of the observed steady states.

To aid the classification of the steady-states, we de-
fine a signed order parameter indicating the degree of

FIG. 2. Dynamical steady states in active nematics
confined to annulus geometries. (top) The circulating
state, as observed for W = 10 and Ri/W = 0.1. A single
defect going around the channel is shown with a red circle
to highlight the circulation. (middle) The dancing state, as
observed for W = 8 and Ri/W = 1. The highlighted re-
gion shows the dancing behavior of a defect pair over time.
(bottom) The corotating state, as observed for W = 6 and
Ri/W = 1. The highlighted defect shows the corotating mo-
tion of the train of defects. The symbols correspond to those
used to identify these states in the phase diagram in Fig. 3.
The color represents the scalar order parameter S with the
same color-map as in Fig. 1.All times start at an arbitrary
point and are in the units of 0.1 simulation times.

flow, Φ(t) = 〈~u · êθ/|~u|〉 following Opathalage et al. [45].
Using this order parameter and other aspects of the dy-
namics, we categorize the steady states as follows:

a. Stationary state: A state with a time-
independent director field and velocity profile

(∂t
←→
Q = 0 = ∂t~u) is labeled as a stationary state.

Depending on the confinement and anchoring condi-
tions, we observe different textures of the nematic, which
in turn result in different velocity profiles (Fig. 4). High
confinement and high anchoring strength result in a cir-
cular nematic profile corresponding to the +1 defect an-
choring condition, with ∼ 0 velocity, as seen in Fig. 4(a).
For slightly lower confinement, we observe the dipolar
state with two + 1

2 defects, as also observed in disks in
Ref. [59] (Fig. 4(b)). An interesting state occurs at low
anchoring, where the director aquires a spiral configura-
tion, resulting in a stationary but non-zero velocity, as
shown in Fig. 4(c). This state is also peculiar because it
has not been observed in the experiments to our knowl-
edge. In the opposite shape limit of the periodic channel
(Ri/W → ∞), we observe a uniform nematic with no
flow.
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FIG. 3. Shape-size phase diagram for active nemat-
ics in annuli. Steady states as a function of width W and
the ratio of the inner radius to width Ri/W : (i) Station-

ary state (meaning ∂t
←→
Q = 0 = ∂t~u, grey diamonds), (ii)

Corotating state (green circles), (iii) Circulating state (indigo
thin diamonds), (iv) Dancing state (blue triangles), and (v)
Chaotic state (magenta pluses). The indicated shapes for
various Ri/W on the top are a guide to the eye and not to
scale. Ri/W = 0 corresponds to a disk of radius W , whereas
Ri/W = ∞ corresponds nominally to a channel simulation
with width W , length 20W , and periodic boundary condi-
tions at the channel ends. For these simulations, we apply a
no-slip boundary condition for the velocity, and weak parallel
anchoring for the director, with EA = 0.01. The dashed black
lines are drawn manually as a guide to identify the approxi-
mate boundaries between different steady-state behaviors.

b. Corotating state: A state with defects revolving
around the center of the annulus in a steady circulation is
labeled a corotating state (see Fig. 2 (bottom) and Movie
S1). Another defining property of the corotating state

is that its
←→
Q and ~u profiles are constant in a rotating

(or translating in the case of straight channels) frame
of reference with the appropriate angular (or horizontal)
speed.

This state occurs upon moving to weaker confinement
by increasing W from the stationary state, and is robust
to initial noise. The +1

2 defects in this state always nucle-
ate from the inner wall of the annuli. This is distinct from
the straight periodic channel of the same width, where
the bend-instability occurs from both boundaries result-
ing in a structure that is symmetric across the channel,
although also with a spontaneously chosen circulation di-
rection (see Movie S2). The weak anchoring strength at
the boundary allows for the corresponding − 1

2 defects at
the wall to exist. Thus, this state is natural for Neumann

boundary conditions on
←→
Q with no anchoring. Fig. 3

FIG. 4. Various stationary states (∂t
←→
Q = 0 = ∂t~u) of

active nematics observed in disk-like annuli. The left
panel shows the director field with streamlines and the scalar
order parameter S with the color. The right panel shows the
corresponding flow field, also shown as directed streamlines
and the vorticity |∇×v| with the color. (a) State with v ∼ 0
(|∇×v| ∼ 10−3) and the director in a +1 defect configuration.
Here, EA = 3,W = 4, Ri/W = 0.1. (b) Dipolar state with
two defects and v ∼ 0 (|∇ × v| ∼ 10−3), as also observed in
disks in Ref. [59]. Here, EA = 1,W = 4, Ri/W = 0.01. (c) For
low anchoring strength, we can observe a spiral configuration
of the nematic, with a non-zero but constant velocity (v 6=
0, ∂tv = 0). Here, EA = 0.01,W = 4, Ri/W = 0.1.

shows that the corotating state occurs for a narrow range
of W , with phase boundaries that are essentially indepen-
dent of Ri. This reflects the fact that the corotating state
occurs when only a single +1

2 defect can form across the
narrowest confinement dimension (channel width in this
case) [59].

The simplest corotating state is observed at very small
inner radii and consists of two +1

2 defects rotating around

the center and no − 1
2 defects [45, 59]. Notably, this state

is consistent with the net topological charge of +1 im-
posed by parallel anchoring in a true disk, but deviates
from the net topological charge of 0 for an annulus. This
indicates that, despite changing the topology (in the limit
of infinite anchoring strength), inserting a hole at the cen-
ter of the disk does not affect the steady-state behavior
below a threshold radius. As will be discussed in Sec-
tion III B, the threshold size of the hole is expected to
depend on the anchoring strength. For slightly larger in-
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Circulating

Corotating

FIG. 5. Distinction between the corotating and the
circulating states. (a) Average azimuthal speed (~u · θ̂) as
a function of time for a representative corotating state (blue
dashed line, Ri = 6,W = 6) and a circulating state (orange
continuous line, Ri = 1,W = 10). While both have a steady
circulation on average, there is significant variation in the in-
stantaneous flow of the circulating state, as opposed to the
weakly sinusoidal variation in the corotating state (the inset
shows a zoomed-in plot of the same). (b) Total number of
defects as a function of time for the same two datasets. The
number of defects remains constant for the corotating case,
whereas it fluctuates for the circulating case, indicating anni-
hilation and proliferation.

ner radii, the − 1
2 defects at the inner wall are stabilized

by weak anchoring conditions and/or the inner curva-
ture. Thus, the corotating state is absent for low inner
curvatures (high Ri) when the anchoring strength is high
(discussed in Section III C).

c. Circulating state: A state with net circulation
(Φ(t) remaining far from 0 and not changing sign, see
Fig. 5 and Movie S3) but with steady nucleation and
annihilation of defects is labeled a circulating state (see
Fig. 2 (top)). This is unlike the corotating state where
the defects, once formed, remain in motion without
annihilating. However, the circulating and corotating
states have similar vortex structures, with high circu-
lation around a central vortex, albeit with significantly
larger perturbations of the velocity profile in the circu-
lating state (see Fig. 5). This state occurs upon in-
creasing the width of the annulus in the disk-like limit
(Ri/W . 0.1). This state is robust to initial noise in the
nematic director, and the circulation is long-lived (see
Fig. 5 and Movie S4).

d. Dancing state: A state with pairs of defects
swimming along vortices, as extensively characterized in
Shendruk et al. [37] (see Fig. 2 (middle) and Movie S5).

This state, occurring for intermediate widths and rela-
tively small curvatures has been well studied in the chan-
nel geometry [28, 37, 44]. Here, pairs of ±1/2 defect pairs
swim on a lattice of vortices along the channel. We find
that the dancing state persists for annular channels even
with high curvature ( Ri/W ∼ 0.1, see Fig 3) as also
noted in [37].

In the limit of low curvature (Ri/W & 1), the dancing
state in the annulus closely resembles that observed in
straight channels. In particular, there is usually an equal
number of + 1

2 defects traveling in each direction along

FIG. 6. Curvature-induced drift in the dancing state
for W = 15 and Ri/W = 0.3. In this case, due to the asym-
metry of the inner and outer curvature, the flow acquires a
drift (see Movie S6) despite there being an equal number of
defects moving in each direction. The dotted green line high-
lights the trajectory of a defect moving uninterrupted anti-
clockwise, while the red dotted line highlights the trajectory
of a defect moving clockwise, undergoing annihilation and nu-
cleation periodically at the outer edge. This asymmetry of
defect motions creates a net flow in the counter-clockwise di-
rection.

the channel axis, resulting in no net flow. This symme-
try can be broken by formation of a ‘drift-lattice defect’
[37], where two more + 1

2 defects travel in one direction
than the other, resulting in a net drift. The probabil-
ity of having such drift-lattice defects increases with the
length of the channel [37] or correspondingly the annulus
circumference. However, at high curvatures, Ri/W . 1,
the difference in the outer and the inner curvature results
in an asymmetry between the − 1

2 defects at those respec-
tive boundaries. This sometimes results in an asymme-
try in the interactions of the − 1

2 defects with clockwise

or anti-clockwise moving + 1
2 defects. The defects mov-

ing in one direction interact strongly with the outer − 1
2

defects, which slows their flow, whereas the defects trav-
eling in the other direction move freely. This results in a
net ‘curvature-induced drift’, even with the same number
of defects moving in each direction (see Fig. 6 and Movie
S6). This behavior is unique to the annulus.

e. Chaotic state: A state exhibiting proliferation
(steady nucleation and annihilation) of defects, with no
net flow (〈Φ(t)〉 = 0) is labeled a chaotic state. This state
occurs above a threshold width, whose value depends on
the curvature.

f. Arrested bend instability: A state with the ne-
matic undergoing bend instability, but unable to flow or
exhibit the dancing pattern due to high confinement.
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B. Sensitivity to topology

The similarity between the steady-states in the disk
and pinhole annuli discussed for the corotating state ex-
tends to all widths (Fig. 3). That is, the steady state dy-
namics are insensitive to the presence of a pinhole below
a threshold value of the inner radius. The origin of this
insensitivity can be understood from the following. First,
near the pinhole, the energy cost for a uniform director
(resulting in the insensitivity) goes as Euniform ∼ EARi,
whereas the energy for a perfectly anchored (+1 defect)
structure goes as Edefect ∼ K log(ρmax/Ri), where ρmax

is a characteristic defect spacing or confinement size[71].
The pinhole will only affect the topology of the director
field if Euniform > Edefect. Thus, for a pinhole that is
smaller than a threshold size, which depends on EA, the
director structure will be indistinguishable from that of
a disk. We note that this threshold size is similar to the
de Gennes-Kleman extrapolation length λdGK = K/EA.
The de Gennes-Kleman length for a flat wall is explained
as follows. For finite anchoring strengths, the orientation
at the boundary wall differs from the preferred orien-
tation. If the orientation profile near the boundary is
extrapolated beyond the wall, the preferred value is ob-
tained on a ‘virtual wall’ at a distance λdGK away from
it [71]. For a circular hole of size much larger than λdGK,
the preferred anchoring, and thus the preferred topology
still gets set by the virtual wall, whereas for holes smaller
than λdGK, the anchoring is ineffective [72]. Our energet-
ics calculation provides an similar scaling via the implicit
relation Ri/ log(ρmax/Ri) > K/EA = λdGK. Second, in
the annulus, the no-slip boundary condition on the fluid
at the boundary of the hole imposes zero fluid velocity.
While this requirement is absent in the disk, the symme-
try of the corotating state results in a vanishing velocity
at its center. Thus, the vortex structures of the disk and
annulus with small Ri are very similar. These two effects
combine to make the system dynamics topologically in-
sensitive to the pinhole.

C. Effect of anchoring strength

The results described thus far have focused on a rela-
tively weak anchoring strength EA = 0.01. Fig. 7 shows
a corresponding phase diagram for EA = 3. The key
differentiating feature of this phase diagram is that the
corotating state disappears in the straight-channel limit.
In this regime, as W increases, the system transforms
from a uniform nematic with azimuthal orientation, to
an arrested bend instability, and then to the dancing
state. This can also be seen by increasing the anchor-
ing strength for a fixed W and Ri (Fig. 8). We note this
observation is similar to results from simulations of polar
active fluids confined to channels, where coherent trans-
port through the channel is suppressed at high anchoring
strengths [73]. This suggests that it should be explain-
able by a simple argument. To this end, we note that

Chaotic

Circulating

Corotating

Dancing

Stationary

FIG. 7. Phase diagram for strong anchoring condi-
tions (with EA = 3.0). The markers correspond to the same
states as in Fig. 3: (i) Stationary state (grey diamonds), (ii)
Corotating state (green circles), (iii) Circulating state (in-
digo thin diamonds), (iv) Dancing state (blue triangles), and
(v) Chaotic state (magenta pluses), except for the maroon
upward triangles that indicate the arrested bend instability
state. This phase diagram reveals the absence of the corotat-
ing state (green circles) for high anchoring and low curvature.

FIG. 8. The corotating state disappears at high an-
choring strengths. Snapshots of the steady state for W =
6, Ri/W = 1 for different anchoring strengths. (left) For low
anchoring strengths, the − 1

2
defects are easier to form and we

get the corotating state. (middle) For intermediate anchoring,
the bend instability is arrested. (right) For high anchoring
strengths, the bend instability is completely suppressed. The
width for the onset of the dancing state remains independent
of anchoring strength. The color represents the scalar order
parameter S with the same color-map as in Fig. 1.

the altered phase diagram in our system reflects that the
formation of the corotating state in the channel limit re-
quires two conditions: a width that accommodates only
one defect (W ≤ `d, with `d ∼

√
K/α being the mean

distance between defects [20]) and a sufficiently small en-
ergy cost to form the corresponding − 1

2 defects at the in-
ner wall. Above a threshold value of EA, this energy cost
is too large for channel-like annuli, and thus the bend
instability is arrested before defect nucleation can occur.
For smaller inner radii, − 1

2 defects are stabilized by the
curvature of the inner wall and thus incur a smaller en-
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ergy. Moreover, in the disk-like limit Ri/W . 0.1, the
corotating state forms without any − 1

2 defects. Hence,
the corotating state emerges at smaller inner radii.

To understand the effect of the anchoring strength on
the phase behavior and in particular on the existence of
the corotating state, we investigated how the penetration
length of the parallel anchoring boundary condition de-
pends on control parameters in an active nematic. To
this end, we performed simulations in a square channel
geometry, with dimensions 200 × 200, periodic bound-
ary conditions in the y direction and parallel anchoring
boundary conditions in x (See Fig. 9). Note that this
domain is much larger than the systems investigated in
Fig. 3, and the active nematic exhibits turbulent-like be-
havior everywhere except near the vertical boundaries.

To quantify the effect of anchoring in this system,
Fig. 9 shows the extent to which the alignment with
the vertical wall persists into the channel interior. In
particular, we have plotted 〈|ny|〉y,t as a function of

x, where |ny| is the magnitude of the vertical compo-
nent of the director field, and the average is performed
over the vertical dimension y and time t. Strong paral-
lel anchoring implies |ny(x = 0)| ≈ 1, whereas in the
bulk we expect a uniform distribution of ny, yielding
〈|ny|〉y,t (x � 1) = 〈| sin θ|〉 = 2/π ≈ 0.64. For conve-

nience, we define a parameter indicating the fractional
drop in 〈|ny|〉y,t from 1 towards the bulk value 2/π as

∆ny(x) =
1−〈|ny|〉y,t(x)

1−2/π .

As shown in Fig. 9, we observe that the variation of
〈|ny|〉y,t away from the vertical wall exhibits two char-

acteristic length scales. First, there is a plateau within
which the director is parallel to the wall 〈|ny|〉y,t ≈ 1,

followed by an exponential decay to its bulk value. We
define the width of the plateau region, xp, as the dis-
tance from the wall at which alignment diminishes by
5%, ∆ny(xp) = 0.05, and the decay length xd as the dis-
tance corresponding to 50% of the alignment decrease,
∆ny(xd) = 0.5 (see Fig.9(b)).

We find that the overall decay length is primarily deter-
mined by activity. In particular, both the plateau width
xp and decay length xd increase linearly with the ac-

tive length scale
√
K/α [20] and thus diminish with in-

creasing activity. In contrast, xd is essentially indepen-
dent of anchoring strength, while xp increases moderately
with EA until saturation (Fig. 9(c,d), Fig. 10). We now
compare the value of xp with the channel width for the
corotating state, W = 6 (see Fig. 9(e) and points (i-iii)
on Fig. 9(d)). For the corotating state at W = 6 and
EA = 0.01, xp ≈ 0.5, whereas for EA = 1, xp ≈ 1.86.
For the higher anchoring strengths, the plateau region
covers roughly 60% of the entire annulus, thus hindering
defect formation, whereas for the lower anchoring case,
it covers only ∼ 15% of the annulus, thus allowing for
defect nucleation. Importantly, the anchoring bound-
ary layer only affects the director profile and not the
velocity profile. A similar (no-slip) layer in the veloc-
ity profile would have merely shifted the width value at

which the corotating state occurs, as opposed to elimi-
nating it. These observations thus directly explain the
findings in Fig. 8. We also note that the absence of the
corotating state at strong anchoring is consistent with
the absence of this state in the study of exact coherent
structures for active nematics in channels in Ref. [58],
which was performed with strong homeotropic anchoring
conditions. More broadly, the small value of xp for high
activities explains the observations from this work and
Norton et al. [59] that strongly confined active nematics
are insensitive to topological constraints, and that the
anchoring effects are restricted to a narrow region near
the boundary.

We note that the plateau and decay lengths defined
here are different from the de Gennes - Kleman extrap-
olation length λdGK ∼ K/EA [71, 72]. As discussed ear-
lier, λdGK measures the distance away from the bound-
ary to a virtual wall where the preferred orientation is
obtained. This length decreases with increasing anchor-
ing strength. In comparison, xp directly measures the
strength of anchoring at the boundary against the non-
equilibrium effects of the activity by measuring its influ-
ence into the bulk and increases proportionally with EA

(Fig.8(c)). Similarly, xd measures the distance from the
boundary into the bulk where turbulent effects become
dominant, and thus measures the defect spacing

√
K/α,

and is independent of EA (Fig.9).

IV. DISCUSSION

Using an annulus confinement, we simulate the nat-
ural periodic boundary conditions one can build in ex-
periments, while studying the role of curvature in the
steady state dynamics. We map a shape-size phase dia-
gram for annular active nematics. At high confinement,
we observe a set of stationary states (meaning that the di-
rector field and velocity profiles are independent of time,
see section III A). As we progressively reduce confine-
ment or increase activity, we find four distinct dynamic
steady states as follows. First, we observe a corotating
(coherently-flowing) state with a train of defects that are
stabilized by the − 1

2 defects staying near the inner curved
wall. This state is unique to the annulus geometry. Sec-
ond, we observe a circulating state, which exhibits a vor-
tex structure similar to a corotating disk state but with
significant perturbations. Third, we observe the dancing
state that is well known to occur in channel-like geome-
tries [37]. However, within this regime we observe a be-
havior that is unique to the annulus geometry, in which
the curvature of the inner wall drives and asymmetry of
defect motions in opposite directions, leading to a net net
‘curvature-induced drift’. Finally, at low confinement or
high activity we observe a chaotic state.

We observe that a sufficiently small hole in the disk,
while changing the topology, does not change the dynam-
ical steady state of the active nematic. We present scal-
ing analysis that suggests that this threshold results from
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FIG. 9. The effects of anchoring are renormalized by activity. (a) Snapshot of a simulation with α = 5 and EA = 3. The
200× 200 box has periodic boundary conditions in the y direction and parallel anchoring with strength EA in the x direction.
The color shows |ny|. (b) 〈|ny|〉 as a function of x for the steady state, averaged over time and y for various activities, each
for low (solid lines) and high (dashed lines) anchoring cases. The dotted lines indicate the thresholds for the definition of the
alignment plateau length xp and decay length xd. We only show symbols for some data points to aid visibility. (c) xp vs. EA

for four different activities. The shaded region indicates the standard error. (d) xp as a function of the active length scale√
K/α, for various anchoring energies. The data in this plot is same as that in (c), with the anchoring energies increasing with

the darkness of the lines. Points marked (i), (ii) and (iii) highlight specific parameter sets. (e) Steady states obtained using the
parameters in (d) (i), (ii), and (iii). The color represents the scalar order parameter S with the same color-map as in Fig. 1.

FIG. 10. Alignment decay length xd as a function of
activity and anchoring strength. Plot of xd (defined in
Fig. 9) as a function of anchoring strength and the active
length scale, analogous to Fig. 9(c) and (d), indicating the xd
is independent of the anchoring strength.

a competition between the anchoring energy and elastic
energy of the nematic. Consistent with this analysis, the
threshold pinhole size below which the system dynam-
ics is insensitive to topology decreases with increasing
anchoring strength. Thus, the behavior of a pinhole an-
nulus can be globally switched by tuning the boundary

anchoring or its geometry (pinhole size). Lastly, we also
explore the effect of boundary anchoring on the steady
states, finding that a large anchoring strength destabi-
lizes the − 1

2 defects in the corotating state. Probing
the influence of the anchoring on the boundary layer in
bulk systems, we find that activity depletes the boundary
layer. This finding explains a previous observation that
the director fields of active nematics confined in disk ge-
ometries are insensitive to boundary conditions [59], and
furthermore extends that analysis to additional geome-
tries. Similar analyses can be applied to any geometry in
which topological constraints imposed by the boundaries
complete with the preferred global arrangement of the
director field.

We note that our model does not capture all the states
that are observed in experiments of microtubule-kinesin
active nematics in annulus geometries [74]. Additional
features of the experimental system that could be added
to the model include the following. In the experiments
the microtubule nematic floats at an oil-water interface
and is thus coupled to two isotropic fluids, while the
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theory approximates the system as a single component
fluid. While the no-slip velocity boundary conditions of
the theory are consistent with the oil/water fluid, the mi-
crotubules can slip at the boundaries. Further, the mi-
crotubule bundles have finite thickness and length, and
thus can act as material lines that exert non-local forces
[45]. In the continuum model, the director field only ex-
erts stress locally. Extending the model to incorporate
these effects could address the discrepancies between the-
ory and experiment.

Finally, while this work has focused on 2D confine-
ment of active nematics, recent theoretical studies have
identified a rich set of steady states in 3D channels
[27, 28, 57, 75]. It would be of great interest to extend
the present analysis to toroidal geometries, to understand
how the results we have found on the interplay between
activity, curvature, and topology are affected by dimen-
sionality.
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Appendix A: Defect detection and tracking

To locate the defects, we compute a map of the signed
winding number w = 1/(2π)

∮
∇θ · d~s at every point in

space [59, 76] with an integration ring of radius of 5 pix-
els. The winding number is zero everywhere except at the
defect locations [77, 78]. To eliminate spurious defects,
we filter out regions with a non-zero winding number that
are smaller than 60 squared pixels in area.

To plot the defect trajectories in Fig. 6, the + 1
2 defects

are tracked using the open source software Trackpy [79]
using a search range value of 20 pixels. The trajecto-
ries thus obtained are further filtered with a threshold of
minimum three frames of survival.

Appendix B: Finite Element method implementation

The meshes used for the simulations are generated us-
ing the mshr library from FEniCS. This library allows
to generate meshes with a given domain and an expected
resolution, but ensures that tighter boundaries have finer

elements. In Fig. 11, we show a close-up of the mesh with
Ri = 1 to show this property of the mesh. This adap-
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x
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y

FIG. 11. Close up of the finite-element mesh for Ri = 1,W =
5. The mshr library automatically generates smaller elements
near the inner radius.

tive mesh enables us to maintain sufficient accuracy while
using a relatively low resolution of ∆x ∼ 0.5 in the bulk.

The Q-tensor is defined using a vector function space
with continuous piecewise linear elements from the La-
grange family. The standard Taylor-Hood elements (a
vector function space of continuous piecewise quadrat-
ics and a function space of continuous piecewise lin-
ears) are used for the flow field and pressure. At each
time-step, the director is evolved forward using an im-
plicit backward-Euler scheme using a nonlinear varia-
tional solver. Then, the Stokes equation with activity is
solved using the resulting director using a Krylov solver
with an AMG preconditioner.

Appendix C: Supplementary Movies

In all the movies, the yellow to violet colorbar corre-
sponds to the scalar order parameter S, as in Fig 1, unless
stated otherwise. Similarly,
Movie S1: A representative movie of the corotating

state for EA = 0.01 Ri/W = 1 and W = 6.
Movie S2: The corotating state occurring in a flat

channel for W = 6.
Movie S3: A representative movie of the circulating

state for EA = 0.01 Ri/W = 0.1 and W = 10.
Movie S4: The same simulation as in Movie S3, but

also displaying the flow field to show the circulation.
Movie S5: A representative movie of the corotating

state for EA = 0.01 Ri/W = 1 and W = 10.
Movie S6: Curvature-induced drift, observed for

EA = 0.01 Ri/W = 0.3 and W = 15, corresponding
to Fig. 6. All the labels are same as in Fig. 6.
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