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Peeling from a liquid†

Deepak Kumar,a Nuoya Zhou,b Fabian Brau,c Narayanan Menon,b and Benny Davidovitchb

We establish the existence of a cusp in the curvature of a solid sheet at its contact with a liquid
subphase. We study two configurations in floating sheets where the solid-vapor-liquid contact line
is a straight line and a circle, respectively. In the former case, a rectangular sheet is lifted at its
one edge, whereas in the latter a gas bubble is injected beneath a floating sheet. We show that in
both geometries the derivative of the sheet’s curvature is discontinuous. We demonstrate that the
boundary condition at the contact is identical in these two geometries, even though the shape of the
contact line and the stress distribution in the sheet are very different.

1 Introduction

The peel test is an extensively used method to measure the
strength of adhesion of a sheet to a substrate. The test, schemati-
cally depicted in Fig. 1 panels A1-C1, is usually based on measur-
ing the force required to separate the sheet from the substrate. A
direct measurement of the shape of the sheet near the separation
front, performed in a classic 1930 study by Obreimoff on a freshly
cleaved mica1, has been arguably the earliest attempt to deter-
mine the surface energy of solids. In this test, the peeled-off part
of the sheet has a parabolic shape while the adhered portion of
the sheet remains flat (Fig. 1 B1). The discontinuity in curvature,
κ(s), where s is the distance to the contact line measured along
the sheet profile, reflects a highly-localized torque (on the scale
of the sheet’s thickness) that is exerted by the rigid substrate on
the peeled-off sheet. A localized torque is enabled by the rigidity
of the substrate, which allows it to exert a highly-localized force
oriented at an arbitrary angle to its surface. The presence of a
singular torque underlies Obreimoff’s law (see SI):

peeling off rigid substrate:

[[κ]] =
√

2/ℓbc (1)

where: ℓbc ≡
√

B/T . (2)
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Here, [[κ]] = κ(s → 0+)−κ(s → 0−) denotes the jump in curva-
ture as a function of the coordinate s at the peeling front (s = 0)
in the otherwise continuous curvature, B is the bending modu-
lus of the sheet, and T is an adhesion energy (per area) of the
solid2, which was attributed by Obreimoff to the surface energy
of the solid with the ambient phase. In Eq. (1), we follow a ter-
minology used in studies of elasto-capillary phenomena that in-
volve slender bodies at fluid interfaces, where Eq. (2) defines a
“bendo-capillary” length, ℓbc, at which bending and tensile forces
are comparable.

In this paper, we study peeling of a thin solid sheet from a liq-
uid subphase, schematically depicted in Fig. 1 panels A2-C2. Our
principal result is to establish, in two different experimental ge-
ometries, the boundary conditions that supplants the Obreimoff
condition in this situation. In contrast to a rigid, solid subphase,
the lack of shear rigidity of a liquid subphase removes the capa-
bility to generate a finite torque in an arbitrarily small vicinity
of the contact line. This leads to two intimately-related differ-
ences from peeling off a rigid substrate. First, the liquid surface
is deformed in a zone around the contact line, whose size is the
capillary length (determined by the forces that restore flatness of
interfaces, i.e. surface tension and gravity). Second, since it is
not possible for a liquid subphase to apply a localized torque the
curvature of the peeled-off sheet is continuous, and the only dis-
continuity at the contact line that is possible at mechanical equi-
librium is of the derivative κ ′(s). The analogue of Obreimoff’s law
for peeling a solid sheet off a liquid subphase becomes:

peeling off liquid subphase:

[[κ]] = 0 ; [[κ ′]] = sinθY /ℓ
2
bc , (3)

where we again use the symbol [[A]] for variations of A(s) between
the wet (s > 0) and dry (s < 0) parts of the solid sheet. Here, ℓbc
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Fig. 1 (A1, B1) Thin sheet peeling from a solid substrate (Obreimoff
problem). s is the arc-length measured along the sheet from the contact
line, such that s is positive in the adhered part of the sheet. ψ is the
angle made by the tangent to the sheet with the vertical. (A2, B2) Thin
sheet peeling from a liquid substrate (the problem studied in the current
manuscript). Panels B1 and B2 are, respectively, zoomed-in versions of
panels A1 and A2, at a bendo-capillary sale ℓbc. (C1) Curvature near the
contact line for thin sheet peeling from a solid substrate1 (corresponding
to panels A1-B1). (C2) Continuous curvature for a thin sheet peeled
from a liquid substrate characterized by a cusp at the contact line (cor-
responding to panels A2-B2). (D) Liquid drop on a rigid solid substrate
(YLD problem). (E) Liquid drop on a liquid substrate (Neumann prob-
lem). (F) Liquid drop on a soft solid substrate shows a wetting ridge near
the contact line. We do not study this system here. (G) An air bubble
under a thin sheet floating on a liquid substrate.

is defined through Eq. (2) with T = γℓv, and

θY = cos−1 [(γsv − γsℓ)/γℓv] (4)

is the Young-Laplace-Dupré (YLD) angle, which is determined by
the mutual surface energies between the liquid (ℓ), solid (s), and
ambient vapor (v) phase. In SI, we use variational analysis to
clarify the difference between peeling off a rigid substrate and
a liquid sub-phase, Eqs. (1) and (3), respectively. While Eq. (3)
has been noted already in a one-dimensional (1D) model system
of “bendable” partial wetting phenomena3, whereby a finite liq-
uid volume is deformed upon making contact with a thin solid
along a straight line4, our study is the first, to our knowledge, to
confirm it experimentally. Another novelty of the current study
is the implementation of these boundary conditions beyond the
ideal 1D geometry assumed in Ref. 3 and related works, to more-
common 2D peeling geometries, where the stress distribution in
the sheet is non-uniform and the contact line is curved. Deter-
mining a discontinuity in the derivative of the curvature (which
amounts to the third derivative of a profile extracted from an im-
age) is challenging, as noise-averaging smooths over the crucial
localized feature we seek to identify. Indeed, we are not aware of
any direct experimental study of a discontinuity in second deriva-
tive of the sheet profile in the solid-peeling case.

As illustrated in Fig. 1, the difference between the original
Obreimoff law for peeling off a rigid substrate (Eq. (1)) and its
modified version for a liquid bath (Eq. (3)), parallels the differ-

ence between the laws for a solid-liquid-vapor (YLD) and a liquid-
liquid-vapor (Neumann) contact angle shown in Fig. 1 D and E,
respectively. There are two very common cases that deviate from
the liquid (zero shear modulus) and rigid solid (infinite modu-
lus) subphases presented in these two classic contact geometries.
The first is to substitute the rigid solid by a soft, compliant elastic
material as sketched in Fig. 1F. This has led to extensive stud-
ies of the so-called “wetting ridge” 5–8 that is produced at the
three-phase contact line. In this paper, however, we study a less-
explored, but quite common way (Fig. 1 G) of introducing flexi-
bility in the system by interposing a thin, bendable elastic sheet
at the interface. Similarly to the difference between YLD contact
(Fig. 1D) and Neumann contact (Fig. 1 E), the difference between
Obreimoff peeling problem (Fig. 1 A1-C1) and peeling from a liq-
uid sub-phase (Fig. 1 A2-C2) stems from the fact that a liquid
bath cannot support normal load without deforming its surface.
However, in contrast to the contact angle problem on either a
liquid or solid subphase (Fig. 1D and E), where the only length
scale is the size of the liquid drop, the geometry of a sheet peeled-
off from a liquid subphase involves multiple scales. Zooming in
close to the contact line at a size scale ≪ ℓbc (Fig. 1 B2) reveals
a geometry that is almost indistinguishable from the vicinity of a
contact on a thick rigid body of the same material (Fig. 1 D), ex-
cept for a discontinuity of the 3rd derivative of the surface, which
is reflected (Fig. 1 C2) by a cusp in the curvature κ(s). Zooming
out (Fig. 1 A2) to a size that is ≫ ℓbc yet ≲ ℓc =

√
γℓv/ρg, the

capillary length, one observes a liquid meniscus dominated by a
balance of surface tension and gravity (Young-Laplace equation),
which terminates at a kink, as if the curvature was diverging. This
multi-scale scenario is valid only if the sheet is sufficiently thin,
such that ℓbc ≪ ℓc, or more generally:

ε ≪ 1 , where ε ≡ (ℓbc/Lout)
2 . (5)

Here, Lout is an “outer” scale, at which the curvature approaches
an asymptotic value, which is ≪ ℓ−1

bc . For the example depicted
in Fig. 1C2 , where Lout = ℓc, the ratio ε = ρgB/γ2

ℓv is akin to the
“softness” parameter that was defined in Ref.9.

2 1D translationally symmetric geometry

2.1 Theory

We first address an effectively one-dimensional geometry, where
the deformed sheet is characterized by translational symmetry
along the contact line, as shown schematically in Fig. 1A2 and
Fig. 2A. Such a 1D set-up is realized in a floating, rectangular thin
sheet, which is peeled off by exerting a vertical force Tpeel along
one of its short edges. As we noted above, when observed at in-
termediate scales, |s| ≫ ℓbc, the sheet appears to have a cusp at
the contact line; furthermore, the mechanical equilibrium shape
is characterized by reflection symmetry of the two sides of the
surface (sheet-covered and liquid-vapor) around the vertical line
as shown in Ref.11. The reflection symmetry indicates that the
tension in the wet part of the sheet is identical to the liquid-vapor
surface tension, γℓv, and force balance at the contact line thus de-
termines the force, Tpeel , the opening angle, 2ψ0, of the apparent
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Fig. 2 1D geometry. (A) Schematic of experimental setup. The upper
edge of the sheet is held at a fixed, controllable height. (B) A typical
image of the sheet profile (Polystyrene, thickness t = 2 µm corresponding
to ℓbc = 0.2 mm). Superimposed on the image are solutions of the non-
linear Young-Laplace equation10 (solid green line), the capillary elastica
Eq. (11) (solid blue curve), and the capillary elastica with gravity cor-
rection (dashed cyan curve). The curvature κ(s) of the sheet for (C)
Polystyrene sheet (t = 2 µm) with estimated statistical error bars and
(D) PMMA sheet (t = 2 µm). Filled black circles, blue and red lines
represent data, theoretical prediction from capillary elastica and capillary
elastica with gravity correction, respectively. On the dry part (s < 0 in
panels C-D, corresponding to the vertical segment in panels A-B), κ(s)
vanishes over a length ℓbc, whereas in the wet part (s > 0 in panels C-D,
corresponding to the right part in panels A-B) κ(s) reduces first to ∼ ℓ−1

c
and vanishes only at a distance ℓc = ε−1/2ℓbc ≫ ℓbc, from the contact line,
due to the effect of liquid gravity.

cusp, and the height, H0, of the contact line over the liquid bath
level:

Tpeel = γℓv(1+ cosθY ) = 2γℓv cosψ0 (6)

=⇒ ψ0 ≈ cos−1[cos2 θY

2
] , H0 ≈ f (ψ0)ℓc , (7)

where the function f (ψ0) is found by solving the (nonlinear)
Young-Laplace equation10, such that f ≈(π/2−ψ0) for ψ0 → π/2
and f ≈

√
2 for ψ0 → 0. The shape of the whole sheet is described

by a planar vector, X⃗(s)=x(s)î+y(s) ĵ, where s is an arclength pa-
rameter, and is conveniently described through the angle, ψ(s),
between the tangent vector, X⃗ ′, and the downward vertical −ŷ:

x′(s) = sinψ ; y′(s) = cosψ ; and κ(s) = ψ
′ . (8)

At mechanical equilibrium, the shape satisfies the capillary elas-
tica, which expresses normal force balance3,12:

B
[

κ
′′+

κ3

2

]
−T (s)κ =−P(s)+ γℓv sinθY δd(s)

P(s)=

{
0 s < 0
−ρgy(s) s > 0

T (s) =

{
Tpeel s < 0
γℓv s > 0

(9)

where s = 0 is the position of the contact line, and δd(s) is the
Dirac delta function. Here, P(s) is the hydrostatic pressure ex-
erted by the liquid bath on the wet portion of the sheet, s > 0 ,
T (s) is the tension in the sheet, and γℓv sinθY is the normal force
exerted by the liquid-vapor interface at the contact line. In a
1D geometry at mechanical equilibrium (and absence of exter-
nal shear forces) the tension T (s) satisfies ∂sT = 0, and is con-
sequently constant in the dry part (s < 0), where it is given by
the force Tpeel exerted by the peeler, and in the wet part (s > 0),
where it is given by the liquid-vapor surface tension that pulls on
the edge of the floating sheet.

Integrating both sides of Eq. (9) over an infinitesimal neighbor-
hood of the contact line, s = 0, we obtain:

B[[κ ′]] = γℓv sinθY , (10)

and since the discontinuity of κ ′(s) is finite, integration of κ ′(s)
across the contact line implies that [[κ]] = 0, thereby establishing
Eq. (3) *.

On each of the two portions of the sheet (dry, s < 0, and wet,
s > 0), the profile is determined by the capillary elastica (9) which
is a nonlinear 3rd order differential equation (ODE) for ψ(s). Em-
ploying a common method for solving ODEs whose source term
is localized (δd(s)), we “split” the interval into two portions, s > 0
and s < 0, in each of them 3 boundary conditions (BCs) are re-
quired. Thus, a total of 6 independent BCs must be given, which
characterize the behavior of the sheet at the dry and wet sides of
the contact line, s → 0+ and s → 0−, respectively, as well as the
dry and wet edges of the sheet. Eqs. (3) comprise 2 of these BCs,
hence 4 other BCs must be specified. To obtain them, we non-
dimensionalize length by defining s̄= s/ℓbc and κ̄ = κℓbc, and con-
sider the corresponding non-dimensionalized version of Eq. (9),
in the singular limit ε → 0 (see SI). At O(ε0), we obtain 2 “outer”
BCs at each side of the contact line. At s̄ → −∞ : ψ → 0, κ̄ → 0,
and at s̄ → +∞ : ψ → ψ0, κ̄ → 0, and the corresponding (exact)
solution of Eq. (9) at O(ε0) is given by:

s̄ > 0: κ̄ =−2 sech(s̄+s̄w) , (11)

s̄ < 0: κ̄ =−2
√

r sech[(s̄+s̄d)
√

r] , r ≡
Tpeel

γℓv
= 2cosψ0 ,

* A higher-order effect, which cannot be accounted by Eq. (9), is the small torque
exerted by the liquid-vapor interface on the sheet if they are not perpendicular at
the contact line (i.e. θY ̸= π/2). This localized torque is explicitly proportional to
the thickness, yielding a discontinuity of the curvature [[κ]] ∼ cos(θY ) · t/ℓ2

bc, whose
effect on the shape is negligible , i.e. [[κ ′]]≫ [[κ]]/ℓbc for t≪ℓbc.
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where: s̄w = cosh−1(a) ; s̄d =−cosh−1(a
√

r)/
√

r ;

a = (2/sinθY )

√
b+

√
b2 −1 ; b = 1+ r . (12)

In the SI, we describe a next-order, O(ε1) solution, which incor-
porates the gravity effect on the sheet curvature and is useful for
comparison with experimental data.

2.2 Experiment

The setup employed to study the 1D problem experimentally is
illustrated schematically in Fig.2 A. Thin sheets of Polystyrene
(Polymer source P10453-S, Mw = 97.6 kDa, Young’s modulus =
3.5 GPa) and PMMA (Aldrich 182265, Mw ∼ 996 kDa, Young’s
modulus = 3 GPa) of 1-2 µm thickness are prepared by spin-
coating on glass slides. The choice of sheet thickness is restricted
on one hand by the need to have an imaging resolution much
smaller than ℓbc and on the other hand by the requirement that
ℓbc ≫ ℓc for having a separation of scales as assumed in the the-
oretical analysis. Rectangles of 20 mm width and 60 mm length
are cut from these films and floated on the surface of a water
bath (ℓc=2.7 mm). The sheets are floated from glass slides onto
the water surface extremely slowly and carefully and we do not
observe any air bubbles below the sheet. The long end of the
film (along the z direction) is then lifted out of the water sur-
face by using a triangular hanger made up of graphite rods of
diameter 0.7 mm (pencil leads). A green laser sheet illumination
(wavelength 532 nm) is used to illuminate the interface near the
contact line for imaging. A dye (Rhodamine-B) is dissolved in
water in miniscule amount rendering both sides of the interface
fluorescent. The interface is imaged using a DSLR camera (Nikon
D5300) with a macro-lens and a long pass filter to admit only the
fluorescent light. The laser sheet is positioned near the center of
the film which is many ℓc away from the ends of the contact line.
In this configuration end-effects, such as wrinkles seen near the
edges of the sheet, are negligible and the film profile can be as-
sumed to be 2D. A typical image obtained from the setup is shown
in Fig. 2B. The resolution of the imaging setup (1 pixel ∼ 1 µm) is
typically much smaller than ℓbc, which is approximately 0.2 mm
for the sheets used. Superimposed on the image are the solu-
tion of the Young-Laplace equation10 (green solid curve) for the
liquid-vapor interface (left to the contact line), the solution to the
capillary elastica without gravity as a blue solid curve, and the
solution of the capillary elastica with gravity as the dashed cyan
curve.

A gradient method is used to detect the interface and to ob-
tain its (x,y) coordinates along the film from the images, and the
curvature κ(s) is computed from:

κ(x)=
y′′(x)

(1+ y′(x)2)3/2
; s(x)=

∫ x

0

√
1+ y′(x′)2dx′ , (13)

where y(x) is the sheet profile measured from the image. On com-
puting derivatives from experimental data, the noise in the data
gets amplified, which usually necessitates some form of smooth-
ing. However, traditional smoothing methods will suppress any
cusp in κ(s). We therefore developed the algorithm described be-

low to extract κ(s) from the (x,y) data.

We divide the whole data set into intervals of length ∆ ∼ ℓbc.
Each of these intervals contain thus approximately 200 data
points usually. We construct a sample of this data by choosing
one data point from each interval randomly with a uniform prob-
ability distribution. We can estimate the position of the contact
line from the images with a much higher accuracy and precision
of a few pixels. We add to the data sample a contact-line loca-
tion selected randomly with a Gaussian probability distribution
centered at the estimated position of the contact line and having
a width equal to the estimated error. A spline function of order
3 made up of Hermite polynomials is generated using this sam-
pling of data points and the curvature is computed on this spline
function at roughly every 10th point of the original data set. The
process is repeated a large number of times (about twice the num-
ber of data points in each interval), selecting a different sampling
of data points, such that the whole data set is adequately rep-
resented. The curvature profiles obtained from individual data
samples are averaged to obtain the final κ(s) curve. This proce-
dure allows noise-averaging and use of the full data set without
spatial averaging that would smooth the putative curvature cusp.

The black filled circles in Fig. 2C-D show κ(s) as determined by
the method described above, for a polystyrene (PS) and a PMMA
film of thickness t = 2 µm, respectively. Superimposed on the ex-
perimental data are the theoretical predictions obtained by solv-
ing the capillary elastica equation neglecting gravity and capillary
elastica with gravity in blue and red lines respectively. We notice
that the theoretical predictions match the experimental data quite
well and show a clear cusp at s = 0.

When gravity is neglected, the only input parameter required
to solve the capillary elastica is ψ0; however, this can be directly
measured from the water-air interface near the contact line in
the image and is found to be 48.8◦ and 40.0◦ for the PS and the
PMMA films in Fig. 2C and 2D, respectively. In order to generate
the solution of the capillary elastica with gravity, in addition to
ψ0, we need the value of ε = (ℓbc/ℓc)

2, which is already known.
Thus, there is no fitting parameter involved in computing the
theory curves. The theoretical profiles calculated till order O(ε0)

and O(ε1) match well with the experimentally measured sheet
profile close to the contact line but deviate from it further away.
These deviations are due to higher-order terms neglected in the
calculation, which may become important far enough from the
contact line.

3 Axial geometry

3.1 Theory

While the 1D geometry of the setup described in Fig. 2 presents
a simple setting to discuss the boundary conditions at the contact
line, the curvature cusp predicted by Eq. (3) appears in various
other settings that are often encountered in elasto-capillary phe-
nomena. One example is the axially-symmetric geometry of a thin
sheet floating on water with an air-bubble of volume V under-
neath it, as shown schematically in Fig. 3A. In contrast to the 1D
geometry, which is free of Gaussian curvature and whose mechan-
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Fig. 3 2D axially-symmetric geometry. (A) The setup consists of a thin
sheet floating on water with an air bubble underneath. (B) A typical
image of the sheet profile (Polystyrene, thickness t = 2 µm). The dashed
white curve is a circle fitted to the air bubble, and the white solid line is
tangent to the sheet profile at the contact line. The curvature κ(s) for
air bubble of radius (C) 4.1 mm and (D) 3.1 mm.

ical equilibrium is thus described everywhere by a planar curve
X⃗(s) that solves the elastica, Eq. (9), the axial geometry in Fig. 3
is characterized by Gaussian curvature, and thus involves a non-
trivial variation of both radial and hoop components of the stress
and curvature tensors with radial distance r. Hence, the shape of
the sheet must be described by a surface X⃗(r,θ), that is obtained
by solving the Föppl-von Kármán (FvK) equations13,14, and is fur-
thermore susceptible to radial wrinkling instability due to hoop
compression exhibited by an axisymmetric solution15,16. Never-
theless, as long as the bendo-capillary length is sufficiently small,
(namely, ε ≪ 1, where Lout in Eq. (5) is now given by the drop’s
radius and/or the capillary length ℓc), the dominant terms in the
curvature and stress tensors in the vicinity of the contact line are
the radial components, and consequently the normal force bal-
ance is given by an equation similar to Eq. (9):

B
(

κ
′′
⊥+κ

3
⊥/2

)
−σ⊥κ⊥ = γℓv sinθY δd(s) , (14)

where κ⊥(s),σ⊥(s) are principal components of the curvature and
stress tensors, respectively, along the radial direction, perpendic-
ular to the contact line, and s is the distance from the contact
line. In the preceding analysis we neglected in Eq. (14) the sub-
dominant hydrostatic pressure term; for similar reasons we ig-
nore spatial variation of σ⊥ on each side of the contact line. Once
again, considering an infinitesimal vicinity of the contact line, we

note that tangential force balance yields:

σ
(d)
⊥ = γlv cosθY +σ

(w)
⊥ (15)

(where superscripts refer to the dry and wet sides), to which we
refer as YLD equation, and integration of Eq. (14) yields the jump
condition, Eq. (3).

The validity of Eq. (14) hinges upon scale separation, namely
ε ≪ 1, where the ratio ε is given by Eq. (5), with

ℓbc −→ ℓ∗bc ≡
√

B/σ⊥ ; Lout −→ min{ℓC,V 1/3} (16)

(see SI and Ref.14). Similarly to our analysis of Eq. (9), the O(ε0)

boundary conditions for Eq. (14) consist of vanishing curvature
away from the contact line (i.e. κ̄, κ̄

′ ∼ O(ε,
√

ε), respectively).
However, in contrast to the simpler 1D geometry, finding the
asymptotic tangent angle ψ1,2 at the two sides of the contact line,
as well as the stress σ⊥ in its vicinity, requires one to solve the
FvK equations – a nonlinear set of partial differential equations
– in the singular limit of vanishing bending rigidity (known as
“membrane limit” or “tension field theory"). Rather than follow-
ing such a theoretical track (à la Refs.13,14), we note that force
balance on an “intermediate box” of size ℓ∗bc ≪ ℓ ≪ Lout , around
the contact line (see Fig. 3B) implies that, at O(ε0):

σ
(d)
⊥ =−σ

(w)
⊥ cosψ2 − γlv cos(ψ1 +ψ2)

σ
(w)
⊥ sinψ2 =−γlv sin(ψ1 +ψ2) (17)

(often called “Neumann contact”17), which implies that γlv

and the two asymptotic angles, ψ1,ψ2, uniquely determine the
in-plane stress in the sheet, σ

(w)
⊥ ,σ

(d)
⊥ , near the contact line,

and consequently the YLD angle θY by Eq. (15). Note that for
the 1D peeling geometry considered earlier, σ

(w)
⊥ = γlv, whereas

ψ1 = 2ψ0 and ψ2 = π −ψ0, such that Eqs. (15) and (17) reduce
to Eq. (6).

3.2 Experiment

The axial geometry is realised in the experiments by inserting
an air bubble beneath a sheet floating on water using a syringe.
To image the contact line between bubble, sheet and water
subphase, a vertical plane passing through the center of the
setup is imaged using a laser-sheet fluorescence method similar
to the one illustrated in Fig. 2A. A typical image of the sheet
profile obtained from these experiments is shown in Fig. 3B.
A bright-field image is taken after the fluorescence image, and
used to obtain the profile of the air-bubble. The dashed white
curve in Fig. 3B represents a circle fitted to the air-bubble
shape. Figures 3C-D show κ(s) for bubble radii R = 4.1 mm
and R = 3.1 mm, respectively. The data demonstrate that in this
geometry too, the curvature has a cusp near s = 0, representing
a discontinuity in the derivative of the curvature. Note that the
curvature vanishes in the wet part (s > 0,s ≫ ℓbc), where the
sheet is flat, and approaches a positive value in the dry part
(s < 0, |s| ≫ ℓbc), where the air bubble imposes a curved shape on
the sheet. Similarly to the effect of gravity in the 1D geometry,
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this asymmetry of the asymptotic values of curvature is a higher
order effect, which is not captured by a leading, O(ε0) analysis.

4 Discussion
Problems such as the 1D and axial peeling geometries in highly-
bendable sheets typically come in two parts with a big separation
in length scale – an “inner”, bending-dominated region of size ℓ∗bc
that is governed by the elastica, and an “outer” region, where the
shape and stress are independent of bending rigidity. At the in-
nermost part of the bending-dominated zone is the purely local
effect that we have established in this article, with a disconti-
nuity in the gradient of the curvature in the vicinity of the con-
tact line, [[κ ′

⊥]], which is determined purely by material parame-
ters (B,γlv,θY ). This discontinuity affects the bending-dominated
region as a “near-field" boundary condition to the elastica prob-
lem, but a complete solution of the elastica requires also a “far-
field" boundary condition, which is obtained by matching with the
outer, bending-independent problem. In the cases we considered,
this matching condition is expressed through a single parameter,
the asymptotic angle ψ0 in Fig. 1 or equivalently ψ2 = π −ψ0 in
Fig. 3. Neglecting the bending-dominated region altogether (as
was proposed in Ref.18 for sufficiently thin sheets) leads to an
error in the region close to the contact. Neglecting the curvature
discontinuity at the contact line (as in the elastica problem for 1D
delamination studied in Ref.19) can also lead to an error in the
predicted shape, and when tension is small, the error may span
a large portion of the sheet. We further note that the geometry-
independent nature of the discontinuity, [[κ ′

⊥]], provides the basis
for a robust method for determining contact angles both at and
away from thermodynamic equilibrium.

In this work, we considered the peeling from a liquid substrate
of an effectively inextensible, yet highly bendable solid sheet. In
this case, any deformation of the sheet is described by the shape
of its mid-surface, reflecting a balance of bending and interfacial
forces, where the shape itself does not exhibit any irregularity up
to a discontinuity of its 3rd derivative as is described in Eq. (3).
For a solid sheet of Young’s modulus E and thickness t, such an
effectively inextensible mechanics corresponds to the parameter
regime t ≪ ℓbc, or equivalently t ≫ ℓec, where ℓec = γ/E is the
“elasto-capillary” length (which inequality is additional to the in-
equality (5)). If one zooms in on a vicinity of size ℓec of the con-
tact line (assuming ℓec is larger than the molecular scale of the
solid phase), one may observe an actual cusp in the solid’s sur-
face, which is described by Neumann’s law (see schematic Fig.
3a in Ref.20). If the solid sheet is made of sufficiently compli-
ant material such that t ≫ γ/E, the deformation of the sheet can
no longer be described by the shape of its mid-surface, instead it
must be considered as a 3D elastic body (similarly to Fig. 3b of
Ref.20).

In conclusion, our study on the boundary condition of a liq-
uid in contact with a bendable solid sheet brings closer to com-
pletion a glossary of elementary types of triple-phase contacts of
solid and liquid bodies (Fig. 1 D-G): starting from the classical
Young-Laplace contact (1805) and Neumann contact (1894) to
the Obreimoff contact (1930) and more recent studies on the wet-

ting ridge formed by a liquid drop on a stretchable solid.5–8
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