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Self-buckling and self-writhing of semi-flexible
microorganisms†

Wilson Lough,a Douglas B. Weibel,b and Saverio E. Spagnoliecd

The twisting and writhing of a cell body and associated mechanical stresses is an underappreci-
ated constraint on microbial self-propulsion. Multi-flagellated bacteria can even buckle and writhe
under their own activity as they swim through a viscous fluid. New equilibrium configurations and
steady-state dynamics then emerge which depend on the organism’s mechanical properties and
on the oriented distribution of flagella along its surface. Modeling the cell body as a semi-flexible
Kirchhoff rod and coupling the mechanics to a dynamically evolving flagellar orientation field, we
derive the Euler-Poincaré equations governing dynamics of the system, and rationalize experi-
mental observations of buckling and writhing of elongated swarmer cells of the bacterium Proteus
mirabilis. A sequence of bifurcations is identified as the body is made more compliant, due to
both buckling and torsional instabilities. These studies highlight a practical requirement for the
stiffness of bacteria below which self-buckling occurs and cell motility becomes ineffective.

1 Introduction
Motility introduces a number of demands on the mechanical con-
struction of bacterial cells. Such constraints have been studied
for motility organelles; slender flagella can buckle below a criti-
cal bending stiffness or above a critical motor torque1,2, and the
same is true of the flexible flagellar hook3,4. The shape and size
of bacterial cells is influenced by numerous considerations5–8, in-
cluding efficient motility in liquids9–11. However, motile bacterial
cells are canonically presumed to be rod-shaped, non-deformable
structures, and cell stiffness, a feature normally provided by cell
wall composition12–14 and turgor pressure15, is typically over-
looked in studies of motility. Cell wall stiffness regulation alters
bacterial cell shape, influences motility, and enables bacteria to
adapt and survive16,17.

The length of Proteus mirabilis (P. mirabilis) cells increases by
up to 20-40x when they are in a swarming state18, and defor-
mation in cell shape are visibly clear in a swarm19,20. P. mirabilis
swarmer cells have reduced cell stiffness compared to normal veg-
etative cells21. Gene deletion has also been used to artificially
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reduce cell stiffness22. But the nature and organization of any
motility organelles is also important. A swarmer cell swims by
rotating up to thousands of flagella which are distributed along
its surface23,24. The flagellar motion drives active, wavelike
surface features more often used to describe ciliated organisms,
which themselves are classically modeled as a continuum of ac-
tive stress25,26.

A wild-type P. mirabilis cell is stiff and rod-shaped and swims
along a straight trajectory, with its flagella oriented with their tips
opposite the swimming direction (Fig. 1e)27. The fluid response
to flagellar motion drives the body forward, and induces a rota-
tional velocity along the long axis as dictated by the force- and
torque-free nature of swimming in viscous fluids28. Elongated
swarmer cells, however, can express a wide range of intricate
and stunning dynamics. Figure 1 shows P. mirabilis cells which
have buckled under their own activity. The flagellar tips appear
to be pointing away from the direction of local body motion, sug-
gestive that their orientation depends upon local viscous stresses
(Fig. 1a-b; see Supplementary Movies M1-M4). Strongly three-
dimensional configurations and dynamics are shown in Fig. 1c,
which includes a spinning motion about the direction of swim-
ming. An even more highly deformed state with multiple self-
crossings is shown in Fig. 1d.

Such active systems are particularly rich, as even passive slen-
der bodies driven by external forces29 or flows30 continue to re-
veal new buckling behaviors31–36. The shapes and dynamics of
elongated P. mirabilis cells share many similarities with active or
externally forced filaments which exhibit spontaneous symmetry
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Fig. 1 (a-d) Swarmer P. mirabilis cells bend, rotate, and twist under their own flagellar activity (see Supplementary Movies M1-M4). Solid arrows
indicate the direction of motion. (e) Flagellar stresses are modeled as a continuous force density f (s, t) and proportional moment density m(s, t) which
drives and rotates the body through the fluid. (f) An active swimming Kirchhoff rod reproduces U-shaped swimming, S-shaped rotation, and twisted,
rotating swimming states found in experiments. Dashed arrows indicate the direction of the local flagellar force and moment densities. (g) Phase
diagram illustrating periodic symmetric dynamics in the absence of an active moment m(s, t) = 0. The centerline curvature κ(s, t) = ∑

∞
k=0 ak(t)φk(s) is

projected onto the first two even biharmonic modes (a0(t),a2(t)) and trajectories in a0-a2 space are plotted against β
−1/3
⊥ where β⊥ = B⊥/( f ∗L3) is a

dimensionless bending stiffness, with B⊥ the bending modulus, f ∗ a characteristic active force density, and L the body length.
Bifurcations from straight filaments to swimming-U shapes, then to periodic waving-U dynamics, then to periodic flapping-W dynamics
are observed as the bending stiffness is reduced. (h) A cross-section of the phase diagram in (g) with β⊥ = 1.3× 10−4 (waving-U
dynamics). (i) A cross-section of the phase diagram in (g) with β⊥ = 7.6×10−5 (flapping-W dynamics).

breaking37–39. The U- and S-shaped configurations in Fig. 1a-b
have been observed numerically in related systems in two dimen-
sions40, as have spiral-shaped configurations41. The response of
semi-flexible polymers to molecular-motor-driven stress has seen
tremendous interest42, particularly in the context of cytoskeletal
networks and interphase chromatin configurations43–45. Flagel-
lar propulsion, however, introduces additional features, for in-
stance a competition between twist/bend elasticity and twist in-
jection46–48, and a dynamic rearrangement of flagellar stress. It
is plausible that the highly nonlinear twist-bend coupling49,50 re-
sponsible for the emergence of writhing instabilities51 and chiral
configurations52 in generic elastic filaments is also responsible for
the configurations seen in Fig. 1c-d.

In this paper we explore numerically and analytically a Kirch-
hoff rod model of a long, swimming cell which is driven by ac-
tive forces and moments associated with flagellar activity. The
model reproduces both two- and three-dimensional configura-
tions (Fig. 1f) and predicts microorganism buckling and writhing
under its own flagellar activity and viscous stress response. Bi-
furcations in the shapes and dynamics appear as the cell body is
made more flexible, including buckling and torsional instabilities
commonly observed in passive elastic systems, and new modes of
motion are found upon the introduction of the active moment.

The paper is organized as follows. In §2 we present the ac-
tive Kirchhoff rod model, in which the deformable body dynam-
ics are described using the Euler-Poincaré formalism53–55. The
numerical method used to explore the system, which exploits the
geometric structure of the Euclidean group SE(3) and its Lie alge-
bra se(3) to seamlessly and accurately incorporate kinematic con-
straints, is also presented. In §3 we consider both analytically and

numerically the body configurations and dynamics which emerge
from the model equations. The case of a vanishing active mo-
ment is first explored, resulting in planar dynamics. The results
of a linear stability analysis are shown to compare favorably with
full numerical simulations, and associated eigenfunctions provide
a baseline from which to explore a sequence of shape bifurca-
tions in the fully nonlinear system. The fully three-dimensional
dynamics are then probed, which reveal buckling behaviors anal-
ogous to those found in the planar setting, but which also involve
a coupling between twisting and bending modes of deformation
and stress. A linear stability analysis is revisited, which includes
modifications to the predicted unstable wavenumbers and growth
rates in the case with no active moment. We close with a discus-
sion in §4 with directions for future study.

2 Active Kirchhoff rod model

The cell is assumed to have length L with uniform circular cross-
section of diameter a. Aspect ratios a/L of swarmers, typically
on the order of 10−2 to 5× 10−2 27,56, are sufficiently small that
extensile and shear deformations are neglected57. Associated
with each station of the filament in arclength s and time t is

a matrix Φ(s, t) =

(
Q r
0 1

)
representing the Euclidean transfor-

mation which maps an inertial frame (e0,e1,e2) located at the
origin onto the body’s orthonormal material frame (q0,q1,q2) =

(Qe0,Qe1,Qe2) located at r. Velocities and deformations may then
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be represented by the fields

Ψt =Φ−1
∂tΦ=

(
ω̂ u
0 0

)
, (1)

Ψs =Φ−1
∂sΦ=

(
Ω̂ U
0 0

)
, (2)

where we have defined the antisymmetric operators ω̂ := ωωω×
and Ω̂ := ΩΩΩ×. The generalized velocity Ψt describes the body’s
local linear velocity, u = Q−1∂tr, and local angular velocity,
ω̂ = Q−1∂tQ, as measured in the material frame, and the field
Ψs describes the body’s local deformation in the form of the
twist/curvature operator, Ω̂ = Q−1∂sQ, and the centerline tan-
gent vector U =Q−1∂sr. We choose to formulate dynamics of the
body directly in terms of the fields (u, ω̂, U,Ω̂), and write body
configurations as path-ordered exponentials58,

Φ(0, t) =Φ(0,0)Pexp
∫ t

0
Ψt(0,ξ )dξ , (3)

Φ(s, t) =Φ(0, t)Pexp
∫ s

0
Ψs(ξ , t)dξ . (4)

The path-ordered exponential, or product integral, of a matrix-
valued curve X=X(ξ ) is the limit of an ordered product of matrix
exponentials,

Pexp
∫ b

a
X(ξ )dξ = lim

n→∞
eX(ξ0)∆ξ eX(ξ1)∆ξ . . .eX(ξn)∆ξ , (5)

where ∆ξ = (b−a)/n and ξk = a+k∆ξ . Integrability of the system
Φ−1 dΦ = Ψs ds+Ψt dt requires Ψs and Ψt satisfy the Euclidean
structure equations59,

∂sωωω −∂tΩΩΩ+ΩΩΩ×ωωω = 0, (6)

∂su−∂tU+ΩΩΩ×u−ωωω ×U = 0, (7)

which are a generalization of the familiar compatibility relations
for elastic rods48,57. A principal advantage of this approach is
that it naturally leads to numerical schemes which circumvent vi-
olations of inextensibility, unshearability, and frame orthonormal-
ity, and do not require soft penalties or explicit parameterization
of rotations by Euler angles or quaternions60–64.

Viscous stresses, −ζζζ · u and −ζrωωω∥ = −(U ·ωωω)U, are related
to the local body velocity through a local resistive force theory,
where ζζζ = ζ∥UUT +ζ⊥(1−UUT ) with longitudinal ζ∥ and trans-
verse ζ⊥ coefficients, and by a rotational drag coefficient ζr

46,65.
Driving the system away from equilibrium are active stresses aris-
ing from a distribution of flagella, modeled here as a continuum
providing an effective tangential force density f U and propor-
tional moment density mU := ML f U (Fig. 1e). To account for
the tendency of flagella to align with local flow, we consider f to
evolve according to

τ f ∂t f = ( f ∗/L)
[
1− ( f/ f ∗)2

]
U ·u+D f ∂

2
s f , (8)

with ∂s f (−L/2) = ∂s f (L/2) = 0. The force density tends toward a
characteristic magnitude f ∗ with a relaxation time τ f ζ∥L/ f ∗ de-

pending on the dimensionless parameter τ f . and D f is a diffusion
constant.

The internal energy of the body is given by

E =
∫ L/2

−L/2

1
2

ΩΩΩ ·BΩΩΩ+ΛΛΛ ·Uds (9)

where ΛΛΛ is a Lagrange multiplier which enforces inextensibility
and unshearability,

q0 =QU (10)

and B = B∥UUT +B⊥(1−UUT ) penalizes twisting and bending
with moduli B∥ and B⊥, respectively57. Balancing structure pre-
serving variations53 of E with active and viscous work gives the
Euler-Poincaré equations,

∂sΛΛΛ+ΩΩΩ×ΛΛΛ = ζζζ ·u− f U, (11)

∂s (BΩΩΩ)+ΩΩΩ×BΩΩΩ+U×ΛΛΛ = ζrωωω∥−mU, (12)

which describe local force and moment balance (see B). The kine-
matic relations (3),(4),(6),(7),(10), the flagellar evolution law
(8), and the balance equations (11),(12) form a closed system
describing dynamics of the body and its flagellar distribution.

Evolution equations for the twist ΩΩΩ∥ = (U ·ΩΩΩ)U, curvatures
ΩΩΩ⊥ =

(
1−UUT )ΩΩΩ, and tension λ = U ·ΛΛΛ are obtained by first

solving (10),(11),(12) and the transverse part of (7) for ΛΛΛ⊥ =

(1−UUT )ΛΛΛ and the velocities (ωωω,u):

ΛΛΛ⊥ = U×∂s (B⊥ΩΩΩ⊥)+
(

B∥−B⊥
)(

U ·ΩΩΩ∥

)
ΩΩΩ⊥, (13)

u = ζ
−1 (∂sΛΛΛ+ΩΩΩ×ΛΛΛ+ f U) , (14)

ωωω =
1
ζr

(
∂s

(
B∥ΩΩΩ∥

)
+mU

)
+U× (∂su+ΩΩΩ×u) . (15)

Equations (13),(14), and (15) are then substituted into Eq. (6)
and the longitudinal component of (7). The resulting shape evo-
lution equations take the form

∂tΩΩΩ∥+

[B⊥−B∥
ζ⊥

κ
2 −

B∥
ζr

]
∂

2
s ΩΩΩ∥ = GGG∥, (16)

∂tΩΩΩ⊥+
B⊥
ζ⊥

∂
4
s ΩΩΩ⊥ = GGG⊥, (17)

∂
2
s λ −

ζ∥
ζ⊥

κ
2
λ +

B⊥
2

∂
2
s κ

2 +∂s f

+
ζ∥B⊥

ζ⊥

(
ΩΩΩ⊥ ·∂ 2

s ΩΩΩ⊥−κ
2|ΩΩΩ∥|2 −2ΩΩΩ∥ · [ΩΩΩ⊥×∂sΩΩΩ⊥]

)

+
ζ∥B∥
ζ⊥

(
κ

2|ΩΩΩ∥|2 +ΩΩΩ∥ · [ΩΩΩ⊥×∂sΩΩΩ⊥]
)
= 0, (18)

where we have defined κ2 = |ΩΩΩ⊥|2, and the vector-valued
functions GGG∥ and GGG⊥ depend nonlinearly on spatial deriva-
tives of ΩΩΩ,λ , and f . Natural boundary conditions require that
ΩΩΩ∥,ΩΩΩ⊥,∂sΩΩΩ⊥, and λ all vanish at both ends of the body.

Upon scaling by the length L, force density f ∗, and stiff-
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ness B⊥, the system is found to depend on six dimensionless
groups: a relative bending modulus β⊥ = B⊥/( f ∗L3), twist modu-
lus β∥ = B∥/( f ∗L3), translational drag ratio η = ζ⊥/ζ∥, rotational
drag ηr = ζr/(ζ∥L2), dimensionless active moment M, and a di-
mensionless diffusion constant D = ζ∥D f /( f ∗L). Henceforth all
variables are understood to be dimensionless.

To estimate the scale of the active moment, M, we note that a
helical flagellum with pitch P ≈ 2µm, circumference C ≈ 1.5µm,
length ℓ = 10µm, and diameter d ≈ 20nm, upon rotation with
speed ω generates a force on an affixed body Fν ≈ 2µC2ℓω/Pc,
where µ is the viscosity of water and c = ln

(
ℓ2/d2)− 166. Due

to its chirality it also generates a torque Lν ≈ 2µC2ℓω/π2c. Us-
ing a body length L ≈ 10−5 −10−4m gives a range of biologically
relevant active moments M = Lν/LFν ≈ 10−3 −10−2.

Equations (8), (16),(17), and (18) are discretized in space
uniformly using second-order accurate central difference approx-
imations, and advanced in time using a second-order implicit
backward-differentiation scheme with a hybrid nonlinear solver
applied at each timestep. Equations (3) and (4) are solved us-
ing explicit second-order accurate Magnus integrators67,68 (see
A.2). Other approaches to this stiff numerical problem with dif-
ferent treatments of the hydrodynamics have recently been devel-
oped69–78. The parameters (η ,D,τ f ) = (2,10−3,10−2), timestep
size ∆t = 10−3, and spatial gridspacing ∆s = 1/64 are fixed for the
duration unless otherwise stated.

3 Body configurations and dynamics

3.1 No active moment: planar dynamics

In the case of no active moment, M = 0, the body configuration
is fully characterized by a single rotational strain, the (signed)
centerline curvature κ = ±|Ω⊥|. Restricting the shape evolution
equations to two dimensions, the curvature, active force, and ten-
sion satisfy

∂tκ =−β⊥
η

∂
4
s κ +

1
η

∂
2
s (κλ )+∂s (κ [∂sλ + f ])+

β⊥
3

∂
2
s

(
κ

3
)
,

(19)

∂t f = D∂
2
s f +

(
1− f 2

)
(β⊥κ∂sκ +∂sλ + f ) , (20)

∂
2
s λ − κ2

η
λ =−∂s f − β⊥

2
∂

2
s

(
κ

2
)
− β⊥

η
κ∂

2
s κ. (21)

To begin we consider shapes which are symmetric about the
body midpoint s = 0 (and active forces which are odd). To de-
scribe the geometry it is convenient to use the eigenfunctions of
∂ 4

s satisfying force- and moment-free boundary conditions79 (the
first three of which are shown in Fig. 2c as dashed red curves).
The curvature is decomposed as a sum κ(s, t) = ∑

∞
k=0 ak(t)φk(s).

Figure 1g shows a phase portrait for the dynamics of the first two
even biharmonic modes, (a0,a2), for a range of bending stiffness
β⊥ with M = 0. Values are plotted against β

−1/3
⊥ , which is propor-

tional to the body length L.

Phases in Fig. 1g are identified by examining the long time be-
haviour of filaments initialized with a compressive active force
density f (s,0) = − tanh(10s). For β⊥ > 9.1× 10−3, the stiff fila-

ment relaxes to a straight configuration, with the active stress
eventually decaying due to diffusion via Eq. (8). At approxi-
mately β⊥ = 9 × 10−3 there is a bifurcation to steady state U-
shaped swimmers with a nonzero a0 which dominates all other
modes. Further decreases in stiffness lead to curvature oscilla-
tions (this cross-section of the phase diagram is shown in Fig. 1h)
and excitation of progressively higher modes. At approximately
β⊥ = 6.8×10−5, another bifurcation is observed to unsteady, pe-
riodic flapping dynamics which involve even larger excursions in
the phase plane (Fig. 1i), and periodic changes in the swimming
direction.

Fig. 2 (a) Dominant eigenvalues µn of the linearized curvature dynamics
with no active moment and a piecewise constant force density show the
emergence of multiple unstable modes at critical bending stiffnesses; the
first at β⊥ ≈ 1.0×10−2, or β

−1/3
⊥ ≈ 4.6.

(b) Growth rates of biharmonic eigenfunctions, φn(s), in the fully
nonlinear system with M = 0 (solid lines) and M = 0.01 (dashed).
(c) First three unstable modes of the linearized system (solid),
and biharmonic eigenfunctions (dashed).

Susceptibility to buckling can be understood by exploring the
stability of a nearly straight body to generic (planar) perturba-

tions. Upon defining the mean active force density f :=
∫ 1/2

−1/2
f ds,

we find to first order in κ (assumed small) that

λ =−
∫ s

−1/2
( f − f )ds , (22)

∂tκ =−β⊥
η

∂
4
s κ +

1
η

∂
2
s (λκ)+ f ∂sκ. (23)

Assuming a symmetric compressive force, f = 0, this yields an
eigenvalue problem,

L [κ] =−β⊥
η

∂
2
s

(
∂

2
s κ − 1

β⊥
λκ

)
,

L [κ] = µκ.

(24)

Figure 2a shows the (real part) of dominant eigenvalues µn of
Eq. (24) for a range of stiffness β⊥. The unstable modes of the
linear system are illustrated in Fig. 2c by solid blue curves, along
with the biharmonic eigenfunctions for comparison. Growth rates
σn = ∂tan(t)|t=0 /an(0), computed using the fully nonlinear sys-
tem, Eqs. (19),(20), and (21), with an(0) = 10−3 are shown in
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Fig. 3 (a-d) New attractors emerge upon the addition of an active moment (with body symmetry assumed). Top - snapshots of body configurations
over a half-period, bottom - trajectories of the first two bending (a0,a1) and the first twisting (b0) mode coefficients suggests convergence to a fixed
shape. (a) (β∥,β⊥,M) = (1× 10−4,2.5× 10−4,6× 10−3): a U-shaped swimmer with a twist. (b) (β∥,β⊥,M) = (1× 10−5,8× 10−5,1.35× 10−2): reduced
stiffness and increased active moment introduces a limit cycle corresponding to waving while twisting (see Supplementary Movie M5). (c) (β∥,β⊥,M) =

(1× 10−3,5.45× 10−5,1× 10−2): convergence to a new twisted-S shape. (d) (β∥,β⊥,M) = (1× 10−3,1.25× 10−4,2× 10−2): periodic flapping appears
with further increases in M (see Supplementary Movie M6). (e) Swimming speed across a range of active moments for β∥ = 2.5× 10−4, for a stiffer
(β⊥ = 5×10−4, squares) and softer (β⊥ = 5×10−5, circles) body. (f) Swimming speed across a range of bending stiffness for β∥ = 2.5×10−4 and active
moments M = 0 (circles), M = 0.002 (squares), and M = 0.01 (triangles).

Fig. 2b.

To identify the critical values of β⊥ where different spatial
modes become unstable, we set µ = 0 and seek solutions to
L [κ] = 0. For a piecewise constant force density, f (s) = 1−2H(s),
where H(s) the Heaviside step function, critical values for even
modes using Eq. (24) are given by the solutions of

Bi′(ξ )
∫

ξ

0
Ai(x)dx−Ai′(ξ )

∫
ξ

0
Bi(x)dx = 0, (25)

where Ai and Bi are the Airy functions of the first and second
kind, and ξ =−β

−1/3
⊥ /2 (see C). For odd modes they are given by

solutions of

−ξBi(ξ )
∫

ξ

0
Ai(x)dx+ξAi(ξ )

∫
ξ

0
Bi(x)dx

+Bi′(0)Ai(ξ )−Ai′(0)Bi(ξ )−1/π = 0. (26)

When compared to the first ten critical stiffnesses in the fully non-
linear dynamics with regularized active force density, predictions
of Eqs. (25) and (26) were found to differ by 0.5%-15%. The
first bending stiffness below which the filament becomes unsta-
ble from the full system is β⊥ = 1.0×10−2, whereas the linearized
dynamics predict β⊥ = 1.1×10−2.

3.2 Inclusion of an active moment: three-dimensional dy-
namics

We turn now to the fully three-dimensional system, including the
active moment contribution due to flagellar chirality (M ̸= 0).
Numerous dynamical regimes appear as the result of rotational
forcing (see supplementary Movie M7), with transitions between
newly emergent phases brought about by variations in any one of

the twisting stiffness, β∥, bending stiffness, β⊥, or active moment,
M.

As with the 2D system, we seek a reduced order phase space
in which to study these bifurcations. To this end, we consider
systems initialized with the twist Ω0 and curvature Ω2 even about
the midpoint, and the curvature Ω1 odd. This is equivalent to
the system possessing a π-rotational symmetry, and, provided the
initial active stress distributions are odd functions of s about the
midpoint, this symmetry is conserved. Taking advantage of their
conserved parity, the twist and curvatures may be decomposed
into sums of harmonic γ2k and biharmonic {φ2k,φ2k+1} functions
satisfying appropriate parity and boundary and conditions:

Ω0(s, t) = ∑
k

b2k(t)γ2k(s), (27)

Ω1(s, t) = ∑
k

a(1)2k+1(t)φ2k+1(s), (28)

Ω2(s, t) = ∑
k

a(2)2k (t)φ2k(s). (29)

Figure 3a-d shows characteristic shapes of four observed
phases (top), as well as corresponding phase space trajectories
of (b0,a1,a0) := (b0,a

(1)
1 ,a(2)0 ) appearing in the decomposition of

twist/curvatures for a range of initial conditions (bottom). For
β∥ < 2.5× 10−4, β⊥ > 7.5× 10−4, and M > 1.4× 10−2 the body
adopts a straight configuration. A bifurcation to a twisted-U
shape appears upon increasing β∥, decreasing β⊥, or decreasing
M (Fig. 3a). With M < 1.8× 10−2, the twisted-U phase persists
as β⊥ is decreased until approximately β⊥ = 2× 10−4, at which
point the system develops periodic oscillations (Fig. 3b, see Sup-
plementary Movie M5). Again with M < 1.8×10−2, new S-shaped
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equilibria emerge for β⊥ < 1×10−4 (Fig. 3c). A fourth phase ap-
pears for M > 1.8×10−2 and β⊥ < 2.5×10−4 with twist-curvature
oscillations accompanied by periodic changes in swimming direc-
tion (Fig. 3d, see Supplementary Movie M6).

Transitions between phases can lead to wide variations in
swimming trajectories, and in the swimming speed, defined as
the magnitude of the average velocity of the body’s midpoint in
the lab frame, Uswim(T ) =

∣∣∣∫ T
0 Q(0, t)u(0, t)dt

∣∣∣/T . The complicated

relationship between bend and twist is further illustrated by the
nonmonotonic, and discontinuous, changes in swimming speed
that arise due to variations in bending stiffness β⊥ and active mo-
ment M. Figure 3e shows the swimming speed as a function of the
active moment for two different bending stiffnesses. For the stiffer
body the active moment induces waving (from Fig. 3a to Fig. 3b,
see Supplementary Movie M5) but the swimming speed remains
roughly unchanged. For the softer body, however, which at M = 0
is in the dramatic flapping-W state in two dimensions (Fig. 1i), the
introduction of the active moment can stabilize the shape in three
dimensions and result in a ballistic trajectory (Fig. 3c). Further
increases in M, however, then trigger another phase transition to
the three-dimensional flapping dynamics of Fig. 3d (see Supple-
mentary Movie M6), resulting in average speeds (but not instan-
taneous speeds) tending to zero. A different view is offered by
Fig. 3f, which shows the swimming speed across a range of bend-
ing stiffnesses for three different active moments. A sufficiently
large active moment can delay the onset of flapping dynamics,
and thereby stabilize swimming trajectories over a larger range
of stiffnesses.

At the lower bending stiffness typical of swarmer cells, rota-
tional forcing introduces a dynamical twist-bend instability. As
shown in Fig. 2b as dashed lines for M = 0.01, the presence of an
active moment can decrease the force required to excite higher
unstable modes. As described in relation to Fig. 3e above, this
allows the system to access new energetically favorable out-of-
plane equilibria similar to the ‘locked curvature’ configurations
observed in model cilia38,43.

Though not explored in detail here, both of the low stiffness
configurations shown in Fig. 3c,d are generically unstable with re-
spect to asymmetric perturbations, which lead to non-periodic dy-
namics and trajectories which depend sensitively upon the bend-
ing stiffness (see Supplementary Movie M8). The self-contact ev-
ident in Fig. 1d, and self intersections observed at low bending
stiffness in the model, suggest that steric interactions or nonlocal
hydrodynamic effects are important for stabilizing body configu-
rations of longer swarmer cells. Confinement by neighboring cells
in bacterial swarms may play a similar role.

4 Discussion
We have shown that numerous behaviors of individual swim-
ming P. mirabilis swarmer cells are qualitatively captured by
an active Kirchhoff rod model. The relative bending stiffness
β⊥ = B⊥/ f ∗L3, relating the flagellar stress to the cell’s material
and geometric properties, is seen to play an outsized role. Our
analysis reveals a minimal value, approximately β⊥ = 1.01×10−2,
required of a cell below which its motility is severely hampered
by self-buckling. For P. mirabilis swarmer cells, this corresponds

to a critical bending stiffness of B⊥ = 2.6× 10−23Nm2 (see C.1),
approximately one order of magnitude lower than the experimen-
tally determined stiffness of typical cells56. We propose that this
offers some evidence that cells may develop and maintain me-
chanical properties to prevent excessive buckling during motil-
ity. That the difference is not tighter may speak either to the ap-
proximations made in modeling the highly complex surface array
of flagella, and/or related to the larger stresses that the organ-
isms may experience inside of a swarm. This observation may
offer insight relevant to the evolutionary development of motil-
ity, bacterial adaptation and survival, and potential mechanically-
motivated medical interventions.

Bifurcations in body shape produce significant changes in
swimming trajectories, as we have begun to explore, but are also
expected to affect the ways in which such bodies interact with one
another. This likely has substantial consequences for the collec-
tive motion of bacterial swarms. We have only begun to scratch
the surface of the high dimensional parameter space available to
a generic active Kirchhoff rod. Characterization of critical param-
eter values which trigger bifurcations may provide novel experi-
mental methods for quantifying mechanical properties of active,
flexible bodies. Such methods may require a more detailed treat-
ment of the hugely complex, flagellated surface, or a more elastic
energy than we have assumed here. Our model is readily gener-
alizable to include these additional complexities using (46) and
(47), which do not assume a particular form for the elastic energy,
activity, or viscous stress.
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A Kinematics

A.1 Structure equations

We write se(3) to denote the Lie algebra of SE(3), the special
Euclidean group in three dimensions. Deformation and velocity
fields (Ψs,Ψt) are components of an se(3)-valued one-form,

Ψ=Ψs ds+Ψt dt =Φ−1 dΦ , (30)

where dΦ = ∂sΦds + ∂tΦdt is the exterior derivative of Φ, and
(ds ,dt) are one-forms dual to the coordinate basis (∂s,∂t). Re-
peated application of the exterior derivative gives

0 = d2Φ=ΦdΨ+dΦ∧Ψ, (31)

where ∧ is the wedge product for matrix-valued differential
forms59. Multiplying by Φ−1 and using Ψ = Φ−1 dΦ results in
the Maurer-Cartan equation,

dΨ+Ψ∧Ψ= 0. (32)
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This gives the commutation relation,

(dΨ+Ψ∧Ψ)(∂s,∂t) = ∂sΨt −∂tΨs +[Ψs,Ψt ] = 0, (33)

where [Ψs,Ψt ] := ΨsΨt −ΨtΨs is the matrix commutator. Ex-
pressing (33) in terms of Ω̂,U, ω̂, and u, and using the fact that
â×b =

[
â, b̂
]
, for any a,b ∈R3, gives Equations (6) and (7) found

in the main text.

A.2 Shape and spatial orientation
Equation (3) is equivalent to

Φ(0, t +ξ ) =Φ(0, t)Pexp
∫

ξ

0
Z(ξ ′)dξ

′ , (34)

with Z(ξ ) :=Ψt(0, t +ξ ). The ordered exponential in (34) can be
expressed as Pexp

∫ ξ

0 Z(ξ ′)dξ ′ = eX(ξ ), where X is an se(3)-valued
field related to Z by the Magnus expansion

X(ξ ) =
∫

ξ

0
Z(ξ )dξ − 1

2

∫
ξ

0

∫
ξ ′

0

[
Z(ξ ′′),Z(ξ ′)

]
dξ

′′ dξ
′+ . . . (35)

and writing

X(ξ ) = ξ
Z(ξ )+Z(0)

2
+O(ξ 3), (36)

we have

Φ(0, t +∆t) =Φ(0, t)exp
(

∆t
Ψt(0, t +∆t)+Ψt(0, t)

2

)
+O(∆t3).

(37)

By a similar argument, we find

Φ(s+∆s, t) =Φ(s, t)exp
(

∆s
Ψs(s+∆s, t)+Ψs(s, t)

2

)
+O(∆s3).

(38)

Matrix exponentials in (37) and (38) are computed using the
closed form expression for the exponential map on SE(3). Given
vectors ααα and b, defining the antisymmetric operator α̂ := ααα×
results in the relation

exp

(
α̂ b
0 0

)
=

(
eα̂ Vb
0 1

)
, (39)

where eα̂ = I +
sinα

α
α̂ +

1− cosα

α2 α̂
2, V = I +

1− cosα

α2 α̂ +

α − sinα

α3 α̂
2, and α = |ααα|.

B Derivation of Euler-Poincaré equations
The Euler-Poincaré equations, which govern local force and mo-
ment balance along the body, are obtained using a constrained
variational principal. The variation δΦ := ∂ξ Φ̃(ξ )

∣∣∣
ξ=0

is given by

the derivative of a field, Φ̃ = Φ̃(s, t,ξ ), which satisfies Φ̃(s, t,0) =
Φ(s, t)80. The associated 1-form Ψ̃ = Ψ̃s ds + Ψ̃t dt + Ψ̃ξ dξ :=
Φ̃−1 dΦ̃ now includes a ξ -component which acts as the generator
of variations δΦ= ΦΨ̃ξ

∣∣∣
ξ=0

:= ΦΨξ . It follows directly from the

definitions of (Ψ,Ψ̃,Φ̃) that Ψ̃s(s, t,0) = Ψs(s, t), so, the variation

δΨs(s, t) = ∂ξ Ψ̃s(s, t,ξ )
∣∣∣
ξ=0

is constrained by the Maurer-Cartan

equation,(
dΨ̃+ Ψ̃∧ Ψ̃

)
(∂s,∂ξ )

∣∣∣
ξ=0

= δΨs −∂sΨξ +
[
Ψs,Ψξ

]
= 0. (40)

In terms of angular and linear components of Ψξ =

(
ω̂ξ uξ

0 0

)
,

equation (40) reads

δΩΩΩ−∂sωωωξ +ωωωξ ×ΩΩΩ = 0 (41)

δU−∂suξ +ωωωξ ×U−ΩΩΩ×uξ = 0. (42)

We define the inner product for se(3)-valued matrices X =(
ω̂X uX

0 0

)
and Y =

(
ω̂Y uY

0 0

)
by ⟨X,Y⟩ := ωωωX ·ωωωY + uX · uY

and the coadjoint operator, ad∗
Ψs

, by ⟨ad∗
Ψs
X,Y⟩ := ⟨X, [Ψs,Y]⟩. In

terms of angular and linear components, we find

ad∗
Ψs
X=−

(
Ω̂ΩΩ×ωωωX+ Û×uX ΩΩΩ×uX

0 0

)
. (43)

With an internal energy density E = E (Q,r,ΩΩΩ,U), the variation of

E =
∫ L/2

−L/2
E ds generated by Ψξ is

δE =
∫ L/2

−L/2

〈
−∂s

δE

δΨs
+ad∗

Ψs

δE

δΨs
+Φ−1 δE

δΦ
,Ψξ

〉
ds

+

〈
δE

δΨs
,Ψξ

〉∣∣∣∣L/2

−L/2
. (44)

Balancing δE with the virtual work, W =
∫ L/2

−L/2

〈
N,Ψξ

〉
ds, done

by nonconservative stresses, N =

(
M̂ F
0 0

)
, with M̂ := M× for

vector M, results in the Euler-Poincaré equations,

−∂s
δE

δΨs
+ad∗

Ψs

δE

δΨs
+Φ−1 δE

δΦ
= N. (45)

Separating (45) into its linear and angular parts gives

−(∂s +ΩΩΩ×××)∇∇∇ΩΩΩE −U×∇∇∇UE +QT (qi ×××∇∇∇qiE
)
= M, (46)

−(∂s +ΩΩΩ×××)∇∇∇UE +QT
∇∇∇rE = F, (47)

where the repeated index implies summation. Natural boundary
conditions are given by

(∇∇∇ΩΩΩE ,∇∇∇UE )|s=±L/2 = (0,0). (48)

C Critical β⊥ values for f (s) = 1−2H(s)
Critical values of β := β⊥ at which different spatial modes be-
come unstable are associated with the emergence of nontrivial
solutions to (24) with µ = 0. With the piecewise constant active
force, f (s) = 1−2H(s), with H(s) the Heaviside step function, the
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tension is given by

λ (s) = 2sH(s)− (s+1/2) =

{
−(s+1/2) −1/2 < s < 0,

s−1/2 0 < s < 1/2.
(49)

After integrating (24) twice we find

∂
2
s κ − 1

β
λκ = c−s+ c+, (50)

for constants c− and c+. When λ (s) = λ (−s), Eq. (24) is invariant
under κ(s) 7→ κ(−s), so, we may assume eigenfunctions have defi-
nite parity. When κ(−s)= κ(s), we find c− = 0, and when κ(−s)=
−κ(s) we find c+ = 0. Restricting to the half interval, −1/2< s< 0

and introducing ξ = β−1/3λ =−(1+2s)/
(

2β 1/3
)

, we find κ sat-

isfies a nonhomogeneous Airy equation on −1/
(

2β 1/3
)
< ξ < 0,

∂
2
ξ

κ −ξ κ = aξ +b, (51)

κ|ξ=0 , ∂ξ κ

∣∣∣
ξ=0

= 0, (52)

where (a,b) = (−β 1/3c−,c+ − c−/2). The solution to (51) and
(52) is given by

κ(ξ ) =−πAi(ξ )
∫

ξ

0
(ax+b)Bi(x)dx+πBi(ξ )

∫
ξ

0
(ax+b)Ai(x)dx

=πa
[
Bi′(0)Ai(ξ )−Ai′(0)Bi(ξ )−1/π

]
+πb

[
Bi(ξ )

∫
ξ

0
Ai(x)dx−Ai(ξ )

∫
ξ

0
Bi(x)dx

]
,

where

Ai(ξ ) =
1
π

∫
∞

0
cos
(

x3

3
+ξ x

)
dx , (53)

Bi(ξ ) =
1
π

∫
∞

0
sin
(

x3

3
+ξ x

)
+ e−x3/3+ξ x dx (54)

are Airy functions, and primes denote derivatives. Writing ξ ∗ =

−β−1/3/2, parity conditions require (a, ∂ξ κ

∣∣∣
ξ ∗
) = (0,0), giving

κ(ξ ) = Bi(ξ )
∫

ξ

0
Ai(x)dx−Ai(ξ )

∫
ξ

0
Bi(x)dx , (55)

Bi′(ξ ∗)
∫

ξ ∗

0
Ai(x)dx−Ai′(ξ ∗)

∫
ξ ∗

0
Bi(x)dx = 0, (56)

and (b/a, κ|ξ ∗) = (−ξ ∗,0), giving

κ(ξ ) = Bi′(0)Ai(ξ )−Ai′(0)Bi(ξ )−1/π

−ξ
∗
(

Bi(ξ )
∫

ξ

0
Ai(x)dx−Ai(ξ )

∫
ξ

0
Bi(x)dx

)
, (57)

Bi′(0)Ai(ξ ∗)−Ai′(0)Bi(ξ ∗)−1/π

−ξ
∗
(

Bi(ξ ∗)
∫

ξ ∗

0
Ai(x)dx−Ai(ξ ∗)

∫
ξ ∗

0
Bi(x)dx

)
= 0, (58)

for even and odd eigenfunctions, respectively.

C.1 Estimate of critical dimensional bending stiffness
Swarmers with lengths in the range L = 10−100 µm were found
to swim with an average velocity u∗ = 13 µm/s when placed in
a motility buffer with viscosity µ = .001Pa · s 24. Using the crit-
ical dimensionless bending stiffness β ∗

⊥ = .0101, a body diame-
ter of a = 1 µm, a longitudinal drag coefficient ζ∥ = 2πµ/ ln(L/a),
and characteristic force density f ∗ = ζ∥u∗, we predict the criti-
cal dimensional bending stiffness for swarmer cells to be in the
range B⊥ ≈ 3.6 × 10−25 − 1.8 × 10−22 Nm2. Experimental mea-
surements have suggested an average swarmer cell bending stiff-
ness of 5.5×10−22 Nm2 56. Taking a characteristic body length of
L = 50 µm results in a critical value of B⊥ ≈ 2.6×10−23 Nm2.
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