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Direct numerical simulations of a microswimmer in a
viscoelastic fluid

Takuya Kobayashi,a Gerhard Jung,a,b Yuki Matsuoka,c Yasuya Nakayama,d John J. Molinaa

and Ryoichi Yamamoto∗a

This study presents the application of the smoothed profile (SP) method to perform direct numer-
ical simulations for the motion of both passive and active “squirming” particles in Newtonian and
viscoelastic fluids. We found that fluid elasticity has a significant impact on both the transient
behavior and the steady-state velocity of the particles. Specifically, we observe that the swirling
flow generated by the squirmer’s surface velocity significantly enhances their swimming speed as
the Weissenberg number increases, regardless of the swimming type. Furthermore, we find that
pushers outperform pullers in Oldroyd-B fluids, suggesting that the speed of a squirmer depends on
the swimmer type. To understand the physical origin of the phenomenon of swirling flow enhancing
the swimming speed, we investigate the velocity field and polymer conformation around non-swirling
and swirling neutral squirmers in viscoelastic fluids. Our investigation reveals that the velocity field
around the neutral swirling squirmers exhibits pusher-like extensional flow characteristics, as well as
an asymmetric polymer conformation distribution, which gives rise to this increased propulsion. This
is confirmed by the investigation of the force on a fixed squirmer, which revealed that the polymer
stress, particularly its diagonal components, plays a critical role in enhancing the swimming speed
of swirling squirmers in viscoelastic fluids. Additionally, our results demonstrate that the maximum
swimming speeds of swirling squirmers occur at an intermediate value of the fluid viscosity ratio for
all swimmer types. These findings have important implications for understanding the behavior of
particles and micro-organisms in complex fluids.

1 Introduction
Self-propelled particles are naturally exposed to complex or
crowded fluid environments.1 Examples with high industrial and
biological relevance are bacteria in biofilms or polymeric solu-
tions,2 as well as spermatozoa in cervical mucus.3 These vis-
coelastic environments are fundamentally different from purely
viscous Newtonian fluids because they exhibit solid- or liquid-
like behaviour, depending on the imposed rate of deformation.
In equilibrium systems, this already leads to fascinating dynam-
ical properties, e.g., allowing a person to walk on “water”.4 For
self-propelled particles, the effect of viscoelasticity becomes even
more pronounced, because the motion of the particles crucially
affects the emerging steady-state properties such as the motility-
induced phase separation.5 Experimental results also indicate an
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enhancement of rotational diffusion in viscoelastic fluids which
can lead to spontaneous symmetry breaking and subsequent cir-
cular motion for spherical active particles.6 Moreover, experimen-
tal and numerical studies found viscoelastic fluids promote the
collective swimming of sperm cells,7,8 indicating that fluid elas-
ticity promotes collective behavior.

Despite the relevance of studying self-propelled particles in vis-
coelastic fluids and promising experimental results, most compu-
tational studies in the field of “wet” active particles have focused
on Newtonian fluids.9 The reason is that the incorporation of vis-
coelasticity requires more complex numerical integrators, particu-
larly to determine the frequency-dependent coupling of the active
particle with the fluctuating complex fluid while maintaining the
required boundary conditions on the surface of the colloid. Re-
cently, however, there have been several numerical investigations
of self-propelled particles in viscoelastic fluids, demonstrating an
enhancement of rotational diffusion,10 an enhancement in the
swimming speed caused by swirling,11,12 an increase in the ag-
gregation of pushers suspensions,13 and a decrease in the rate of
working with increasing fluid elasticity.14

In this study, we have extended the smoothed profile (SP)
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method15,16 to simulate swimming particles in viscoelastic fluids.
The SP method is a highly efficient direct numerical simulation
method that fully resolves the hydrodynamic coupling between
fluid and particles, enabling us to calculate multi-particle sys-
tems.16 The SP method has been successfully used to study sus-
pensions of self-propelled particles in Newtonian fluids17–22 and
passive particles in viscoelastic fluids.23,24 Here, we extend it for
the first time to investigate suspensions of self-propelled particles
in viscoelastic fluids. To the best of our knowledge, there have
been limited reports on numerical investigations of a suspension
of active particles in viscoelastic fluids in three dimensions.25,26

We focus on a single active particle systems in this work, but the
SP method we have developed can easily simulate dense disper-
sions. In particular, we have conducted direct numerical simu-
lations of both passive and active particles in Oldroyd-B fluids.
We performed an error analysis of the numerical procedure, in-
vestigated the steady-state velocities of individual sedimenting
and swimming particles, and compared them to the analytical re-
sults. To understand the swimming speed enhancement observed
for swirling swimmers in viscoelastic fluids, we analyzed the ve-
locity and polymer conformation fields around the squirmers in
Oldroyd-B fluids. Finally, to gain deeper insight into the mecha-
nism behind this enhancement of the swimming speed, we com-
puted the different contributions to the force on a fixed swirling
squirmer in an Oldroyd-B fluid.

2 Viscoelastic model

The equations of motion for the three-dimensional fluid velocity
field uuuf are given by,

ρ

(
∂

∂ t
+uuuf ·∇

)
uuuf = ∇ ·σσσ (1)

∇ ·uuuf = 0 (2)

where ρ is the (constant) fluid density, and where we have as-
sumed incompressibility.

The stress tensor σσσ = σσσ s + σσσp consists of two contributions.
The first is the pressure and viscous contribution σσσ s =−pI+ηsDDD,
where ηs is the solvent viscosity and DDD = ∇uuuf +(∇uuuf)

T is the de-
formation tensor. The second is the polymeric stress contribution
σσσp, defined in terms of the polymer conformation tensor CCC, which
in this work is given by the Oldroyd-B constitutive equation,(

∂

∂ t
+uuuf ·∇∇∇

)
CCC = (∇∇∇uuuf)

T ·CCC+CCC · (∇∇∇uuuf)−
CCC− I

λ
(3)

σσσp =
ηp

λ
(CCC− I) (4)

where ηp describes the polymeric contribution to the shear vis-
cosity and η0 = ηs +ηp is the effective zero-frequency shear vis-
cosity. In contrast to the viscous contribution, the polymeric con-
tribution is governed by a finite relaxation time λ , over which
the polymeric conformation tensor is relaxing towards its equilib-
rium configuration CCCeq = I. The general time-dependence of this
deformation tensor is defined in Eq. (3).

3 Simulation method

In this work, we employed the smoothed profile (SP) method15,16

to resolve the fluid-particle coupling. Rather than relying on a
pure (Lagrangian) particle-based approach, like the smoothed
particle hydrodynamics (SPH) method, or a (Eulerian) mesh-
based approach, like the finite-element method (FEM), the SP
method uses a hybrid representation that allows for the calcula-
tion of both fluid and particle properties on a fixed Cartesian grid.
This allows us to attain a high computational efficiency. The SP
method is similar to the fluid particle dynamics (FPD) method,27

which represents particles as highly viscous fluids. However, FPD
only enforces the particle rigidity approximately, the exact limit
corresponding to an infinite fluid particle viscosity. This approx-
imation imposes a numerical challenge, as higher viscosities re-
quire smaller integration time steps to achieve accurate simu-
lations. In contrast, the SP method treats colloidal particles as
non-deformable solids, i.e., directly enforcing the particle rigidity
through an additional constraint force in the Navier-Stokes equa-
tion.15

The (spherical) particles follow the Newton-Euler equations

ṘRRi =VVV i Q̇QQi = skew(ΩΩΩi) ·QQQi (5)

MiV̇VV i = FFFH
i +FFFother

i IIIi · Ω̇ΩΩi = NNNH
i +NNNother

i (6)

with RRRi and VVV i the centre-of-mass position and velocity, QQQi and
ΩΩΩi the orientation matrix and angular velocity, and Mi = M =

4πa3ρp/3 and IIIi = 2Ma2III/5 (III the unit tensor) the mass and mo-
ment of inertia for particle i, respectively, where we have assumed
spherical particles of equal radii a and mass density ρp. The forces
FFF (torques NNN) have been decomposed into hydrodynamic FFFH and
other FFFother contributions, respectively, where the latter can in-
clude direct particle-particle or external forces. The function
skew(ΩΩΩi) is used to create the skew-symmetric matrix of the an-
gular velocity ΩΩΩi, defined as:

skew(ΩΩΩ) =−εi jkΩkeeei ⊗ eee j (7)

=

 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (8)

where εi jk is the Levi-Civita symbol.

The basic idea of the SP method is to model the (rigid) particles
as immersed “fluid” particles that are rendered rigid by imposing
a constraint force. The particles can be described by a (smoothed)
phase field function φ , thus removing the explicit and cumber-
some treatment of the particle surfaces, and making the general-
ization to many-body systems trivial. Within the SP method, the
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evolution of the total velocity field uuu is given by,

ρ

(
∂

∂ t
+uuu ·∇

)
uuu = ∇ ·σσσ +ρφ fff p (9)

uuu = (1−φ)uuuf +φuuup (10)

φuuup = ∑
i

φi [VVV i +ΩΩΩi × rrri] (11)

Here, the hydrodynamic force density ρφ fff p, required to maintain
the particle rigidity, is chosen such that momentum conservation
is exactly satisfied. The particle velocity field is calculated us-
ing the individual rigid particle contributions, defined in terms
of their translational VVV i and angular velocities ΩΩΩi, and the parti-
cle’s smooth profile or phase-field function φi (with rrri = xxx−RRRi the
relative distance from the particle center to the field position xxx).

In the present study, we used a φi defined as15

φi(xxx) = g(|xxx−RRRi|) (12)

g(x) =
h[(a+ξ/2)− x]

h[(a+ξ/2)− x]+h[x− (a−ξ/2)]
(13)

h(x) =


exp(−∆

2/x2) x ≥ 0

0 x < 0
(14)

where RRRi, a, ξ and ∆ are the position of the particle, the radius
of the particle, the interfacial thickness, and the grid spacing, re-
spectively.

3.1 DNS method for viscoelastic fluids

To numerically solve for the hydrodynamics, we first update the
polymer stress σσσp using the Oldroyd-B constitutive equation.
However, while the CCC tensor should be positive definite, a dis-
cretized integrator for CCC following Eq. (3) does not necessarily
guarantee the positive definiteness is maintained. In fact, numer-
ical instabilities induced by fluctuations will render the confor-
mation tensor not positive-definite.28 Thus, instead of working
directly with σσσp, we use the more stable representation in terms
of the contravariant deformation tensor bbb, such that CCC = bbb · bbbT,
thereby guaranteeing that the reconstructed confirmation tensor
CCC is always positive definite by definition.28

Within the bbb-representation, the Oldroyd-B model is given by29

(
∂

∂ t
+uuu ·∇∇∇

)
bbb = (∇∇∇uuu)T ·bbb− bbb−bbb−T

2λ
(15)

where bbb−T = (bbbT)−1 = (bbb−1)T. We update the contravariant de-
formation tensor bbb over the interval (tn, tn+1 = tn +∆t), as follows:

bbbn+1 = bbbn +
∫ tn+1

tn
ds

[
(∇∇∇uuu)T ·bbb− bbb−bbb−T

2λ
−∇∇∇ · (bbbuuu)

]
(16)

After this, the updated bbb is converted into the conformation tensor
CCC = bbb ·bbbT, and the updated polymer stress σσσp is computed using
Eq. (4).

Next, we use the fractional step approach15 to update the total

velocity uuu. We integrate Eq. (9) without the body force ρφ fff p
term, to yield an intermediate velocity field uuu∗ as follows:

uuu∗ = uuun +
∫ tn+1

tn
ds ∇∇∇ ·

[
ρ
−1(σσσ s +σσσp)−uuuuuu

]
(∇∇∇ ·uuu∗ = 0) (17)

Simultaneously, the particle positions and orientations are up-
dated according to

RRRn+1
i = RRRn

i +
∫ tn+1

tn
ds VVV i (18)

QQQn+1
i = QQQn

i +
∫ tn+1

tn
ds skew(ΩΩΩi) ·QQQi (19)

We assume momentum conservation to calculate the hydrody-
namic force and torque on the particle, which are given by the
momentum exchange between fluid and particle domains, as∫ tn+1

tn
ds FFFH

i =
∫

dxxx ρφ
n+1
i (uuu∗−uuun

p) (20)

∫ tn+1

tn
ds NNNH

i =
∫

dxxx
[
rrrn+1

i ×ρφ
n+1
i (uuu∗−uuun

p)
]

(21)

We then calculate the updated particle velocities VVV n+1
i and ΩΩΩ

n+1
i

from the hydrodynamic and other contributions,

VVV n+1
i =VVV n

i +M−1
∫ tn+1

tn
ds (FFFH

i +FFFother
i ) (22)

ΩΩΩ
n+1
i = ΩΩΩ

n
i + III−1 ·

∫ tn+1

tn
ds (NNNH

i +NNNother
i ) (23)

Finally, the total velocity uuu is expressed as

uuun+1 = uuu∗+
∫ tn+1

tn
ds φ fff p (∇∇∇ ·uuun+1 = 0) (24)

∫ tn+1

tn
ds φ fff p = φ

n+1(uuun+1
p −uuu∗) (25)

Numerically, we have used an Adams-Bashforth method (with
an Euler update for the first step) to integrate the contravariant
deformation tensor and the particle equations of motions. The
updated velocity field uuu∗ is obtained from a first order exponen-
tial time-difference algorithm within the vorticity representation,
ωωω = ∇∇∇ × uuu, the remaining particle constraint force is obtained
from a first-order Euler method. We note that we enforce the
incompressibility constraint whenever the fluid velocity field is
updated. This can be understood as coming from an intermediate
pressure gradient term; alternatively, this can be done by taking
the Fourier transform of the velocity and projecting out the com-
ponents of ûuu parallel to kkk,

ûuu →
[

III − kkkkkk
k2

]
· ûuu (26)

Further details can be found in Ref.16.

3.2 DNS method for microswimmers

We use the squirmer model developed by Lighthill30 and Blake31

to represent microswimmers. This mathematical model, orig-
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inally developed to represent the ciliary propulsion of micro-
organisms, has been widely adopted as the canonical model to
investigate hydrodynamic interactions of microswimmers,11,32–34

including within the SP method.17–22 The propulsion is generated
by imposing a modified stick boundary condition at the surface of
the particle, the general form of which is given by35

uuusq =
∞

∑
n=1

2
n(n+1)

BnP′
n(cosθ)sinθθθθ +

∞

∑
n=1

CnP′
n(cosθ)sinθφφφ (27)

where P′
n is the derivative of the n-order Legendre polynomial,

Bn and Cn are the coefficients for the n-th polar and azimuthal
squirming modes, and θθθ and φφφ are the unit tangent vectors in the
polar and azimuthal directions, respectively.

In most studies, only the first two polar modes, B1 and B2 in
Eq. (27), are considered, as B1 determines the steady state swim-
ming speed in a Newtonian fluid (UN = 2/3B1), and the ratio of
the two α = B2/B1 determines the swimmer type (pusher, puller,
or neutral). Swimmers with α < 0 are called pushers, as they cre-
ate an extensile flow, reminiscent of a pushing motion (e.g. sperm
cells, E.coli. and most bacteria), while α > 0 denotes pullers (e.g.
Chlamydomonas), which create a contractile flow. Squirmers with
α = 0 are called neutral swimmers, which generate a potential
flow.

Recently, several works have considered the effect of the
azimuthal modes for swimming in complex fluids.11,12,36 The
swirling flow generated by these azimuthal modes was shown to
lead to an increase in the swimming speed of a squirmer in a
viscoelastic fluid11,12 and a decrease in a shear-thinning fluid,36

as compared to swimming in a Newtonian fluid. In the present
study, we will consider the first two polar modes (B1 and B2) and
the second azimuthal mode C2, which result in the following sim-
plified expression for the surface slip velocity

uuusq = B1

[(
sinθ +

α

2
sin2θ

)
θθθ +

3
2

ζ sin2θφφφ

]
(28)

where ζ =C2/B1 denotes the magnitude of the swirling.

We now present the computational algorithm for simulating
these squirmers within viscoelastic fluids, analogous to the New-
tonian fluid implementation.17 To account for the hydrodynamics
of the squirming motion, defined by the surface slip velocity uuusq

in Eq. (28), we have added a squirmer body force ρφ fff sq term to
the modified Navier-Stokes equation, such that Eq. (9) becomes

ρ

(
∂

∂ t
+uuu ·∇

)
uuu = ∇ ·σσσ +ρφ fff p +ρφ fff sq (29)

For this, we adapt the same fractional step approach described
in Section. 3.1. First, we update the polymer stress σσσp (Eqs. (16)
and (4)), the intermediate (total) velocity uuu∗ (Eq. (17)), and the
particle positions RRRi (orientations QQQi) (Eqs. (18) and (19)). We
then integrate the squirmer body force term ρφ fff sq to update the

total velocity field uuu∗∗ as follows,

uuu∗∗ = uuu∗+
∫ tn+1

tn
ds φ fff sq (∇∇∇ ·uuu∗∗ = 0) (30)

∫ tn+1

tn
ds φ fff sq =

N

∑
i=1

φ
sq
i (VVV i +ΩΩΩi × rrri +uuusq

i −uuu∗)

+
N

∑
i=1

φi(δVVV i +δΩΩΩi × rrri) (31)

The first term on the right-hand side of Eq. (31) imposes the
slip velocity uuusq at the surface of the squirmer; where φ

sq
i =

(1− φi)|∇∇∇φi|/max(|∇∇∇φ |) is a smoothed surface function which is
non-zero only within the interfacial domain of the particle. This
represents the force/momentum that the swimmer exerts on the
fluid (e.g., due to the movement of the cilia at the surface of the
swimmer). Thus, to maintain momentum conservation, and ac-
count for the counter-force exerted by the fluid on the particle,
we must also include the second term on the right-hand side of
Eq. (31), which adds a counter-flow within the particle domain
that exactly balances the momentum given to the fluid to impose
the squirming velocity uuusq. This secondary flow is defined in terms
of the changes to the rigid-particle velocity δVVV i and angular ve-
locity δΩΩΩi.

The hydrodynamic force and torque on the particle are defined
the same way as in Eqs. (20) and (21)∫ tn+1

tn
ds (FFFH

i +FFFsq
i ) =

∫
dxxx ρφ

n+1
i (uuu∗∗−uuun

p) (32)

∫ tn+1

tn
ds (NNNH

i +NNNsq
i ) =

∫
dxxx

[
rrrn+1

i ×ρφ
n+1
i (uuu∗∗−uuun

p)
]

(33)

The updated particle velocities VVV n+1
i and ΩΩΩ

n+1
i , now including

the squirmer contributions, are calculated from these forces and
torques. We note that the squirming or slip velocity should be im-
posed with respect to the particle velocities at the end of the time-
step VVV n+1

i ,ΩΩΩn+1
i (Eq.(31)), however, at that point of our numer-

ical scheme these updated particle velocities are unknown. This
means that the surface velocity profile at the end of the time-step
is not necessarily the correct one. Thus, we employ an iterative
scheme, which repeatedly solves Eqs.(31-33) until convergence
is reached for these particle velocities (see Ref.17 for further de-
tails).

Finally, we can determine the total velocity uuu using the follow-
ing equations, which are similar to Eqs. (24) and (25)

uuun+1 = uuu∗∗+
∫ tn+1

tn
ds φ fff p (∇∇∇ ·uuun+1 = 0) (34)

∫ tn+1

tn
ds φ fff p = φ

n+1(uuun+1
p −uuu∗∗) (35)

4 Velocity of sedimenting particles and microswim-
mers in viscoelastic fluids

In this section we analyze the transient and steady-state swim-
ming speed of particles immersed in viscoelastic fluids. Our study
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includes sedimenting passive particles, non-swirling microswim-
mers and finally, microswimmers with swirl. To set the stage, we
start by investigating sedimenting particles in a Newtonian fluid.

4.1 A sedimenting particle in a Newtonian fluid

0 5 10
t/(a/U∞)

0.0

0.2

0.4

0.6

0.8

1.0

U
/
U
∞

Present study
I.S.Vodop'yanov et al. (2010)
Hasimoto (1959)

Fig. 1 The transient sedimentation velocity of a particle with radius
a = 4∆, within a Newtonian fluid, in a periodic cubic simulation box of
length L = 64∆. The dashed and dotted lines indicate the Vodop’yanov et
al. solution37 and the approximate solution by Hasimoto,38 respectively.
The sedimentation velocity agrees with the former (Eq. (37)) at the
beginning of the sedimentation, and with the latter (Eq. (40)) at the
steady state. The sedimentation velocity U and time t are scaled by the
Stokes velocity U∞ and the associated time-scale a/U∞, respectively.

0.1 0.2 0.3√
ν∆t/ξ

0

1

2

L
2
er
ro
r

1e−5

ξ=1∆

ξ=2∆

Fig. 2 The error in the steady-state velocity of a particle (radius a = 4∆)
sedimenting in a Newtonian fluid, as a function of

√
ν∆t/ξ . The red

circles and blue crosses correspond to results for an interface thickness
of ξ = 1∆ and 2∆, respectively. Our SP method simulation results were
compared to the semi-exact solution of Hasimoto (Eq. (40)),38 and the
error was found to be a non-monotonic function of

√
ν∆t/ξ .39 This error

is minimized for an optimal time increment ∆t, which depends on the
interface thickness ξ and the kinematic viscosity of the fluid ν.

First, we simulate the sedimentation of a particle in a New-

tonian fluid and validate our numerical method by compar-
ing our simulation results to the analytical solutions given by
Vodop’yanov et al.37 and Hasimoto.38 The simulations were con-
ducted in a cubic simulation box of length L = 64∆, where ∆ is
the grid spacing. For the SP simulation parameters, we set the
radius of the particle as a = 4∆ and the interfacial thickness as
ξ = 2∆ , and the density ratio between the particle and the fluid
was ρp/ρ = 1.1. To prevent the whole fluid from drifting in the
direction of gravity under periodic boundary conditions, a coun-
teracting pressure gradient is imposed on the system in order to
ensure momentum conservation. This is achieved by setting the
kkk = 000 mode of the velocity field to be null, ûuu(kkk = 000) =

∫
drrr uuu = 000.

The equation of motion for a particle settling in an unbounded
fluid, at small Reynolds numbers, is described by

4
3

πa3
ρp

dU
dt

=−2
3

πa3
ρ

dU
dt

+
4
3

πa3(ρp −ρ)g

−6πηaU −6a2√
πρη

∫ t

0
U̇(t ′)

dt ′√
t − t ′

(36)

with η the viscosity. For a density ratio of ρp/ρ = 1.1, the solution
of Eq. (36) is given by Vodop’yanov et al.37

U
U∞

= 1+
2√

π(8−5ρ/ρp)
Im

(
1
ζ

Φ

(
9ηζ 2t
ρpa2

))
(37)

where U∞ = 2(ρp −ρ)a2g/9η is the Stokes velocity of a settling
particle, and Φ and ζ are given by,

Φ(z) =
∫

∞

z
ez−ζ dζ√

ζ
= 2ez

∫
∞

√
z
e−x2

dx (38)

ζ
2 =

|4−7ρ/ρp|+3i
√

ρ/ρp(5ρ/ρp −8))
2(ρ/ρp +2)2 . (39)

For the specific case of a particle sedimenting in a periodic cubic
box, the steady-state sedimentation velocity is given by Hasimoto
as,38

U
U∞

= 1−1.7601c
1
3 + c−1.5593c2 +O(c

8
3 ) (40)

where c is the particle volume fraction.

Fig. 1 shows the transient sedimentation velocity of the parti-
cle, as given by our SP method simulation results, as well as the
analytical solutions of Vodop’yanov et al. (Eq. (37)) and the ap-
proximate solution of Hasimoto (Eq. (40)). Our results for the
transient behavior at the beginning of the sedimentation are in
good agreement with the former and coincide with the latter at
the steady state, as required.

To quantify the accuracy of our simulation results, we compute
the error in the steady-state sedimentation velocity, with respect
to the semi-exact solution of Hasimoto (Eq. (40)). Fig. 2 shows
this error, as a function of

√
ν∆t/ξ ,39where ν = η/ρ is the kine-

matic viscosity. These results were obtained for a particle of ra-
dius a = 4∆ and two different values of the interfacial thicknesses
ξ (1∆ and 2∆). We found that the error is a non-monotonic func-
tion of the step size, and is minimized for an optimal time incre-
ment ∆t, which depends on the interfacial thickness ξ and the
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kinematic viscosity ν .

4.2 A sedimenting particle in an Oldroyd-B fluid

Fig. 3 A schematic illustration of the setup used to simulate the sedi-
mentation of a particle (radius a) under gravity (acceleration g), within
an Oldroyd-B fluid, in a cylindrical container (radius R, height H).

0 2 4 6
t/λ

0.0

0.5

1.0

1.5

U
/U

N

Present study
Rajagopalan et al. (1996)
Fernandes et al. (2019)

Fig. 4 The transient motion of a particle of radius a = 8∆ through an
Oldroyd-B fluid in the pipe of height H = 512∆. The red solid line, blue
dotted line, and black dash-dotted line represent the results obtained in
the present study, those of Rajagopalan et al.40 and those of Fernandes
et al.,41 respectively. Our simulation results for the transient sedimen-
tation velocity of a particle are consistent with the results obtained by
Rajagopalan et al.40 and Fernandes et al.41 The sedimentation velocity
U is scaled by the theoretical Newtonian sedimentation velocity UN, the
time t is scaled by the relaxation time λ of the polymer conformation.

Next, we verify the accuracy of the SP method for simulating a
sedimenting particle in an Oldroyd-B fluid. For this, we conducted
simulations for a particle of radius a= 8∆ and interfacial thickness
ξ = 2∆, within a cylindrical pipe of height H = 512∆ and radius
R/a = 4.115 (see Fig. 3). The pipe is represented as an assembly
of fixed rigid particles, of the same dimensions as the particle.

We apply periodic boundary conditions along the axis aligned
with the pipe’s axis of symmetry. The time step ∆t is the opti-
mal value for the corresponding Newtonian system, determined
by the interfacial thickness ξ and the kinematic viscosity ν (see
Fig. 2). The Reynolds number is Re = 2aρUN/η0 = 0.064, where
UN is the steady Newtonian sedimentation velocity in the pipe,
the Weissenberg number is Wi = λUN/a = 2.45, and the viscos-
ity ratio is β = ηs/η0 = 0.59. The transient velocity for a particle
sedimenting within an Oldroyd-B fluid in this cylindrical domain
is shown in Fig. 4. These results clearly illustrate the fluid elas-
ticity effects on the sedimentation velocity. In particular, at the
beginning of the sedimentation, a velocity overshoot is observed.
This phenomenon can be attributed to the time delay between
the fluid deformation and the corresponding stress that occurs in
a viscoelastic fluid. Our results are in good agreement with the
numerical results of Rajagopalan et al.40 and Fernandes et al.41

This indicates that the SP method accurately couples the hydro-
dynamics of particles in both Newtonian and Oldroyd-B fluids.

4.3 Microswimmers in an Oldroyd-B fluid

−2 0 2
α

0.1

0.2

0.3

0.4
W
i

Wiu
Wip

Fig. 5 Upper limit of validity for the UCM/Oldroyd-B models, Wiu
(black), and the radius of convergence of the series solution, Wip (red)
as a function of the swimming strength α.12

We now consider the ability of the SP method to simulate swim-
mers in viscoelastic fluids. Here, we must take special care re-
garding the range of validity of the model. In particular, Housi-
adas et al.12 have demonstrated that for squirmers in Upper Con-
vected Maxwell (UCM) and Oldroyd-B fluids, the polymer stress
σσσp at the poles of the particles can diverge. This is due to the
specific uniaxial and biaxial elongational flows generated at the
poles. Fortunately, Housiadas et al. have also provided both the
upper limit for the validity of the exact solution Wiu, together with
the radius of convergence of the series solution Wip, for the poly-
mer stress at the poles, as a function of the swimming strength α

(Fig. 5). Furthermore, this singularity is found to depend strongly
on the swimming strength α. Thus, the limit for the physically
valid range of Weissenberg numbers, when solving for the poly-
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Fig. 6 Swimming speeds of (a) a non-swirling (ζ = 0) and (b) a swirling
(ζ = 3) neutral squirmer, with a radius of a = 6∆, in an Oldroyd-B fluid,
within a periodic cubic simulation box of length L = 64∆, at Re = 0.01.
The swimming speed U is scaled by the Newtonian swimming speed UN
obtained using the SP method, and the time t is scaled by the relaxation
time λ .

mer stress at the poles of a squirmer, is given by12

0 ≤ Wi < Wiu =


1

4(1−α)

(
α ≤ 1

3

)
1

2(1+α)

(
α >

1
3

) (41)

In addition, when perturbation methods are used to solve the
polymer stress at the north and south poles of a squirmer, the
radius of convergence Wip for the series solution is given by12

Wip =


1
8

(α =±1)

1
4

min
(

1
|1+α|

,
1

|1−α|

)
(α ̸=±1)

(42)

This solution converges for 0 ≤ Wi < Wip. Based on these find-
ings, the use of squirmer particles in UCM and Oldroyd-B models
is limited to very small Weissenberg numbers, which represent
weakly elastic fluids.12 Fig. 5 indicates that Wiu is always greater

than or equal to Wip. Therefore, in this study, we investigate the
range of 0 ≤ Wi < Wip. For instance, for α = 0 and ±1, the valid
range is 0 ≤ Wi < 0.25 and 0 ≤ Wi < 0.125, respectively. To vali-
date the SP method, we have performed simulations for a single
neutral squirmer (α = 0) in an Oldroyd-B fluid. The simulations
were conducted in a cubic simulation box of length L = 64∆. We
used a particle radius of a = 6∆ and an interfacial thickness of
ξ = 2∆. The Reynolds number Re = ρaUN/η0 (UN = 2/3B1 the
steady Newtonian swimming speed) is 0.01 and the viscosity ra-
tio β = ηs/η0 is 0.5. To quantify the effects of the swirling, we
will consider swimmers with ζ = 0,3. Fig. 6 shows the transient
swimming speed for a neutral squirmer (α = 0). The speed of the
swirling swimmer (ζ = 3) is seen to increase with the Weissenberg
number Wi = λB1/a, whereas that of the non-swirling swimmer
(ζ = 0) is essentially independent of Wi.

In Fig. 6(a), an overshoot in the swimming speed of non-
swirling squirmers is observed in the transient regime t/λ ≲ 1
for all Wi. This is similar to the overshoot observed in the sed-
imentation velocity, as shown in Fig. 4. In contrast, Fig. 6(b)
shows that for swirling squirmers, this overshoot is only observed
for Wi ≲ 0.1, and is dampened compared to the non-swirling case.
This suggests that the swirling flow leads to a swimming speed en-
hancement, resulting in a steady state velocity that is larger than
the overshoot velocity of a non-swirling squirmer, thus masking
the overshoot mechanism.
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Fig. 7 Swimming speeds for pushers (α = −1, filled circles), pullers
(α = 1, empty circles) and neutral swimmers (α = 0, crosses) in the steady
state, for a viscosity ratio β = 0.5, as a function of the Weissenberg
number Wi = λB1/a. The red and blue data correspond to the non-
swirling (ζ = 0) and swirling cases (ζ = 3), respectively. The dashed
lines show the numerical results for a neutral squirmer (α = 0) obtained
by Housiadas et al.12 Our predicted swimming speeds U are scaled by
the Newtonian swimming speed UN obtained using the SP method.

To investigate the effects of α, which determines the swimming
type, we have calculated the steady-state swimming speeds U for
pusher (α = −1), puller (α = 1), and neutral (α = 0) swimmers
(for the same swirling parameters ζ = 0,3). As shown in Fig. 7, a
swirling squirmer always swims faster than a non-swirling one for
Wi > 0, regardless of α. Furthermore, this swimming velocity en-
hancement, caused by the swirling flow, is greater for swimmers
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with larger values of α. Finally, for the case of a neutral swimmer,
we can compare our results with the simulation results of Housi-
adas et al.12 However, we note that their simulation conditions
are not exactly the same as ours. In particular, they consider a
swimmer within a periodic cylindrical channel (radius R/a = 20,
length L/a= 40), whereas we have used a fully periodic cubic sim-
ulation box (length L/a ≃ 10.7). Nevertheless, as shown in Fig. 7,
we obtain very good agreement with their numerical results. We
consider that the small deviations between these two sets of nu-
merical results are primarily due to the difference in the boundary
condition setups. In any case, these differences (≃ 3%) are of the
same order of magnitude as the expected error of using a diffuse
particle interface, as reported by Molina et al.17 for the swimming
speed of squirmers in Newtonian fluids.
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Fig. 8 Swimming speeds for pushers (α =−1, filled circles), pullers (α =

1, empty circles), and neutral squirmers (α = 0, crosses) as a function
of the viscosity ratio β = ηs/η0. The Weissenberg number is Wi = 0.1
for the pushers and pullers, and Wi = 0.2 for the neutral squirmer. The
red and blue data correspond to non-swirling (ζ = 0) and swirling cases
(ζ = 3), respectively. The dashed lines show the approximate solution for
a neutral squirmer (α = 0) obtained by Housiadas et al.12 Our predicted
swimming speeds U are scaled by the Newtonian swimming speed UN
obtained using the SP method.

To quantify the dependence of the swimming speed on the vis-
cosity ratio β , we performed additional simulations, varying the
viscosity ratio β within the range [0.1,1.0], for a neutral squirmer
at Weissenberg number Wi = 0.2, and a pusher and a puller at
Wi= 0.1. Fig. 8 shows the swimming speeds U for neutral squirm-
ers (α = 0), pushers (α = −1), and pullers (α = 1), as a func-
tion of the viscosity ratio β , for both swirling (ζ = 3) and non-
swirling (ζ = 0) swimmers. In the swirling case, we observe
a non-monotonic dependence of U with respect to β , with all
swimmer types exhibiting a higher velocity compared to the non-
swirling one, with a maximum at an intermediate β (∼ 1/2 for
pushers and pullers, ∼ 3/4 for neutral swimmers). The results for
the neutral swimmers are in good quantitative agreement with
the approximate solution of Housiadas et al.,12 in both the mag-
nitude of the enhancement and the location of the peak. We note
that a similar trend is also observed in a Giesekus fluid.11. In con-
trast, for the non-swirling cases, the changes in the velocity are

much weaker, and exhibit a more complex dependence on α and
β . While pushers show a slow monotonic decrease in the velocity,
as a function of β , the velocity for pullers and neutral swimmers
remains essentially constant, although for pullers there is a very
weak increase with β .

5 Influence of viscoelasticity on swimming speed
In the previous section, we noted the nontrivial phenomena re-
lated to change in swimming speed of both passive and active
particles in viscoelastic fluids. In the following, we will further
analyze this behavior, and study the role played by the polymer
stretching and the elasticity.

5.1 Comparing sedimenting and active particles
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Fig. 9 Velocity field and the trace of the conformation tensor TrCCC− 3
around (a) a sedimenting (passive) particle and (b) a swimming par-
ticle, specifically non-swirling neutral squirmers (α = ζ = 0) for Re =

ρaUN/η0 = 0.01, Wi = λB1/a = 0.2, and a viscosity ratio β = ηs/η0 = 0.5,
in the steady state. The blue and red color bars represent the trace of the
conformation tensor in linear and logarithmic scales, respectively. The
ranges of the linear (blue) color bars differ between the (a) passive parti-
cle and (b) neutral squirmer, while the ranges of the logarithmic (orange)
color bars the same. The magnitude of the trace of the conformation
tensor around a squirmer is significantly higher than that around a sedi-
menting particle.

We first consider the velocity field, and the trace of the confor-
mation tensor TrCCC − 3 = Cxx +Cyy +Czz − 3 around both a sed-
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imening particle and a swimming particle, specifically, a non-
swirling neutral squirmer (α = ζ = 0). Both particles were set
to have the same steady-state velocity in the Stokes regime. For
the sedimenting particle, this is achieved by setting the sedi-
menting velocity U to the swimming velocity of a squirmer for
Re= ρaUN/η0 = 0.01 and Wi= λB1/a= 0.2, using Eq. (40). Com-
paring Figs. 4 and 6, we have previously found that both particles
show very similar properties in the transient flow and the steady-
state swimming speed.

In Fig. 9, we visualize the magnitude of the trace of the con-
formation tensor and the velocity profile at steady-state. We find
that the polymer stretching is larger in magnitude, but also much
more localized for a squirmer than for a passive particle. These
differences in magnitude and localization are attributed to the dif-
ferences in the flow profiles, which decay as ∼ r−1 and ∼ r−3 for
passive particles and neutral squirmers, respectively. This strong
and highly localized degree of polymer stretching indicates that
squirmers are more susceptible to the influence of viscoelasticity
compared to passive particles, with implications for microswim-
mer suspensions13.

5.2 Comparing non-swirling and swirling microswimmers

To better understand the mechanism underlying why swirling
squirmers swim faster than non-swirling ones in viscoelastic flu-
ids, we investigate the velocity field and the trace of the confor-
mation tensor TrCCC around both non-swirling and swirling neu-
tral squirmers. As shown in Fig. 10, the velocity field around
the swirling squirmer is noticeably different than the one gen-
erated by non-swirling squirmers. In particular, in the presence
of swirling, the velocity field resembles that of a pusher, i.e., an
extensional-like flow, with a stagnation point at the rear of the
particle. Fig. 11 shows that the flow field generated by swirling
(neutral) squirmers exhibits a slower decay (∼ r−2) than that of
non-swirling (neutral) squirmers (∼ r−3). Additionally, we ob-
serve that the polymers near the swirling squirmer show a much
stronger degree of extension than those of non-swirling squirm-
ers, as illustrated in Fig. 10. This enhanced stretching, attributed
to the ζ term, is also asymmetric, with a larger magnitude around
the lower hemisphere (z/a < 0) than in the upper hemisphere
(z/a > 0). This asymmetric stretching gives rise to an elastic force
on the squirmer, resulting in the enhanced swimming speed. As
depicted in Fig. 12, both the magnitude of the stretching and the
degree of head-tail asymmetry increase with Wi. This explains
the strong Wi dependence of the velocity field, which recovers the
pusher-like extensional flow characteristics at higher Weissenberg
numbers (Wi ≳ 0.1).

We now analyze the elastic force by calculating the force par-
allel to the swimming axis acting on a fixed neutral squirmer. As
shown in Fig. 13, the total force increases with the Weissenberg
number Wi, as does the swimming speed. To analyze this in-
crease, we decompose the total force into the contributions com-
ing from the squirming motion, solvent, and polymer. Fig. 13
demonstrates that the force contributions due to the polymer in-
crease with the Weissenberg number Wi, whereas the solvent con-
tribution remains roughly constant, and the swimming contribu-

tion shows a non-monotonic decrease with Wi. Therefore, we can
conclude that the polymer contribution is the primary mechanism
responsible for the swimming speed enhancement. The force con-
tributions become nonlinear within the range of 0.15 ≤ Wi ≤ 0.2,
indicating that the swirling Weissenberg number (Wiswirl = λ∂ruφ )
exceeds a value of 1. Furthermore, we decompose the polymer
contribution into its diagonal FD and off-diagonal FO compo-
nents. Assuming the swimming axis is aligned with the z axis,
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Fig. 10 Velocity field and the trace of the conformation tensor TrCCC−3
around (a) non-swirling (ζ = 0) and (b) swirling (ζ = 3) neutral squirmers
(α = 0) in the steady state for a Weissenberg number Wi = 0.2 and a
viscosity ratio β = 0.5. The blue and red color bars represent the trace
of the conformation tensor in linear and logarithmic scales, respectively.
The ranges of the linear color bars (blue) differ between the (a) non-
swirling and (b) swirling squirmers, while the ranges of the logarithmic
color bars (red) are the same. The velocity field around a swirling neutral
squirmer differs from that around a non-swirling squirmer. Additionally,
the magnitude of the trace of the conformation tensor around a swirling
squirmer is significantly higher than that around a non-swirling squirmer.
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Fig. 11 Magnitude of the velocity u along the swimming direction, aver-
aged over both swimming directions, z/a > 0 and z/a < 0, as a function
of distance r/a, for both non-swirling (ζ = 0) and swirling (ζ = 3) neutral
squirmers. The flow field of the swirling squirmer exhibits a slower decay
(∼ r−2) than that of the non-swirling squirmer (∼ r−3).

we have

FPolymer =
∫

S

(
σσσp ·dSSS

)
z (43)

=
∫

V

(
∇∇∇ ·σσσp

)
z dV (44)

=
∫

V

∂σp,zz

∂ z
dV +

∫
V

∂σp,xz

∂x
+

∂σp,yz

∂y
dV (45)

= FD +FO (46)

Fig. 14 shows that the contribution of the diagonal component
FD increases with the Weissenberg number Wi, while the off-
diagonal contribution FO decreases with Wi. Consequently, the
polymer contribution to the total force increases with the Weis-
senberg number Wi due to the corresponding rise in the diagonal
component of the polymer stress. We can conclude that the addi-
tional deformations of the polymers due to the swirling motion of
a squirmer lead to the swimming speed enhancement.

6 Discussions
To validate our numerical method, we performed simulations of
the sedimentation of a particle in both Newtonian and Oldroyd-B
fluids, as well as a squirmer in an Oldroyd-B fluid. We compared
our simulation results to both analytical solutions and numerical
simulations from previous studies and found that our results ob-
tained using the smoothed profile (SP) method are in good agree-
ment with them.

For a sedimenting particle in a cylindrical pipe filled with an
Oldroyd-B fluid, we observed an overshoot in the sedimentation
velocity at the beginning of the sedimentation in Fig. 4. This over-
shoot is not observed in a Newtonian fluid as depicted in Fig. 1.
The difference in transient velocity of a sedimenting particle can
be attributed to fluid elasticity, which causes a time delay between

fluid deformation and the corresponding stress. As a particle sed-
iments, it generates a flow field in the opposite direction, which
results in the stretch and orientation of the conformation around
a particle. In a viscoelastic fluid, the time delay between the flow
deformation and the corresponding stress causes an overshoot in
the velocity of a sedimenting particle. Therefore, the drag coeffi-
cient at the beginning of the sedimentation is smaller than at the
steady state in a viscoelastic fluid.

In an Oldroyd-B fluid, fluid elasticity affects the swimming
speed of both non-swirling and swirling squirmers, as shown in
Fig. 6. For a non-swirling squirmer, we also observed an over-
shoot in the swimming speed at the beginning of the swimming in
Fig. 6(a), as well as the velocity of a sedimenting particle in Fig. 4,
due to the time delay between fluid deformation and the corre-
sponding stress. The magnitude of the overshoot in the swim-
ming speed increases with Wi, corresponding to longer relaxation
times λ . In contrast, for swirling squirmers, the coupling between
fluid elasticity and swirling flow leads to an enhanced steady-state
swimming speed, which increases with Wi, such that the over-
shoot is no longer observed at Wi = 0.2. The enhanced swimming
is consistent with the results of Binagia et al.11 and Housiadas et
al.12 This phenomenology induced by the rotational-translational
coupling is reminiscent of recent experiments with artificial mi-
croswimmers in viscoelastic fluids6 and simulations in polymeric
suspensions.10

We investigated the effect of α, which determines the swim-
ming type, on the swimming speed of squirmers in an Oldroyd-
B fluid, and found that a swirling squirmer consistently outper-
forms a non-swirling one, irrespective of the swimming type, as
shown in Fig. 7. The swirling flow created by the squirmer’s
surface velocity enhances the swimming speed of all swimmer
types (pusher, puller and neutral squirmer) in an Oldroyd-B fluid.
In a Newtonian fluid (Wi = 0), the swimming speeds of push-
ers (α = −1), pullers (α = 1) and neutral swimmers (α = 0) are
nearly the same, regardless of α and ζ , which is consistent with
the relation U/UN ≃ 1−0.15αRe obtained by Wang et al.42 How-
ever, in a viscoelastic fluid, the various flow fields generated by
different types of squirmers influence the swimming speeds. Fur-
thermore, this enhancement in the swimming velocity due to the
swirling flow is more significant for swimmers with larger α val-
ues. Among all swimmer types, the puller experiences the most
significant impact of the coupling between fluid elasticity and
swirling flow on the swimming speed.

We also investigated the effect of the viscosity ratio β and
observed that for all swimmer types, the swimming speeds of
swirling squirmers are maximum for an intermediate value of the
viscosity ratio (β ≃ 1/2 for pushers/pullers, β ≃ 3/4 for neutral
swimmers) in Fig. 8. The swimming speed dependence of neutral
squirmers, as a function of the viscosity ratio β , is consistent with
the numerical results obtained in a Giesekus fluid by Binagia et
al.11 and the approximate solution obtained by Housiadas et al.12

For all swimmer types, the trends can be attributed to the coun-
terbalance between the viscous and elastic contribution. Pushers
with swirl swim faster than pullers with swirl for all ranges of vis-
cosity ratio ([0.1,1.0]). On the other hand, the swimming speeds
of non-swirling puller (α = 1) and neutral (α = 0) squirmers are
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Fig. 12 Velocity field and the trace of the conformation tensor TrCCC − 3 around swirling neutral squirmers (α = 0, ζ = 3) in the steady state for
various Wi and a viscosity ratio β = 0.5. The velocity field exhibits variations with different Weissenberg numbers Wi. For higher Wi, the velocity field
resembles extensional flow fields along the swimming axis. The magnitude of the trace of the conformation tensor around a swirling squirmer increases
with Wi. Furthermore, the increase in magnitude is more pronounced in the lower hemisphere (z/a < 0) than in the upper hemisphere (z/a > 0).

relatively independent of the viscosity ratio, while the swimming
speed of a non-swirling pusher (α = −1) increases with the vis-
cosity ratio β . Thus, the swimmer type significantly affects the
dependence of the swimming speed of a non-swirling squirmer
on the viscosity ratio in a viscoelastic fluid.

We also found that, for the range of α and β investigated in
this study, pushers outperform pullers at a finite Reynolds num-
ber, regardless of the presence of swirling. In fact, the difference
in swimming speeds (at low Reynolds numbers) between push-
ers and pullers is greater in viscoelastic fluids than in Newtonian
fluids, indicating a stronger coupling between fluid elasticity and
flow field for pushers.

Moreover, we investigated the polymer conformation around a
free neutral squirmer and the force on a fixed neutral squirmer.
Our investigations revealed that as Wi increases, the asymmet-
ric distribution of TrCCC between the upper and lower hemispheres
becomes more pronounced for the swirling squirmers, as shown
in Fig. 12. Consequently, the polymer contribution to the force
on a fixed neutral squirmer also increases with increasing Wi, as
shown in Fig. 13. We discovered that the polymer stress, specifi-
cally its diagonal component, plays a crucial role in enhancing the
swimming speed, as depicted in Figs. 13 and 14. Our findings are
consistent with those of Housiadas et al., who found that the pres-
sure contribution is the major mechanism behind the swimming
speed enhancement, by calculating the force on a free squirmer.12

7 Concluding remarks

We have utilized the smoothed profile (SP) method to perform
direct numerical simulations of the motion of particles and swim-
mers in both Newtonian and viscoelastic fluids. By comparing
our simulation results with analytical solutions and previous nu-
merical simulations, we have validated the accuracy of the SP
method. Our simulation results indicate that fluid elasticity sig-
nificantly affects the transient behavior and steady-state velocity
of particles and squirmers. In particular, the swirling flow gener-
ated by the squirmer’s surface velocity enhances their swimming
speed, leading to a remarkable increase in the swimming velocity
with the Weissenberg number for all swimmer types. Additionally,
we have found that pushers outperform pullers in Oldroyd-B flu-
ids for both non-swirling and swirling squirmers, indicating that
the swimming speed of a non-swirling squirmer depends on the
swimmer type. Moreover, we have discovered that the maximum
swimming speeds of swirling squirmer occur at an intermediate
value of the viscosity ratio for all swimmer types.

We conducted a detailed investigation of the velocity and poly-
mer conformation fields around a neutral squirmer. The veloc-
ity fields exhibit notable differences between non-swirling and
swirling squirmers. Particularly, for higher Wi, the velocity field
around the swirling (neutral) squirmer resembles the extensional
flow fields generated by pushers. This flow field exhibits a slower
decay (∼ r−2) than the flow decay of non-swirling (neutral)
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Fig. 13 Force difference between a swirling and non-swirling fixed neutral
squirmer in an Oldroyd-B fluid for a viscosity ratio β = 0.5, as a function
of the Weissenberg number Wi. The forces parallel to the swimming axis
are shown, shifted by the value of the force on a non-swirling neutral
squirmer (ζ = α = 0). The total force (black circle) increases with the
Weissenberg number Wi, as does the swimming speed (Fig. 7). This is
in contrast to the force contribution due to the solvent (red cross) and
squirming motion (blue square), which both do not increase with the
Weissenberg number Wi, but in accordance with the polymer contribution
(purple triangle), which increases with Wi. Therefore, it is clear that the
polymer contribution is responsible for the observed swimming speed
enhancement.
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Fig. 14 Force difference between a swirling and non-swirling squirmer
due to the diagonal (red cross) and off-diagonal (blue square) compo-
nents of the polymer stress σσσp for a viscosity ratio β = 0.5, as a function
of the Weissenberg number Wi. The force due to the diagonal compo-
nent increases with the Weissenberg number Wi, while the off-diagonal
component decreases with Wi. Therefore, the force due to the diagonal
component of the polymer stress σσσp is crucial for the observed swimming
speed enhancement.

squirmers (∼ r−3). This (extensional) flow, generated by the
stretching of the polymers, is expected to exert a strong influ-
ence on the collective behavior of squirmer suspensions due to its
pronounced non-local nature. Our investigation of the polymer
stretching highlights a significant difference in the trace of the
conformation tensor between non-swirling and swirling squirm-
ers in viscoelastic fluids. In particular, for swirling squirmers, the

trace of the conformation tensor is non-symmetric between the
lower and upper hemispheres. This asymmetry induces an elastic
force on the particle (in the propulsion direction), giving rise to
the enhanced swimming speed of swirling squirmers, as well as
the pusher-like extensional flow field.

Furthermore, we revealed that as Wi increases, the asymmetric
distribution of the polymer conformation between the upper and
lower hemispheres becomes more pronounced for the swirling
squirmers. Consequently, the polymer contribution to the force
also increases with increasing Wi. We discovered that the polymer
stress, particularly its diagonal components, plays a critical role
in enhancing the swimming speed.

With the UCM and Oldroyd-B fluids we have studied, the poly-
mer stress at the poles of a squirmer becomes singular at a crit-
ical Weissenberg number Wi. This singularity, which arises from
the divergence of the polymer stress σσσp in elongational flows,
severely limits the parameter ranges that can be accessed using
these models. However, by selecting a fluid in which the stress
does not diverge under any deformation, it will be possible to
calculate the behavior of a squirmer in a viscoelastic fluid for
any Weissenberg number Wi. Our approach allows for such in-
vestigations into the behavior of squirmers in arbitrarily complex
viscoelastic fluids, for which it can be challenging to obtain ana-
lytical results.

Our findings have important implications for understanding
the behavior of particles and micro-organisms in complex flu-
ids. Future studies should focus on investigating the underlying
mechanism behind the swimming speed enhancement caused by
swirling and the swimmer type difference in the swimming speed
in a viscoelastic fluid.
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