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Discontinuous rigidity transition associated with shear
jamming in granular simulations†

Varghese Babu,a‡ H. A. Vinutha,b Dapeng Bi,c and Srikanth Sastry a∗

We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional,
disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition
under quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid
cluster at the jamming transition. For frictional systems, the transition appears continuous for finite
shear rates, but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous
as in the frictionless case. Thus, our results show that the rigidity transition associated with shear
jamming is discontinuous, as demonstrated in a past for isotropic jamming of frictionless particles,
and therefore a unifying feature of the jamming transition in general.

Granular materials can exist in a flowing or a solid state. The
transition between these states, called the jamming transition,
has been the subject of intense research1–3, particularly under
isotropic compression of frictionless sphere packings. The jam-
ming point φJ for packings of soft particles exhibits many char-
acteristics of a second-order phase transition, at which various
quantities show power law scaling – with respect to the distance
from the jamming point – as one compresses beyond the jam-
ming point4,5. Further, the distribution of small forces between
particles just in contact, as well as the gaps between particles
nearly in contact, also exhibit power law behavior. Exponents
characterizing these are constrained by an inequality that is satu-
rated for configurations at the jamming point, which are therefore
“marginally stable”6,7. The mean-field theory of glasses and jam-
ming has predictions for these exponents which match numerical
values for dimensions D = 2 and above5. Extensions of this the-
ory predict these exponents to be the same for shear jamming,
as recent numerical results indeed confirm, along with the afore-
mentioned aspects of criticality8. These and related results8,9

strongly support a unified description of both isotropic and shear
jamming.

In contrast, the manner in which the contact network acquires
rigidity is strongly discontinuous10,11 for frictionless isotropic
jamming. At the jamming point, the entire system (barring a
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small percentage of rattlers, described later) acquires rigidity dis-
continuously. From the Maxwell criterion for the rigidity of net-
works of nodes connected by edges representing distance con-
straints, the contact network of a configuration with N particles
in D dimensions can be rigid when contacts result in at least
Nc = D(N −1) constraints on the non- global degrees of freedom.
In general, this is a necessary but not sufficient condition. There-
fore, isotropic jamming occurs at the isostatic point, where the
system has just the minimum number of contacts per particle, Z
required, Ziso = 2D (from NZiso

2 = ND)). This discontinuous rigid-
ity transition is different from the continuous transition observed,
e. g. for sticky packings12,13, and in random spring networks14,15

for which the rigid component of the system grows continuously
beyond rigidity percolation, which does not occur at the isostatic
point, and is preceded by the presence of both rigid and over-
constrained regions.

Results available for shear jamming appear to suggest that
the rigidity transition is continuous, in contrast to isotropic jam-
ming16–19. Computational investigation of the rigidity transi-
tion for frictional two dimensional (2D) systems sheared at finite
rates16 revealed a broad distribution of rigid cluster sizes with
increasing mean size as the jamming transition is approached,
supporting a continuous rigidity transition, although becoming
“sharper” as the shear rate is lowered. Similar results have been
recently reported from analysis of sheared granular packings in
experiments18. Following the observation that sheared friction-
less packings acquire geometric characteristics associated with
jamming20, the rigidity transition in such packings in 2D was
analysed by including constraints associated with friction19. The
size distribution of overconstrained clusters, similar to16, exhibits
a broad distribution, supporting a continuous rigidity transition.
In addition, the rigidity transition associated with jamming in fric-
tional systems were studied in lattice models of jamming where
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a continuous transition was observed except in a limiting case
corresponding to infinite friction17.

These observations suggest that the nature of the rigidity tran-
sition could be an exception to the commonality of isotropic and
shear jamming phenomenology outlined earlier. In this letter, we
therefore investigate carefully the nature of the rigidity transition
for both sheared frictional and frictionless packings, under both
quasi-static and at finite shear rate. We find that the rigidity tran-
sition is unambiguously discontinuous under quasi-static shear.
Such a transition appears rounded in the case of finite shear rate,
but the dependence on shear rate clearly supports an approach to
a discontinuous transition in the limit of vanishing shear rate.

1 Methods
In this section we discuss the models and methods used to ob-
tain the shear jammed configurations in frictional and frictionless
case.

1.1 Frictionless shear jamming

It has previously been shown that the jamming density of a config-
uration of spheres under compression depends on the density of
the initial equilibrated hard-sphere liquid21,22 with denser hard-
sphere liquids jamming at higher density. We denote φJ as the
minimum density at which isotropic jamming can be observed
and φ j as the variable jamming density with φ j > φJ . We use
bidisperse soft-disk mixtures of size ratio 1 : 1.4 in this study. For
this system In 3D, φJ ≈ 0.648 and the maximum φ j observed in
φ j ≈ 0.6623. In 2D, φJ ≈ 0.84; max{φ j} ≈ 0.85. Shear jammed fric-
tionless packings are obtained by shearing unjammed soft-disks
above φJ as described in8,23–25. . We equilibrate hard-disk con-
figurations at high density (φ = 0.81) using HOOMD26, which jam
at a density φ j > φJ with the protocol described in4. Unjammed
configurations decompressed to a density φ , with φJ < φ < φ j

undergo shear jamming when subjected to athermal quasi-static
shear (AQS). AQS is carried out by applying an affine transforma-
tion to the particle positions implementing the strain increment
∆γ followed by an energy minimization using conjugate gradient
in LAMMPS27. We chose ∆γ = 5×10−4 and stop the energy min-
imization when the total force acting on any particle is less than
10−13. We study 3 independent samples of N = 16384 particles at
a density of φ = 0.8485.

1.2 Frictional shear jamming

Quasi-static shear simulations: We use Discrete Element
Method (DEM)28 to simulate frictional disks, using LAMMPS27,
with linear and tangential spring dash-pot forces. The model in-
cludes damping in both normal and tangential directions, in addi-
tion to global viscous damping. The normal and tangential spring
constants kn and kt are set to 2.0. The normal velocity damping
ηn is set to 3.0 and the tangential damping ηt is set to 1

2 ηn. The
global damping term η is also set to ≈ 3.

Shear is applied by performing an affine transformation of par-
ticle positions, with strain increments ∆γ followed by relaxation
using DEM. Because of the damping terms, the system will even-
tually reach a force, torque balanced configuration if one waits

long enough. quasi-static shear requires reaching force/torque
balance at each strain step. In practice, we consider the system
to have reached force/torque balance when the total force (sum
of total forces acting on the disks) is less than 10−11 or when the
total kinetic energy of the system is less than 10−19. The simu-
lation is stopped when the number of timesteps reaches 2× 109

regardless. The timescale required to relax the system diverges
at the shear jamming transition as pointed out in29 and thus it is
difficult to achieve force-balance close to the transition.
Finite rate simulations: We implement shearing at finite rates
γ̇ by performing DEM dynamics, after every strain step, for ∆γ

γ̇dt
timesteps, where dt = 0.002 is the timestep used in the DEM sim-
ulation.
We set ∆γ is 10−4 for finite rate shear and 10−3 for quasi-static
shear. We perform finite rate shear on a system size of N = 16384
particles for 10 independent samples (and 20 samples for highest
and lowest shear rate), and quasi-static shear with N = 2000 for
16 samples. The packing fraction φ of the system is 0.81. Further
details of the simulations are described in the Electronic Supple-
mentary Information (ESI) section I. We describe the results for
friction coefficient µ = 1 in the main text. Results with µ = 0.1
can be found in ESI† section V.
Definitions: The following quantities are used both in quasi-
static frictionless and frictional simulations to identify the tran-
sition and to quantify the quality of force-balance achieved.
⟨| f⃗contact |⟩ is the average value of the contact force in a given con-
figuration. This is defined as

⟨| f⃗contact |⟩=
∑

Nc
i=1 | f⃗ contact

i |
Nc

where Nc is the total number of contacts in the system. ⟨| f⃗total |⟩
is the average of total force acting on each particle in the config-
uration. This is defined as

⟨| f⃗total |⟩=
∑

N
i=1 | f⃗ total

i |
N

where f⃗ total
i = ∑

N i
contacts

j=1 f⃗ contact
i j , with Ni

contacts being the number

of contacts particle i has. In quasi-static simulations, ⟨| f⃗total |⟩
is expected to have a value close to zero in both jammed and
unjammed configurations, as this is a measure of how good our
force-balance is. With ⟨| f⃗total |⟩ being close to zero, if ⟨| f⃗contact |⟩ is
non-zero then we can identify the configuration as being jammed.

We define rattlers as particles with less than the minimum
number of contacts necessary for local rigidity, = 3 for friction-
less, and 2 for frictional particles in 2D. For the rigidity analysis,
we remove rattlers recursively from the system. The sizes of
the system and rigid clusters reported in the results are after
removing rattlers, unless specified otherwise.

1.3 Generalized isostaticity in frictional systems

A major distinction between frictionless and frictional jamming
is the isostatic contact number Z at which jamming can occur
in the absence of redundant constraints, which has been shown
to range from D+ 1 to 2D depending on the friction co-efficient
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µ 19,20,30,31 with Ziso = D+ 1 for µ = ∞. This can be understood
using the generalized isostaticity condition, obtained by consid-
ering additional conditions due to the “mobilized contacts”30.
The tangential frictional force between two particles has an upper
bound due to the Coulomb threshold: ft ≤ µ fn and the mobilized
contacts are those for which ft

fn
≈ µ. Define nm as the number of

mobilized contacts per particle, i.e. nmN is the total number of
mobilized contacts. Considering a configuration with N particles
and nmN mobilized contacts, the conditions that the contact net-
work at jamming has to satisfy are DN force balance conditions,
D(D−1)

2 N torque balance conditions and nmN Coulomb conditions.
The number of constraints imposed by the contacts is NDZ

2 (since
each contact constrains one translational and D−1 rotational de-
grees of freedom). Z is by default computed excluding rattlers,
and represented by ZNR for clarity. Defining Zµ = ZNR − 2nm

D , the
generalized isostaticity condition is

Ziso
µ = ZNR −

2nm

D
= D+1. (1)

1.4 Rigidity analysis

For 2D networks arising in several contexts including jamming,
the onset of rigidity has been analysed by employing the pebble
game algorithm14. Each node of the network represents a disk in
the present context and is assigned k pebbles (k = 2 for friction-
less disks and k = 3 for frictional disks) representing the degrees
of freedom. The constraints imposed by each contact are repre-
sented by 1 or 2 edges (2 for the frictional case, 1 for the fric-
tionless case, as well as for a mobilised contact). A (k, l) pebble
game (l = 2 indicates the global degrees of freedom) assigns peb-
bles recursively to edges, and based on such an assignment, de-
composes the network into rigid clusters that are mutually floppy.
Rigid clusters with redundant bonds (with no assigned pebbles)
are termed over-constrained. A more detailed description of the
algorithm is provided in ESI† section II. We employ the (3,2) peb-
ble game to monitor the size of the largest rigid cluster in the
system primarily, as well as the distribution of the size of rigid
clusters. We have also verified that the character of the rigidity
transition is not affected if we perform a (3,3) pebble game in-
stead, considering the global degrees of freedom to be l = 3.

2 Results

2.1 Frictionless shear jamming

First, we discuss the results of the frictionless system, for which
above jamming, energy minimization cannot remove all the over-
laps in the system, resulting in finite contact forces. Note that
the total force acting on each particle remains close to zero. As
discussed in8,23, configurations are isostatic (Nc = (N −1)×2 af-
ter removing rattlers) at the jamming point. (k = 2, l = 2) pebble
game analysis of isostatic configurations shows that the whole
system is made up of a single rigid cluster, as shown in Fig. 1 (b).
Removing a single bond from this system leads to loss of rigidity,
as shown in Fig. 1 (a). The results of this analysis are summa-
rized in Fig. 2. The shear jamming transition can be identified by
the presence of finite contact forces (denoted by average contact
force in the system ⟨| f⃗contact |⟩) as well as by ZNR. The average to-

Fig. 1 Rigidity transition in sheared frictionless disk packings. Pebble
game analysis on the isostatic networks yields a single rigid cluster con-
sisting of the whole system (b). Removal of one bond from that network
results in a complete loss of rigidity, with the pebble game decomposing
the system into multiple small rigid clusters. Bonds that are connected
to each other and have the same color belong to the same cluster. A
single bond is the smallest “cluster” in the system (a)).

tal force acting on the particles is denoted by ⟨| f⃗total |⟩ and remains
close to zero indicating that the particles are under force-balance.
The rigidity transition occurs at the jamming transition point and
is characterized by a discontinuous jump in the size of the largest
cluster (orange curve in Fig. 2) where Nlargest is the size of the
largest cluster and N is the size of the system - both computed af-
ter removing the rattlers. We note here that the pebble game can
be used to identify rattlers. Also, our observation of discontin-
uous rigidity transition is unaffected by the presence of rattlers.
However average coordination number at which transition occurs
will be smaller than Ziso if we keep the rattlers. This strongly dis-
continuous rigidity transition is also observed for isotropic jam-
ming10,16 and therefore a feature of frictionless jamming. This
is in contrast with the continuous nature of rigidity transition in
bond-diluted lattice models as discussed in10.

2.2 Finite rate shear of frictional system
Next, we discuss the results from finite rate shear of frictional sys-
tems for shear rates γ̇ = 5× 10−4,5× 10−5,5× 10−6,5× 10−7,5×
10−8. The main observation from this set of simulations is that
the rigidity transition associated with shear jamming becomes
“sharper” as one reduces the shear rate, an observation also made
in16. We have verified that the system is in the quasi-static regime
with the inertial number I = γ̇d√

P
ρ

< 10−3 32where d is the average

diameter, P the pressure and ρ is the density, for the smaller four
γ̇ except at very small strain values. As shown in Fig. 3 (a), the
increase in pressure P with strain is noticeably sharper for smaller
shear rates. To characterize the rigidity of these configurations we
follow16,18,19 and use the (k = 3, l = 2) pebble game on the con-
tact network. Note that in the finite rate simulations, we do not
simulate the system till it achieves force balance, and therefore
for jammed as well as unjammed configurations, the net forces
on the disks are finite. We use a threshold ε to identify mobi-

lized contacts - if | f⃗t |
| f⃗n|

> µ −ε then the contact is mobilized33. For

simulations with µ = 1, very few of our contacts are sliding and
the choice of ε does not significantly affect the results presented.
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Fig. 2 Rigidity transition associated with shear jamming in frictionless
systems. Rigidity transition can be seen as a discontinuous jump in the
size of the largest cluster divided by the system size, both calculated after
removing rattlers (orange). The transition occurs at the isostatic value of
the non-rattler contact number, ZNR = 4. This is also the point where the
average contact force (blue) becomes non-zero, while the average total
force on each particle (green) remains close to zero throughout. Inset
shows pressure P (blue) vs strain γ and the largest cluster size divided
by the system size, both calculated after removing rattlers (orange). In
the main graph and the inset the y-axis on the right corresponds to the
Nlargest

N data. Average total force, average contact force, and pressure
correspond to the y-axis on the left.
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Fig. 3 Finite rate shear for N = 16384 with µ = 1. a) Pressure P vs γ.
b) Fraction of the largest rigid cluster with the total number of particles
(Both quantities computed after removing rattlers) as a function of Zµ .
As γ̇ is reduced the transition becomes “sharper”. Inset top left: Data
from different shear rates collapse onto each other when scaled by the
“width” W of the transition region. Inset lower right: The width of the
transition region obtained by fitting the data. Dependence of W for
the three smaller shear rates on γ̇ can be described using a power-law
suggesting that the transition becomes discontinuous as γ̇ → 0.
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Fig. 4 Comparison of rigid cluster size distribution between high and low
γ̇ studied. a) γ̇ = 5×10−4 and b) γ̇ = 5×10−8. Comparing the distribution
of cluster sizes for the range covering 3, we see that γ̇ = 5×10−4 shows
a broader distribution compared to the one at γ̇ = 5×10−8 as quantified
by the exponent characterizing the power law distribution, indicating
that the transition becomes discontinuous as the shear rate vanishes.
The distribution corresponding to a given region in Zµ is calculated by
considering the sizes of all rigid clusters in a configuration with Zµ in
that region. Here we omit single bond clusters when distributions are
calculated.

We choose ε = 10−12 for the results in the main text. A discus-
sion on the choice of ε is included in the ESI† section VI. Even
though the system is not in force balance when sheared at a finite
rate, we identify rattlers as particles with just one contact and re-
move them recursively. For the remaining contact network, we
perform pebble game analysis and show in Fig. 3 (b) the size of
the largest rigid cluster as a function of the average contact num-
ber Zµ = ZNR−nm. The transition becomes sharper as one reduces
γ̇, and interestingly, the transition occurs at Zµ ≈ 3, the isostatic
value, for all shear rates. We fit the data using the logistic func-

tion f (x) =
[
1+ e−

x−Zc
W

]−1
(as a reasonable but arbitrary choice)

and use W as a measure of the width of the transition region. As
the top left inset in 3 (b) shows, the data can be collapsed using
the fit values, with Zc ≈ 2.99. In the lower right inset, we show
the behavior of W , whose dependence on γ̇ can be described by a
power law that implies that the transition becomes discontinuous
at γ̇ → 0. To our knowledge, this has not been reported for shear
jamming transition.

Next, we study the rigid cluster size distribution as shown in
Fig. 4 for the largest and the smallest γ̇ studied. For both cases,
we divide the region studied (in Zµ ) into three regimes – be-
fore the jamming transition, a regime covering the transition,
and after the transition – and compute the distribution of the
rigid cluster sizes separately for each of them. The distributions
in the regime covering the transition are quantified by an expo-
nent characterizing the power-law distribution of the rigid clus-
ters. For γ̇ = 5×10−4, the exponent is −1.62 and for γ̇ = 5×10−8,
the exponent is 2.17. While the transition in this regard appears
continuous for both the shear rates studied, the distributions be-
come progressively narrower as the shear rate decreases. The
corresponding curves for the frictionless and frictional quasi-static
shear show a faster than power law decay below the rigidity tran-
sition. We also calculate P∞, the probability that a given disk be-
longs to a system spanning (percolating) rigid cluster, which is
shown in the ESI† section IV. The P∞ curves become progressively
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Fig. 5 Rigidity analysis of quasi-statically shear jammed frictional disks.
Size of the largest rigid cluster in the system indicated by Nlargest

N (orange)
(calculated after removing rattlers) discontinuously jumps from nearly
zero to one. The transition occurs as Zµ crosses 3, the isostatic value.
The contact forces (blue) and pressure (red) show a more gradual change,
but the behavior of the net force on the disks reveals this to be a result
of incomplete convergence, as indicated by the average of the net force
of individual disks (green). Here y-axis on the right corresponds to the
Nlargest

N data. Average total force, average contact force, and pressure
correspond to the y-axis on the left.

step-like with decreasing shear rate. Thus, we conclude that the
appearance of a continuous transition is associated with the fi-
nite shear rates and absence of force/torque balance, rather than
being an indication of the intrinsic nature of the shear jamming
transition, or the presence of friction.

2.3 Quasi-static shear of frictional systems
To underscore our conclusions, we next consider quasi-static
shearing of frictional disks, which is performed by applying an
affine transformation and relaxing the system using DEM till the
system reaches force balance. As noted before, the relaxation
near the jamming transition is very slow and therefore it is hard
to generate force-balanced configurations near the jamming tran-
sition29,34. Given configurations that are fully relaxed, we define
rattlers as particles that do not have finite forces acting on them.
Disks with a single contact cannot sustain a non-zero force on that
contact, which we remove recursively. In addition, given a fric-
tion co-efficient µ, disks with two contacts can be in force balance
with finite forces only if the angle θ between the two contacts is
large enough. If µ < tan( π

2 − θ

2 ), these contacts cannot carry forces
(see ESI† section III), and are this also removed recursively. We
note here that our result on the nature of the rigidity transition is
not affected by removal of rattlers.

These configurations are analyzed using the (k = 3, l = 2) peb-
ble game, and the results are shown in Fig. 5. As Zµ crosses
the isostatic value 3, the largest rigid cluster encompasses the
whole system, exhibiting a striking similarity with the behavior
found for the frictionless case (Fig. 2). This observation is even
more remarkable when one considers the behavior of the contact
forces or pressure, vs. Zµ , which show a more rounded change,
as a result of the difficulty of converging to force balanced config-
urations, as indicated by the non-monotonic behavior of the net

forces acting on the disks. P, ⟨| f⃗contact |⟩ and ⟨| f⃗total |⟩ shown are
average values computed from all configurations having a given
value of Zµ . Nlargest/N is a scatter plot from all trajectories.

Before closing, we briefly compare our results and conclusions
with previous work mentioned earlier. While the conclusion in16

differ from ours, the sharpening of the rigidity transition has also
been noted in16. In19, shear was applied to frictionless disk
assemblies before friction was included in the rigidity analysis.
While this procedure captures many features of sheared frictional
disks, like the anisotropy and the emergence of a contact net-
work that supports jamming in the presence of friction, subtle
but important differences in the organization of contacts exist.
Specifically, using the procedure of19, the fraction of redundant
bonds rises continuously from below the isostatic contact num-
ber, as shown in the ESI† Section VII, whereas they are strictly
zero below the frictional jamming point. The absence of redun-
dant bonds before the rigidity transition is a characteristic fea-
ture of jamming, as compared to rigidity percolation in spring
networks and other systems15. Frictional rigidity transition stud-
ied on lattice models shows a continuous transition for a similar
reason17. Bond-diluted lattice models do not ensure that the re-
dundant bonds do not appear until the jamming point, unlike
repulsive disk packings that reorganize the contact network such
that there are no redundant bonds till the system reaches the jam-
ming point. Our results differ from the analysis of experimentally
sheared disk packings in18, for which we do not have a ready ex-
planation, since the experimental protocol should be expected to
closely agree with the quasi-static shear we employ, an inconsis-
tency that needs to be further investigated.

3 Conclusions
In summary, our results unambiguously demonstrate that the
rigidity transition associated with shear jamming in both friction-
less and frictional disk packings is discontinuous in nature, when
conditions of force and torque balance are met. Thus, the nature
of the emergence of rigidity is the same for isotropic and shear
jamming. Features that suggest a continuous transition are asso-
ciated with partial relaxation of unbalanced forces, as our results
for finite shear rate demonstrate, but such behavior approaches
discontinuous change as the shear rate vanishes. Our results thus
establish a key additional element in the shared phenomenology
of isotropic and shear jamming.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We thank S. Sarkar, S. Kumar, K. Daniels and S. Henkes for useful
discussions. We acknowledge support from the Thematic Unit of
Excellence on Computational Materials Science (TUE-CMS) and
the National Supercomputing Mission facility (Param Yukti) at the
Jawaharlal Nehru Centre for Advanced Scientific Research (JN-
CASR) for computational resources. D.B. acknowledges support
from the National Science Foundation (grant no. DMR-2046683)
and the Alfred P. Sloan Foundation. S.S. acknowledges support
through the JC Bose Fellowship (Grant No. JBR/2020/000015)

Journal Name, [year], [vol.],1–6 | 5

Page 5 of 6 Soft Matter



from the Science and Engineering Research Board, Department of
Science and Technology, India.

Notes and references
1 R. P. Behringer and B. Chakraborty, Reports on Progress in

Physics, 2018, 82, 012601.
2 H. Zhang and H. Makse, Physical Review E, 2005, 72, 011301.
3 M. van Hecke, Journal of Physics: Condensed Matter, 2009,

22, 033101.
4 C. S. O’Hern, L. E. Silbert, A. J. Liu and S. R. Nagel, Physical

Review E, 2003, 68, 011306.
5 P. Charbonneau, E. I. Corwin, G. Parisi and F. Zamponi, Phys-

ical review letters, 2015, 114, 125504.
6 M. Wyart, Physical review letters, 2012, 109, 125502.
7 E. Lerner, G. Düring and M. Wyart, Soft Matter, 2013, 9,

8252–8263.
8 V. Babu and S. Sastry, Physical Review E, 2022, 105, L042901.
9 M. Baity-Jesi, C. P. Goodrich, A. J. Liu, S. R. Nagel and J. P.

Sethna, Journal of Statistical Physics, 2017, 167, 735–748.
10 W. G. Ellenbroek, V. F. Hagh, A. Kumar, M. Thorpe and

M. Van Hecke, Physical review letters, 2015, 114, 135501.
11 J. Ortiz, E. Stanifer and X. Mao, arXiv preprint

arXiv:2212.12129, 2022.
12 D. J. Koeze and B. P. Tighe, Phys. Rev. Lett., 2018, 121,

188002.
13 D. J. Koeze, L. Hong, A. Kumar and B. P. Tighe, Phys. Rev. Res.,

2020, 2, 032047.
14 D. Jacobs and M. Thorpe, Physical Review E, 1996, 53, 3682.
15 M. Chubynsky, M.-A. Brière and N. Mousseau, Physical Review

E, 2006, 74, 016116.
16 S. Henkes, D. A. Quint, Y. Fily and J. M. Schwarz, Physical

review letters, 2016, 116, 028301.

17 K. Liu, S. Henkes and J. Schwarz, Physical Review X, 2019, 9,
021006.

18 K. Liu, J. E. Kollmer, K. E. Daniels, J. Schwarz and S. Henkes,
Physical Review Letters, 2021, 126, 088002.

19 H. Vinutha and S. Sastry, Physical Review E, 2019, 99, 012123.
20 H. Vinutha and S. Sastry, Nature Physics, 2016, 12, 578–583.
21 P. Chaudhuri, L. Berthier and S. Sastry, Phys. Rev. Lett., 2010,

104, 165701.
22 M. Ozawa, L. Berthier and D. Coslovich, SciPost Physics, 2017,

3, 027.
23 V. Babu, D. Pan, Y. Jin, B. Chakraborty and S. Sastry, Soft

Matter, 2021, 17, 3121–3127.
24 P. Das, H. Vinutha and S. Sastry, Proceedings of the National

Academy of Sciences, 2020, 117, 10203–10209.
25 N. Kumar and S. Luding, Granular Matter, 2016, 18, 1–21.
26 J. A. Anderson, J. Glaser and S. C. Glotzer, Computational

Materials Science, 2020, 173, 109363.
27 S. Plimpton, Journal of computational physics, 1995, 117, 1–

19.
28 P. A. Cundall and O. D. Strack, geotechnique, 1979, 29, 47–65.
29 H. Vinutha, K. Ramola, B. Chakraborty and S. Sastry, Granular

matter, 2020, 22, 1–8.
30 K. Shundyak, M. van Hecke and W. van Saarloos, Phys. Rev.

E, 2007, 75, 010301.
31 S. Henkes, M. van Hecke and W. van Saarloos, EPL (Euro-

physics Letters), 2010, 90, 14003.
32 G. M. gdrmidi@ polytech. univ-mrs. fr http://www. lmgc.

univ-montp2. fr/MIDI/, The European Physical Journal E,
2004, 14, 341–365.

33 L. E. Silbert, Soft Matter, 2010, 6, 2918–2924.
34 J. L. Shivers, S. Arzash, A. Sharma and F. C. MacKintosh, Phys.

Rev. Lett., 2019, 122, 188003.

6 | 1–6Journal Name, [year], [vol.],

Page 6 of 6Soft Matter


