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Chiral fluid membranes with orientational order and mul-
tiple edges

Lijie Ding,∗a Robert A. Pelcovits,ab and Thomas R. Powersabcd

We carry out Monte Carlo simulations on fluid membranes with orientational order and multiple
edges in the presence and absence of external forces. The membrane resists bending and has an
edge tension, the orientational order couples with the membrane surface normal through a cost
for tilting, and there is a chiral liquid crystalline interaction. In the absence of external forces,
a membrane initialized as a vesicle will form a disk at low chirality, with the directors forming a
smectic-A phase with alignment perpendicular to the membrane surface except near the edge. At
large chirality a catenoid-like shape or a trinoid-like shape is formed, depending on the number of
edges in the initial vesicle. This shape change is accompanied by cholesteric ordering of the directors
and multiple π walls connecting the membrane edges and wrapping around the membrane neck.
If the membrane is initialized instead in a cylindrical shape and stretched by an external force, it
maintains a nearly cylindrical shape but additional liquid crystalline phases appear. For large tilt
coupling and low chirality, a smectic-A phase forms where the directors are normal to the surface
of the membrane. For lower values of the tilt coupling, a nematic phase appears at zero chirality
with the average director oriented perpendicular to the long axis of the membrane, while for nonzero
chirality a cholesteric phase appears. The π walls are tilt walls at low chirality and transition to twist
walls as chirality is increased. We construct a continuum model of the director field to explain this
behavior.

1 Introduction
Many structures formed by fluid membranes or thin films with
liquid crystalline degrees of freedom result from the interplay of
curvature and orientational order. For example, the ordering of
curved rod-like proteins in cell membranes can lead to the forma-
tion of cylindrical membrane shapes.1 Tubules can also be formed
in lipid membranes due to the chirality of the lipid molecules.2,3

Liquid crystalline shells4 provide another example, with nematic
and cholesteric5,6 textures arising from the interaction of the cur-
vature of the shell and the liquid crystalline order.7–9 Other recent
examples include colloidal membranes made of chiral filaments,
such as rod-like fd viruses10 or DNA origami filaments.11 A key
distinction between the colloidal membranes and the other exam-
ples is that colloidal membranes tend to have free edges, which is
the focus of this work.

Colloidal membranes are single layer liquid crystal structures of
filaments assembled through a depletion force. These filaments
form a cholesteric phase when concentrated in bulk11,12 which
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indicates they have chirality and tend to twist about each other.
Changing the concentration of the depletant and the tempera-
ture leads to various structures of colloidal membranes,10,13 in-
cluding tactoids, disks, twisted ribbons, stacked membranes, sad-
dles, catenoids, trinoids, four-noids, and higher order structures.
When single layer colloidal membranes are formed, the filaments
that comprise the membrane tend to align with the membrane
surface normal, and the twist of the filaments is expelled to the
edge of the membrane.14 However, flat colloidal membranes can
also sustain significant twist at interior points. For example, coa-
lescence of two disk-shaped membranes15 can lead to the forma-
tion of π-walls where the filaments rotate through 180◦, making
an angle of 90◦ with the surface normal at the midpoint of the
wall.

Theoretical studies of the role of chirality in membrane shape
have long been of interest for membranes composed of chiral
lipid molecules.16 Helfrich and Prost17 introduced a term link-
ing molecular chirality to membrane bending, shown later to be
identical (up to a line integral) to the Frank elastic term linear
in director twist on a curved surface.18 Selinger et al3,16,19 stud-
ied tubules with helically modulated tilting states and helical rip-
ples. Tu and Seifert20 considered a concise theory of chiral mem-
branes, deriving Euler-Lagrange equations assuming constant tilt
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of the molecules relative to the layer normal. Their model was
extended by Kaplan et al.21 to include variations in the tilt angle.
All of these studies required an a priori assumption of the shape
of the membrane, e.g., tubules (with uniform tilt or a helically
modulated tilt state), helical stripes, or twisted ribbons.

Previously,22,23 we developed a Monte Carlo simulation
scheme that allows for arbitrary membrane shapes using a dis-
cretized effective energy based on the continuum energy used by
Kaplan et al.21 The membrane surface was modeled by a tri-
angular mesh with beads on the vertices connected by bonds,
and the orientational order was modeled by unit vectors deco-
rating each bead on the mesh. The energy for the discrete mem-
brane included both the energy for the membrane shape and the
liquid-crystalline energy for the orientational order. We used the
Canham-Helfrich bending energy with an edge tension for the en-
ergy of membrane shape, a chiral Lebwohl-Lasher model for the
director-director interaction, and a tilt coupling for the interac-
tion between directors and membrane surface normal. We found
the formation of a cholesteric phase at large chirality with the de-
velopment of ripples in the surface due to the coupling between
surface shape and orientational order. Although our simulations
accounted for both the deformation of the membrane surface and
the full orientational order of the constituent particles, they were
limited to the simulation of single-edge membranes

In this paper, we extend our previous study of the chiral mem-
branes with one edge and explore the structure of chiral mem-
branes with multiple edges. We start by investigating the role
of chirality in the equilibrium shapes of multi-edge membranes.
When initialized as a vesicle, a membrane with two edges can
form a catenoid-like shape with cholesteric order if the chirality
is sufficiently large. A membrane with three edges can undergo
an additional transition at a higher value of chirality to a trinoid-
like shape again with cholesteric order. Next, we apply a force
to the edges of a membrane initialized in a cylindrical shape and
find that stretching the membrane leads to the appearance of ne-
matic and smectic-A phases in addition to cholesteric as the mem-
brane adopts a nearly cylindrical shape. In both phases, as well as
the cholesteric, the membrane is a single layer of beads wrapping
around the cylinder and thus the two phases do not differ in terms
of positional order. The phases are distinguished by their orienta-
tional order: in the smectic-A phase the directors are aligned with
the normal to the membrane surface, while in the nematic, they
are aligned along a global direction. In the cholesteric phase of
both the unstretched catenoid and cylinder, π-walls appear in the
director field joining the two edges. At low chirality, the walls are
tilt walls, while at higher chirality they are twist walls. We present
a continuum analytical model that shows how the structure of the
π-walls is determined by the liquid crystalline parameters.

2 Model and method
As in our previous work,22,23 we model the membrane using a dy-
namical beads-and-bonds triangular mesh M ,24 with hard beads
of diameter σ0 located at each vertex of the triangular mesh. The
beads are connected by bonds of maximum length l0. Each vertex
i of the mesh has a unit length director field ûi.

The total energy E of the membrane is the sum of a surface en-

ergy Es that depends on the geometric properties of the triangular
mesh and a liquid-crystalline energy Elc that depends on the di-
rector field and its coupling to the mesh. The surface energy Es

has contributions arising from the discretized Canham-Helfrich
bending energy22,25,26 and a line tension of the edge:

Es =
κ

2 ∑
i∈M̊

(2Hi)
2
σi +λ ∑

i∈∂M

dsi , (1)

where κ is the bending modulus, and Hi and σi are the mean cur-
vature and the area of the cell on the virtual dual lattice at bead
i, respectively. Complete expressions for each of the terms above
can be found elsewhere.22,24,27 In the last term above, λ is the
line tension of the edge and dsi is the differential edge length at
bead i. The first summation in eqn (1) is over all interior beads M̊

of the mesh and the second summation is over all beads ∂M on
the edges. In the present study, we ignore the Gaussian modulus,
as experiments on colloidal membrane indicate that the Gaussian
curvature modulus is small compared with the bending modu-
lus.28 Preliminary results from our model suggest that a small
value of the Gaussian curvature modulus has little effect on our
results.22

The liquid-crystalline energy Elc consists of three contributions:
the director-director coupling, the chiral energy and the director-
surface coupling:

Elc =− εLL ∑
(i, j)∈B

[
3
2
(ûi · û j)

2− 1
2

]

− εLLkc ∑
(i, j)∈B

(ûi× û j) · r̂i j(ûi · û j)

+
1
2

C ∑
i∈M

[
1− (ûi · n̂i)

2
]
.

(2)

The first term on the right-hand side of eqn (2) is the Lebwohl-
Lasher interaction29, which favors the alignment of neighboring
directors on the triangular mesh. The second term is the chiral
Lebwohl-Lasher interaction,30 which favors a right-handed twist
between neighboring directors when kc > 0. The separation r̂i j

is the direction from vertex i to vertex j, and the product (ûi ·
û j) is included to satisfy the plus-minus symmetry of the director
field. The final term represents the tilt coupling of the director
field to the local surface normal n̂i of the triangular mesh at bead
i, favoring alignment of the director and the surface normal, a
tendency31 arising from the depletion interaction.32 A detailed
expression for the surface normal can be found elsewhere.22,33

The summations in the Lebwohl-Lasher and chiral interactions
are over all bonds B in the mesh and the summation in the tilt
energy is over all beads M , both in the interior and on the edges.

Canonical ensemble Monte Carlo simulations are carried out
using this model by updating both the beads-and-bonds triangu-
lar mesh and the director field. Both the shape update and direc-
tor update follow the same procedure as described in our previous
papers.22,23 The new element in this paper is that the membranes
have more than one edge, meaning that there can be holes in the
membrane. Fig. 1 shows possible initial configurations of a trian-
gular mesh with three edges. In Fig. 1a, a flat membrane has two
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(a) (b) (c)

Fig. 1 Possible initial configurations of a triangular mesh with three edges
and N = 300 beads. The internal bonds on the mesh are represented by
thin gray segments and the edge bonds are represented by thick black
lines. (a) A flat membrane with two holes. (b) A cylindrical membrane
with one hole. (c) A vesicle with three holes.

small triangular holes representing the second and third edges,
and the cylinder in Fig. 1b has one triangular hole for the third
edge. A third possibility is a vesicle with three holes on the mesh
as shown in Fig. 1c. In principle these holes should disappear by
nucleation. However, because we do not have an edge creation
or edge removal update, we insert the holes by hand in order to
create multiple edges. The membrane is simulated in free space,
i.e., there is no simulation box with boundary conditions. This
approach is reasonable given that the size of the membrane is
limited by the maximum length `0 of the bonds connecting the
beads. We also found that the drift of the center of mass of the
membrane is small over the entire course of the simulation.

For a system of N beads, each Monte Carlo (MC) cycle is com-
posed of N/t2 attempts to move a bead chosen at random, 2N/t2

attempts to flip a bond chosen at random and
√

N/t2 attempts
to shrink or extend the edge of the membrane. The parameter t
is defined by the bead move update which randomly selects one
bead from all the beads on the mesh with equal probability and
moves it to a random position in a cube of side 2t centered at its
current position. The bond flip update selects a bond from all of
the bonds in the interior of the triangular mesh with equal proba-
bility, detaches it from the beads at its endpoints and then flips it
to connect the two opposite beads on the adjacent triangle. The
parameter t is set to 0.1, with all lengths measured in units of the
bead diameter σ0. Energies are measured in units of kBT . The
maximum length of the bonds on the triangular mesh is set to
be l0 = 1.73 <

√
3 to satisfy self-avoidance and ensure fluidity of

the membrane.34 During the simulation, 1.7×104 MC cycles were
performed in total. To help the system reach equilibrium, we first
carry out a simulated annealing for 2× 103 MC cycles starting at
infinite temperature where β ≡ 1/kBT = 0 and lower the temper-
ature by increasing β in steps of δβ = 0.01 until reaching the final
temperature corresponding to β = 1. After the simulated anneal-
ing, the system energy approaches a plateau in 1000∼2000 cycles
when the system undergoes a shape change from flat to a catenoid
or trinoid (see Fig. 2) and almost immediately for other cases, we
then equilibrate the system for another 5× 103 MC cycles. We
record observables for the remaining 1×104 cycles.

3 Equilibrium shapes of membranes with multiple
edges

In our earlier work,23 we demonstrated that increasing the mag-
nitude of the chirality of the director field leads to a rippling
of a single-edge membrane coinciding with the appearance of
cholesteric order. Here we study whether a potentially similar
effect occurs in a multi-edge membrane. Fig. 2 shows that a
membrane with two or three edges can transform respectively
into shapes reminiscent of a catenoid or trinoid as chirality is in-
creased. Below we will show quantitatively that these shapes ap-
proximate catenoids and trinoids, and therefore we will refer to
them as such from here on. The drastic shape change of the mem-
brane during these transformations involves crossing a very large
free energy barrier and leads to strong hysteresis. We found that
to consistently access these shapes, we must initialize the mem-
brane as a vesicle with as many holes as edges, as in Fig. 1c for the
case of three edges. We obtain a vesicle by initializing the system
as a flat membrane as in Fig. 1a, then equilibrating for 2×103 MC
cycles with κ = 10 and λ = 20. The relatively low value of κ and
large value of λ leads to the formation of a vesicle. Initializing
the shape in one of the other configurations shown in Fig. 1 can
lead to very “noisy” shapes due to the large free energy barrier.
The topology of the triangular mesh is fixed by the number of
holes inserted into the vesicle due to the lack of an edge creation
or removal update in our MC algorithm. Thus, even if one of the
edges shrinks and its size becomes comparable to the triangles on
the mesh, there will always be a small hole present.

For a membrane with two edges (Fig. 2a), one of the edges
shrinks to a small hole when the chirality kc is small, and the
membrane assumes a disk shape. The directors exhibit smectic-
A order, i.e., they are aligned normal to the membrane except
near the edges where they twist due to chirality.35 In our previous
work23 where we did not insert a hole into the interior of the
membrane, we found that as we increased chirality the membrane
deformed into a saddle shape accompanied by the appearance of
a cholesteric phase once kc & 1 . With the insertion of a hole in
the initial membrane, a cholesteric phase again forms at a similar
value of kc, but accompanied by a much more dramatic shape
change, namely, from a disk to a catenoid. The vertical axis in
Fig. 2a is the asymmetry of the length of the two edges, which
is approximately 1 when one edge dominates and approximately
zero when both edges have nearly the same length.

Fig. 2b shows the result for a membrane with three edges.
When the chirality is small, the membrane becomes a disk shape
with two small holes. At intermediate values of chirality the
membrane becomes a catenoid with one small hole in its in-
terior. Further increasing chirality leads to an expansion of
the small hole and the membrane become a trinoid shape with
three edges of similar length. Such changes of shape are cap-
tured by the asymmetry of the length of the three edges shown
on the vertical axis of the figure. When the membrane be-
comes a disk shape, one of the edges has a length much greater
than the other two, i.e., L0 � L1 ' L2. Thus, the measure
of asymmetry becomes |∑Lkeiπk2/3/∑Lk| ' |L0/L0| = 1. When
the membrane forms a catenoid, we have L0 ' L1 � L2, and
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Fig. 2 Shapes and features of three-dimensional membrane structures for
varying chirality kc. The initial configuration for each value of chirality
is a vesicle with total number of edges Ne = 2 and Ne = 3 for (a) and
(b) respectively. The edges bound small holes of size comparable to a
triangle on the mesh [see Fig. 1(c) for an example with Ne = 3]. Here, the
number of beads N = 300, the bending modulus κ = 30, the edge tension
λ = 6, and the Lebwohl-Lasher constant and tilt coupling εLL = C = 4.
(a) Asymmetry of the length of the edges versus chirality for a two-edge
membrane. The membrane shapes in the top row show the triangular
mesh without the directors. The membrane shapes in the bottom row
show the directors which lie on the π walls that wind around the mem-
brane and join the edges. (b) Same as (a) except for a membrane with
three edges labeled with k = 0,1,2. (c) Average twist of the director field
Ts =

〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j) as a function of chirality for the membranes

shown in (a) and (b), where the average 〈. . .〉(i, j) is over all bonds (i, j).

the asymmetry becomes |∑Lkeiπk2/3/∑Lk| ' |[L0 +L1 cos(2π/3)+
L1isin(2π/3)]/(L0+L1)| ' 1/2. Finally, when all three edges grow
to have roughly the same perimeter, the asymmetry become ap-
proximately 0.

Fig. 2c shows the average twist of the director field Ts =〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j) for the membranes with two and three

edges as a function of the chirality kc, where the average 〈. . .〉(i, j)
is over all bonds (i, j). The twist is positive, indicating a right-
handed twist of the directors. Also, the π walls on the catenoid
and trinoid wind around the membrane in a right-handed sense.
There is little difference between the average twist of the direc-
tors on the two structures, implying that the geometry of the π

walls is very similar on the two membranes.
Fig. 3 shows a plot of the probability distribution of the mean

curvature Hi for the disk, catenoid and trinoid shapes shown in
Fig. 2 and the vesicle shape shown in Fig. 1c. The widths of the
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Fig. 3 Probability distribution of the mean curvature Hi (see eqn (1))
sampled over 200 MC configurations (50 MC cycles between consecutive
samples) for four membrane shapes: disk, vesicle, catenoid and trinoid.
The membrane parameters are the same as in Fig. 2, except for the vesicle
where λ = 50. The chirality kc is zero for the disk and vesicle and 1.3
and 2.3 for the catenoid and trinoid, respectively.

distributions for all four shapes are comparable and of the order
of magnitude to be expected for thermal fluctuations where

√
〈H2

i 〉 '
√

kBT
κσ2

i
' 0.2, (3)

with kBT = 1 (the final temperature of our simulations), κ = 30
and σi ' 1, where σi is the area of the cell on the virtual dual
lattice at bead i (see eqn (1)). The peaks of the distributions for
the catenoid and trinoid are located at approximately equal val-
ues of Hi which are substantially smaller than the location of the
peak of the vesicle. While not mathematically minimal surfaces,
the catenoids and trinoids appearing in our simulations are good
approximations to ideal minimal surfaces.

(a) (b) (c)
0

π/6

π/3

π/2
arccos |û · n̂|

Fig. 4 A sample configuration of a catenoid membrane. (a) Trian-
gular mesh model of the membrane shape. (b) Hard beads decorated
by directors û on each vertex are shown in addition to the triangular
mesh, with the color indicating the angle arccos |û · n̂| between the direc-
tor and the local surface normal n̂. (c) Membrane edges and directors
with arccos |û · n̂|> π/3, which are the directors approximately located in
the π-walls. There are three such π-walls wrapping around the membrane
and they begin and end on the membrane edges. For the sake of clarity
the mesh and other directors are not shown in part (c).

Fig. 4 shows a sample configuration of a catenoid including the
directors. We note that there are three π-walls wrapping around
the membrane, joining the two edges. The π-walls are character-
ized by a rotation of the director by 180◦ about an axis which is
perpendicular to the wall and lying in the local tangent plane of
the membrane, as expected in the presence of cholesteric order.
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We saw similar lines in our previous study of the saddle shapes.
The force-free catenoid shape as well as the tubule shapes we find
when the catenoid is subject to external force (see next section)
appear to be achiral (Fig. 4a and 5), in contrast to the helical
ribbons and tubules studied by Selinger et al.19

4 Elongated membranes

4.1 Director field

We now focus on a two-edge membrane and study its response
to an external force applied to the edges of a membrane initial-
ized not as a vesicle as in the previous section, but rather in a
cylindrical shape (similar to Fig. 1b but without the small hole on
the surface). Initializing in a cylindrical shape allows us to easily
apply equal and opposite forces to the two edges which would
be very difficult to accomplish for the catenoids shown in Fig. 4
where the edges are not planar. The force changes the length of
the membrane and preempts the formation of a catenoid at large
chirality, maintaining instead a nearly cylindrical shape except
near the edges. The force is incorporated into our simulation by
demanding that the beads on the right edge have z ≥ l f , and the
beads on the left have z≤ 0, where the z axis is along the long axis
of the cylinder and l f is the elongated length of the membrane un-
der force. A sample configuration of an elongated membrane is
shown in Fig. 5. We specify l f in terms of inequalities on the z
coordinates of the edge beads to allow beads to join or leave the
edges in our simulations. Constraining the edge beads to be ex-
actly at z = l f or z = 0 would prevent a bead in the interior from
joining the edge unless it moves exactly to z = l f or z = 0. By
allowing the edge beads to move slightly into the z ≥ l f or z ≤ 0
regions, we overcome this difficulty. The absence of sharp left and
right edges of the elongated membrane shown in Fig. 5 is a result
of this requirement.

(a)

(b)

z = 0 z = lf

Fig. 5 A sample configuration of an elongated membrane produced by
applying equal and opposite forces to the edges of a cylindrical membrane.
We need to state the values of κ, C, εLL, and kc. The edge beads are
bounded by the condition z≤ 0 for the left edge and z≥ l f for the right
edge, and black dashed lines mark the position of z = 0 and z = l f . (a)
Triangular mesh model of the membrane shape. (b) Same as (a), but
now including the directors attached to the beads. The color coding of
the director orientation relative to the surface normal is the same as in
Fig. 4.

While in the absence of an external force the catenoid mem-
brane exhibits only a cholesteric phase, stretching a cylindrical
membrane leads to the appearance of nematic and smectic-A

phases in addition to the cholesteric depending on the values of
the Lebwohl-Lasher coupling constant εLL, the tilt coupling C and
the chirality kc. For sufficiently large C compared to εLL and with
kc = 0, the directors align with the local surface normal and form
a smectic-A phase as shown in the top row of Fig. 6a. For suf-
ficiently large εLL compared to C and kc = 0, the directors align
along a common global direction perpendicular to the z axis and
form a nematic phase as shown in middle row of Fig. 6a. Finally,
when kc is nonzero and C is not too large, the directors twist and
form a cholesteric phase as shown in the bottom row of Fig. 6a.
Note that in all three phases the positional order of the beads is
essentially the same, as shown, e.g., in Fig. 5a.

Fig. 6b shows a plot of the average nematic order parameter
〈S〉, the largest eigenvalue of the nematic order parameter tensor
Qi j =

3
2 (uiu j− 1

3 δi j), versus εLL for various values of the tilt cou-
pling C and fixed length of the membrane l f . As C increases and kc

remains zero, the critical value of εLL for the smectic-A-nematic
transition increases, indicating that the competition between C
and εLL determines the equilibrium phase. Similarly, the critical
value of kc for the smectic-A-cholesteric transition also increases
with increasing C as shown in Fig. 6d, where the average director-
normal alignment

〈
(û · n̂)2〉 is plotted versus kc, confirming that

the competition between kc and C determines which of these two
phases is preferred. On the other hand, Figs. 6c and 6e show
that increasing l f decreases the critical values of εLL and kc at the
smectic-A-nematic and smectic-A-cholesteric transitions, respec-
tively. As the length l f increases, the tubule narrows, increasing
the energy penalty for splay of the director field (which is present
in the smectic-A phase, see Fig. 6a) and leading to transitions to
the nematic and cholesteric phases at lower values of εLL and kc

respectively.

Additional insight into the phases shown in Fig. 6 can be
obtained from illustrations of perfect nematic, cholesteric and
smectic-A ordering on a cylinder (see Fig. 7). The variation of
tilt in our model permits the continuous transformation of the di-
rector field between these different phases. The smectic-A phase
shown in Fig. 7a is analogous to a +1 disclination in a planar
nematic, and can continuously transform into the nematic phase
with directors along z (Fig. 7d) by escaping into the third dimen-
sion.36,37. Likewise, the cholesteric phase (Fig. 7c) can transform
continuously to the nematic phase with directors along x (Fig. 7b)
via a rotation of the directors by π/2 about the radial direction
followed by rotations about z. Finally, the nematic configurations
in Figs. 7b and 7d are related by a rotation about y. Note that
the nematic and cholesteric phases shown in Figs. 7b and 7c, re-
spectively, have identical tilt energies and this common energy is
lower than the tilt energy of the nematic phase shown in Fig. 7d.
In the former two phases there is some alignment of the directors
with the local surface normal, whereas in the latter phase all of
the directors are perpendicular to the normal.

4.2 Walls

We now take a closer look at the director field in the nematic and
cholesteric phases of the elongated membrane. In particular, we
consider the π walls which form as a consequence of the compe-
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Fig. 6 Three phases of the director field (smectic-A, nematic, and
cholesteric) in a tubular membrane under force arise from the competition
between the Lebwohl-Lasher constant εLL, tilt coupling C, and chirality kc.
Here, the number of beads N = 300, bending modulus κ = 50, and edge
tension λ = 6. (a) Top view of one end of a membrane of length l f = 25
(left column), front view of the same end (middle column, with the beads
and bonds in the back sides excluded for better visualization), and oblique
view of the tubule (right column). The parameters are for all membrane
images are C = 6, with (εLL,kc) = (2,0) (top row), (4,0) (middle row),
and (2,1.5) (bottom row), respectively. The color coding of the directors
is the same as in Fig. 4. From top to bottom, the three rows correspond
to smectic-A, nematic and cholesteric phases. (b) Average nematic or-
der parameter 〈S〉, the largest eigenvalue of the nematic order parameter
tensor Qi j =

3
2 (uiu j− 1

3 δi j), versus εLL for various values of C with kc = 0.
(c) Average director-normal alignment

〈
(û · n̂)2〉 versus εLL for various

values of l f with kc = 0. (d) (û · n̂)2 versus chirality kc for various values
of C with εLL = 2, (e) Same axes as in (d) but for various values l f . The
discontinuities in (b) and (c) occur at the smectic-A-nematic transition
and in (d) and (e) at the smectic-A-cholesteric transitions.

tition between kc, C, and εLL. It is helpful to note that π walls can
appear with two different structures as shown by Helfrich for ne-
matic liquid crystals in a magnetic field.38 To visualize Helfrich’s
structures, consider directors with their centers of mass confined
to a plane and oriented perpendicular to the plane except in a
straight thin domain wall of infinite length.

If the directors rotate by 180◦ about an axis perpendicular to the

(a) (b)

(c) (d)

x

y

x

z

φ

z

ρ

0

π/6

π/3

π/2
arccos |û · n̂|

Fig. 7 Illustration of perfect (a) smectic-A, (b) and (d) nematic (zero
chirality) and (c) cholesteric order on a cylinder whose long axis is the z
axis. The directors are indicated by rods and we provide four views of each
phase from top to bottom, respectively: looking down the z axis, a view
from the side of the cylinder, and two views with the cylinder unwrapped:
one looking head-on [i.e., the (φ ,z) plane] and another looking down the
z axis. In all figures the director fields have no z dependence. (a) A
smectic-A phase where all directors are aligned with the normal to the
surface. (b) A nematic phase where all directors point in the x direction.
For nonzero but small chirality, the directors will begin to twist. (c) A
cholesteric phase where the directors lie in the (ρ,z) plane and rotate
about the φ̂ axis. We use a “nailhead” representation of the director ,
where the head of the nail is tilted out of the plane of the figure. (d) A
nematic phase with all directors pointing in the z direction.

domain wall, then the wall is a twist π wall. Such walls are anal-
ogous to Bloch walls in ferromagnets. On a cylindrical surface,
twist π walls are lines of directors tangent to the surface, with
the directors in the wall oriented parallel to the wall. An ideal
case with twist π walls along the z axis is shown in Fig. 7c. As
one crosses a twist π wall, the directors rotate by 180◦ about an
axis perpendicular to the line (i.e., the φ̂ direction in 7c). In this
example, the π walls are not thin because the directors rotate at
a uniform rate as the circumference is traversed.

Returning to the case of molecules confined to a plane, Hel-
frich noted that π walls can also be “splay-bend" walls with no
twist, analogous to Néel walls in ferromagnets. For directors with
centers of mass in a plane, and perpendicular to the surface ev-
erywhere but in a thin domain wall, a splay-bend π wall has the
directors rotating by 180◦ about an axis parallel to the wall. Wrap-
ping this plane into a cylinder to make a straight π wall analo-
gous to the splay-bend π wall, we see that directors in this π wall
once again lie in the tangent plane of the surface but are oriented
perpendicular to the wall (see Fig. 7b). As one crosses this π wall,
the directors rotate relative to the surface normal by 180◦ about
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an axis parallel to the line (the z axis in the figure). Thus, on a
cylinder, the analog of the splay-bend π wall on a flat surface is a
tilt π wall.

More generally, both types of π walls need not be parallel to
the z axis, and there is not a rigid distinction between the two
types of walls. For example, consider a cholesteric state (different
from the one shown in 7c) in which the directors on the cylinder
twist about the axis of the cylinder: û = x̂cos(qz)+ ŷsin(qz). This
state has two domain walls of mixed type that spiral around the
cylinder. As we traverse the domain wall along a circumference,
the directors rotate about the z axis relative to the surface normal.
Since the domain wall is not along z, the axis of rotation makes an
angle with the domain wall, indicating it is of mixed type. And if
we traverse the domain wall along a path in the surface which is
normal to the domain wall, the directors rotate about z relative to
a space-fixed axis, again indicating that the wall is partly a twist
wall and partly a tilt wall.

Fig. 8 shows how a change in chirality transforms the tilt walls
into twist walls in the cholesteric phase. As shown in Fig. 8a, the
tilt walls start twisting and wrapping about the membrane’s cylin-
drical neck, forming helical shapes as the chirality kc increases. At
the same time, the directors on the wall become parallel to the di-
rection of the wall, as expected for twist walls. These observation
are quantified in Figs. 8b and 8c. The former figure shows the
average twist of the director field Ts =

〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j).

Here, the average 〈. . .〉(i, j) is over all bonds (i, j). The twist in-
creases with the chirality as expected. Fig. 8c displays û · ẑ, the
component of the director along the elongation direction. This
quantity also increases with increasing chirality, indicating that
as the directors twist about each other, they also rotate more into
the elongation direction and the walls transition from tilt to twist.
The discontinuities in Figs. 8b and 8c for l f = 15 and l f = 25 corre-
spond to the formation of an additional π-wall. This can be seen
for the case of l f = 25 by comparing the upper left and lower left
configurations in Fig. 8a. Similar discontinuities are not found for
the longer membrane with l f = 35 whose configuration is shown
in the upper right of Fig. 8a. Due to the smaller diameter of the
longer membrane there is insufficient space for an additional π-
wall.

Fig. 9 shows the average director field twist Ts =〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j) for various values of chirality kc

and tilt coupling C. Consistent with the results shown in Fig. 8,
there are three phases: smectic-A, 2-wall (nematic or cholesteric)
and 3-wall cholesteric when the membrane is not too thin, the
range of chirality kc of 2-wall phase that separate smectic-A and
3-wall phase get smaller as tilt coupling C increases.

We further study the structure of the π walls by slicing the
membrane perpendicular to the z direction, as indicated by
the horizontal dashed lines and colored vertical segments in
Figs. 10a-c. Figs. 10a and 10c show a membrane with two π

walls for tilt couplings C = 2,10, respectively. Figs. 10b shows a
membrane with three π walls with C = 2, but at a higher value
of chirality. Figs. 10d-f show (û · n̂)2, the alignment between the
directors and the surface normal in each of the slices shown in
Figs. 10a-c, plotted against the polar angle φ = arctan(y/x), where
(x,y) is the location of a bead in the slice. The curves are fit to the

form (û · n̂)2 = (e1/λφ −esinm(φ−φ0)/λφ )/(e1/λφ −e−1/λφ ), where m is
the number of π walls (m = 2 in (d) and (f) and m = 3 in (e)), λφ

in the factor esinm(φ−φ0)/λφ determines the angular width of the π

walls, and the others terms normalize (û · n̂)2 to the range [0,1]. In
(d) and (e), λφ ' 3, yields a good sinusoidal-like fit that indicates
that the π walls are not sharp; the tilt coupling is relatively small
and the directors twist to satisfy their chirality. In (f) where the
tilt coupling is larger, the curves are fit with λφ ' 0.5. The π walls
here are narrower as the directors tend to align with the surface
normal in order to lower the cost of tilt.

Fig. 11b shows the angle θ ≡ αu−α as a function of chirality
kc, where αu is the angle between z and directors in the vicinity of
the π walls which have a tilt angle satisfying arccos(|û · n̂|) > π/3
and α is obtained from tanα in Fig. 11a. Thus, θ measures the
orientation of these directors relative to the wall direction, and
θ is zero for twist walls and π/2 for tilt walls. As kc increases,
αu decreases, i.e., the directors near the wall rotate towards the
z axis. Simultaneously the walls rotate away from the z axis (α

increases). The net result is that the angle θ decreases, appears
to plateau around a value of 0.4 radians. The π walls thus transi-
tion from tilt walls at low values of chirality to more twist-like at
higher chirality.

5 Continuum model for the director field on a cylin-
der

To better understand the phase behavior seen in the simulations
of the previous section and the transformation of the tilt π walls at
low chirality into twist walls at higher chirality, and to assess the
role of membrane flexibility, we use continuum elasticity theory
to study the deformation and director configurations of an infinite
nearly cylindrical membrane. The total energy of the membrane
is21

E =
∫

dA
{

K
2

[
(∇ · û)2 +(û · (∇× û)+q)2 +(û× (∇× û))2

]

+
C
2

[
1− (û · n̂)2

]
+

κ

2
(2H)2

}
,

(4)

where K is the Frank modulus in the one coupling constant ap-
proximation, û is the unit vector representing the director field,
q is the preferred rate of twist, C is the tilt modulus, n̂ is the
membrane unit normal vector, κ is the bending modulus, and H
is the mean curvature of the membrane. We have chosen the
sign of the chiral term q in eqn (4) to agree with the sign of
kc in our simulation model eqn (2), namely, positive values of
q and kc correspond to a right-handed twist of the director field.
Since we study nearly cylindrical shapes, cylindrical coordinates
φ and z are natural. The position of the point (φ ,z) is given by
X(φ ,z), and tangent vectors along the coordinate directions are
given by tµ = ∂µ X, where µ = φ or z. Distances along the mem-
brane are determined by the metric tensor gµν = tµ · tν , with g
the determinant of the matrix gµν , gµν the inverse of the met-
ric tensor, dA =

√
gdφdz the area element, and n̂ = t1× t2/

√
g the

unit normal. Curvature of the membrane is determined by the
curvature tensor Kµν = n̂ · ∂µ tν , with the mean curvature given
by H = gµν Kµν/2. Since the membrane in our continuum model
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Fig. 8 π walls in the nematic (zero chirality) and cholesteric phases with number of beads N = 300, bending modulus κ = 50, edge tension λ = 6,
Lebwohl-Lasher constant εLL = 4, and tilt coupling C = 4. (a) Configurations of an elongated membrane with l f = 25, 35 (left to right) and kc = 0, 1,
2.5 (bottom to top, respectively). Only the triangular mesh and directors with tilt angle arccos |û · n̂|> π/3 are shown. The color bar is the same as in
Fig. 4. The π walls twist around the membrane in a right-handed sense for kc > 0. (b) Director field twist Ts =

〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j), averaged over

all bonds (i, j), versus chirality kc for various values of the membrane length l f . The positive values of Ts indicate that the twist is right-handed. (c)
Average projection of the director along the direction of elongation

〈
(û · ẑ)2〉 versus kc for different l f . The discontinuities in (b) and (c) correspond

to the formation of an additional π wall.
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0.20

0.25

Ts

Fig. 9 Heat map of the director field twist Ts =
〈
(ûi× û j) · r̂i j(ûi · û j)

〉
(i, j)

for various values of chirality kc and tilt coupling C with number of beads
N = 300, bending modulus κ = 50, edge tension λ = 6, Lebwohl-Lasher
constant εLL = 2 for a relative short membrane l f = 15. The sharp gradi-
ent of the color indicates the transition from smectic-A phase (purple),
to 2-wall cholesteric (green) and 3-wall cholesteric (red) phases. Con-
figurations of the membrane are shown at the top with values of (kc,C)

corresponding to points indicated by arrows in the heat map.

is represented by a vanishingly thin mathematical surface, the
gradients in eqn (4) are gradients along the surface of the mem-

brane: ∇ = gµν tµ ∂ν . Thus

∇ · û = gµν tµ ·∂ν û

û · (∇× û) = û · (gµν tµ ×∂ν û)

û× (∇× û) = û× (gµν tµ ×∂ν û).

(5)

Note that our use of the surface gradient ∇ in the energy leads
to couplings between the directors and the membrane curvature,
which is characteristic of membrane models that account for ex-
trinsic (normal) components of derivatives of the director field.39

In the following we denote the angle between the director and
the surface normal by β .

5.1 Case of large Frank constant

We can use the continuum model to explain how the director con-
figuration influences membrane shape in the examples shown in
Fig. 6. In the smectic phase, symmetry implies the membrane is
a cylinder, with a radius R independent of φ . Observe that the
cross section of the membrane in our simulations flattens in the
nematic phase (Fig. 6a, left column, middle row), whereas it is
nearly circular in the cholesteric phase (Fig. 6a, left column, bot-
tom row). Apparently, the Lebwohl-Lasher modulus εLL is large
enough compared to κ to cause the membrane in the nematic
phase to deform so that the director is nearly parallel to the nor-
mal over most of the circumference. Therefore, we simplify our
theoretical discussion by limiting our analysis to the case that the
Frank constant is large compared to the bending stiffness in the
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Fig. 10 Structure of the π walls. Here the number of beads N = 300,
bending modulus κ = 50, edge tension λ = 6, Lebwohl-Lasher constant
εLL = 4. (a) Configuration of a membrane with two π walls, tilt cou-
pling C = 2, length l f = 25 and chirality kc = 0.5. The horizontal dashed
lines and vertical colored lines indicate slices of beads along the z di-
rection. (b) Same as (a) except kc = 2.5, and there are now three π

walls. (c) Same as (a) except C = 10. (d)-(f) The director-surface nor-
mal alignment (û · n̂)2 as a function of the polar coordinate φ̂ for the
configurations shown in (a)-(c), respectively. The colors correspond to
the slices of the membrane shown in the figure directly above. Each dot
corresponds to an individual bead. The curves are fit to the form (û · n̂)2 =[

exp
(
1/λφ

)
− exp

[
sin(m(φ −φ0))/λφ

]]
/[exp

(
1/λφ

)
− exp

(
−1/λφ

)
], where

m is the number of π walls [m = 2 in (d) and (f) and m = 3 in (e)],
λφ in the factor exp

[
sin(m(φ −φ0))/λφ

]
determines the angular width of

the π walls, and the others terms normalize (û · n̂)2 to the range [0,1]. In
(d) and (e), λφ ' 3, yields a good sinusoidal-like fit that indicates that
the π walls are not sharp; the tilt coupling is relatively small and the
directors twist to satisfy their chirality. In (f), the curves are fit with
λφ ' 0.5. The π walls here are narrower as the directors tend to align
with the surface normal in order to lower the cost of tilt. The location
of the π walls corresponds to values of φ where (û · n̂)2 = 0.

continuum model, K� κ, even though εLL is not large compared
to κ in our simulation. (Monte Carlo simulations indicate that
K ≈ 3εLL at low temperature40.) In this limit, the only parame-
ter is the dimensionless ratio of the tilt modulus to the bending
stiffness, χ = CR2/κ. In the simulations, χ ≈ 1, but we will see
that even when χ is of order unity, the deflection of the mem-
brane cross-section away from the circular shape is small. Thus,
we assume the Frank energy is zero, with û = x̂cos(qz)+ ŷsin(qz),
and write the energy to second order in χ for the deformation

0 1 2 3

kc

0.0

0.5

1.0

ta
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α
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Fig. 11 The angle α between the π walls and the z axis, and the angle
θ between the walls and directors in the vicinity of the walls. Here the
number of beads N = 300, bending modulus κ = 50, edge tension λ = 6,
Lebwohl-Lasher constant εLL = 4. (a) Plot of tanα versus chirality kc for
C = 2,6,10. The tanα is obtained from results similar to Figs. 10d-f using
the fit φ0 ∼ tanα 〈z〉/〈R〉, where 〈z〉 is the average z position and 〈R〉 is the
average radius of each slice of the nearly cylindrical membrane. (b) Plot
of θ = αu−α versus kc for tilt coupling C = 2,6 and 10, As θ decreases,
the directors on and near the wall begin to align with the wall direction
and the wall becomes more twist-like in nature. For kc . 2 two π walls
are present. The discontinuities in the plots around kc = 2 are due to the
appearance of a third wall.

X = ρ̂[R+ ζ (φ ,z)] + zẑ. To enforce the constraint of fixed area,∫
dφ
√

g = 2πR, we introduce a Lagrange multiplier η which we
expand to first order in χ: η = η0 + χη1. Using the same ap-
proach as Kaplan et al.21, we derive the Euler-Lagrange equa-
tions. To zeroth order in χ, we find that leaη0 = κ/(2R2), which
is the tension required to hold a membrane cylinder of radius R in
equilibrium.41 Using this result in the Euler-Lagrange equations
to first order in χ yields

R3
[

∂ 4ζ

∂ z4 +
2

R2
∂ 2ζ

∂ z2 +
2

R2
∂ 2ζ

∂φ 2∂ z2 +
1

R4
∂ 4ζ

∂φ 4 +
1

R4 ζ

]

+
3χ

4
cos(2qz−2φ)+

χ

4
+

χη1R2

κ
= 0,

(6)

where η1 is determined by the constraint of fixed area. Solving
eqn (6) with the assumption that the minimum radius is at φ = 0
and z = 0 yields

ζ

R
=− 3χ

36+64q2R2(2+q2R2)
cos(2qz−2φ). (7)

In the achiral nematic case, q = 0, the deformation is similar to
that of Fig. 6a, left column and middle row:

ζ

R
=− χ

12
cos2φ . (8)

The extra bending required to make a helical deformation for a
chiral membrane greatly reduces the amplitude of the deforma-
tion relative to the achiral case. For example, the amplitude of
the deformation with qR = 1.5 is 0.056 times the amplitude when
q = 0, which is consistent with the fact that the cross-section in
the left column and bottom row of Fig. 6a is much more circular
than the achiral case in the left column and middle row.
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5.2 Case of infinite bending stiffness

Since the effect of flexibility is small for chiral membranes, we
will assume infinite stiffness in the rest of this section and take
the membrane shape to be an infinite cylinder of radius R (even
in the achiral limit of q = 0). First we compare the energy of two
simple configurations, the smectic-A phase and the cholesteric
phase. In the smectic-A phase, the directors point radially out-
ward, ûSm = ρ̂, and the energy per unit length for a cylinder
of radius R is ESm/L = πK/R+πKq2R. In the cholesteric phase,
ûChol = x̂cosqz+ ŷsinqz. Note that this configuration amounts to a
thin cylindrical shell of liquid crystal cut from a three-dimensional
cholesteric with the pitch axis aligned along the cylinder axis.
This configuration has two π walls that wind around the surface
of the cylinder, and the energy per unit length is EChol = πCR/2.
Comparing these two energies, we see that the cholesteric phase
is favored over the smectic phase when CR2/K < 2(1+q2R2).

The directors in the configurations we just considered have no
z component, whereas our simulations show that the directors
have a nonzero z component when kc 6= 0 (Figs. 8a and 10abc).
Therefore we construct a ansatz with an z component that allows
the directors to rotate toward the z axis:

û(φ ,z) =
(1− γ)û1(φ ,z)+ γû2(φ ,z)
|(1− γ)û1(φ ,z)+ γû2(φ ,z)|

, (9)

where the parameter γ ranges from 0 to 1, and

û1(φ ,z) = cosβ (φ ,z)ρ̂− sinβ (φ ,z)φ̂

û2(φ ,z) = cosβ (φ ,z)ρ̂− sinβ (φ ,z)(sinαφ̂ + cosα ẑ).
(10)

The directors make an angle β with the surface normal ρ̂ with
β (φ ,z) = m

2 [φ − (z/R) tanα], m is the number of π walls, and α (as
defined in the last section) is the angle between the π walls and
ẑ. The location of the π walls corresponds to β = π/2.

Our model is constructed to describe the cholesteric, nematic
and smectic-A phases seen in the simulations (Fig. 6a) and in the
illustrations of the perfect forms of these phases (Fig. 7), and to
allow for the two types of π walls, i.e, tilt and twist. If m = 0, the
director fields û1 and û2 are equal and describe a smectic-A phase,
i.e., β = 0. With m = 2, û1 describes a fully ordered nematic if α =

0 (Fig. 7b and the upper left corner of Fig. 12), while for α 6= 0, û1

describes a cholesteric phase with two π walls. If α is close to π/2,
the walls are twist walls, while if α is nearly zero, the walls are tilt
walls. This can be seen from the value of the angle θ ≡ αu−α =

π/2−α and recalling that θ is zero for twist walls and π/2 for tilt
walls. Turning to û2, we note that unlike û1 it has a z component
and the factor sinαφ̂ + cosα ẑ is a unit vector parallel to a π wall.
Thus, the director field û2 on a wall [β (φ ,z) = π/2] is parallel
to the wall direction, and û2 describes a phase with perfect twist
walls. Fig. 7c illustrates û2 for m = 2,α = 0. There are two π

walls parallel to the z axis (i.e., perpendicular to the page), one
passing through the point at the top and the other through the
point at the bottom of the figure. We see from the figure that the
directors rotate by 180◦ as either wall is traversed, with a rotation
axis parallel to φ̂ . Because our ansatz is the smectic-A state when
m = 0, and is like an interpolation between the nematic state and

α
=

0

γ = 0.0

θ = π/2 θ = π/4

γ = 0.5

θ = 0

γ = 1.0

α
=
π
/
8

θ = 3π/8 θ = 3π/16 θ = 0

α
=
π
/
4

θ = π/4 θ = π/8 θ = 0

Fig. 12 Illustration of the interpolated director field eqns (9)-(10) with
m = 2 for various values of the interpolation parameter γ and tilt angle
α of the π walls with respect to the z axis. The left column illustrates
sample configurations of û1(φ ,z), depending on the value of α, the angle
between the π walls and the z axis, while the right column illustrates
û2(φ ,z). Directors are shown as rods and the color bar is the same as
Fig. 4. The thin black lines near the blue directors indicate the location
of π walls. The angle θ is the difference between αu and α, where αu is
the angle between the directors on the wall and the z axis. When θ = 0
(right column), the directors on the wall are pointing along the direction
of the wall.

a cholesteric state with two twist π walls only when m = 2, we
restrict m to the values 0 and 2.

Fig. 12 shows sample configurations of the m = 2 director field
for additional values of α and γ. In summary, if m = 0 the model
exhibits a smectic-A phase, and if m= 2 it exhibits a nematic phase
if α = 0 or a cholesteric phase otherwise. The cholesteric phase
can have either tilt or twist walls depending on the values of α

and γ.
We numerically minimize the energy eqn (4), as a function of

α and γ for fixed values of qR, CR2/K, and m. Then, we compute
the normalized energy difference ∆E ′R2/C = (E ′m=2−E ′m=0)R

2/C
and find the phase diagram shown in Fig. 13a. Similar to the re-
sults from our Monte Carlo simulations in Fig. 9, the critical qR
for the transition from the smectic-A phase to the nematic (q = 0)
or cholesteric phase increases with increasing CR2/K. As shown
in Fig. 13b, tanα also increases with chirality qR, indicating a
twisting of the π walls as chirality increases. Fig. 13c shows γ

as a function of qR and indicates that the system accommodates
the increase of chirality by transitioning from nematic (pure û1

with α = 0) to cholesteric (m = 2) order. When C is very small
(0.2), we see from Fig. 13c that the cholesteric phase is described
by a nearly pure û1 director field which is illustrated in the left
column of Fig. 12. Fig. 13b indicates that α grows and θ de-
creases as qR increases (see Fig. 12). As chirality increases, the π
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Fig. 13 Phase diagram obtained from the interpolated director field eqn
(9) with m = 0 and 2. (a) Phase diagram obtained from the normalized
energy difference ∆E ′R2/C = (E ′m=2−E ′m=0)R

2/C for various values of qR
and CR2/K. The dashed line is a continuous transition from the smectic-
A to the cholesteric phase. At qR = 0 the cholesteric becomes a nematic
phase up until the critical value of CR2/K where it transitions to the
smectic-A phase. (b) tanα of the m = 2 director field (at the minimum
value of energy) versus qR. The curves are labeled by the values of
CR2/K. and begin at the critical value of qR for the m = 0 to m = 2
transition shown in (a). (c) Similar to (b), the value of the interpolation
parameter γ of the m = 2 director field versus qR at the energy minimum.

walls tilt, the directors on the walls rotate towards the direction
of the wall, and the tilt walls transition to having a more twist-
like character, as we saw in the simulations (see Fig. 11c). The
curves shown in Figs. 13b and 13c begin at the critical value of
qR for the smectic-A to cholesteric transition shown in Fig. 13a.
The peak in Fig. 13c for C = 2.2 appears because of the flatness of
the transition line. Similar peaks for the larger values of C do not
appear because they would correspond to points in the smectic-A
phase of Fig. 13a.

We note that the value of γ remains less than 0.3 and is gener-
ally less than 0.1. Thus, the director field is nearly û1 with a small
û2 component, which is why the simple balance ESm = EChol men-
tioned at the beginning of this subsection gives a good approxima-
tion to the phase boundary shown in Fig. 13a, and is also why the
minimizing value of tanα is so close to qR ( Fig. 13b). These re-
sults are consistent with our simulations (Fig. 11c) which showed
that the π walls, while no longer purely tilt in character, do not
become pure twist walls as chirality increases.

The tilt energy appearing in both eqns (2) and (4) has the same
mathematical form as the interaction of directors with a magnetic
field imagined to be normal to the surface of the cylinder. For suf-
ficiently large field, the cholesteric twist will be unwound and the
system will become a nematic. This problem was studied in a flat
geometry by de Gennes35 and Meyer42 who found a critical field
proportional to chirality. In our case of a cylindrical geometry, the
cholesteric twist can unwind either through the formation of a ne-
matic phase (zero chirality) or a smectic-A phase for sufficiently
large C. The curvature of the surface makes the nematic state
of complete alignment different from the smectic-A state of com-
plete alignment with the “external field” of the surface normal.
Thus, the transition line between the cholesteric and smectic-A

phase does not go through the origin of the phase diagram shown
in Fig. 13a.

6 Conclusion

In this paper, we further developed a general model23 of chiral
membranes with orientational order and edges and carried out
simulations of membranes with multiple edges. We found that
membranes can form disks, catenoids and trinoids as the mag-
nitude of chirality increases and when the number of edges al-
lows. The formation of catenoids and trinoids is accompanied
by the appearance of a cholesteric phase where π-walls wrap
around the membrane and connect different edges. For the two-
edge membranes, pulling on the opposite edges makes the mem-
brane thinner and leads to a cylindrical shape. The directors on
the elongated membrane can form additional phases besides the
cholesteric seen in the force-free case. When there is no chirality,
the directors can either align with the surface normal and form a
smectic-A phase or form a nematic phase with all directors point-
ing along a single global direction, depending on the strength of
the tilt coupling. Once chirality is nonzero, a cholesteric phase
appears for sufficiently low tilt coupling. At low chirality, the π

walls are of the tilt variety. As chirality increases, the walls trans-
form to the twist variety common to the cholesteric phase.

Our model provides a general framework for simulating not
only colloidal membrane made of chiral filaments but also the
general problem of liquid crystals on deformable surfaces. The
current formulation of our model has some limitations. First, the
model is restricted to membranes made of a single components,
and many shapes including high-order saddle, catenoid and han-
dles emerge when the membranes are made of mixtures of fila-
ments of different lengths.13 A natural extension of the current
model to account for mixtures would be to use moduli in the en-
ergy that vary with position across the membrane. Second, the
current model does not allow topological changes of the triangu-
lar mesh. Thus, the edges are only able to shrink to a small tri-
angle instead of fully disappearing. A future development of the
model could overcome this limitation with the implementation of
an edge removal and creation update that allows a change in the
number of edges during the simulation and would also allow a
nucleation of a hole in the initial configuration.
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