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Ridge Localization Driven by Wrinkle Packets†

Xianheng Guan,a Nhung Nguyen,b,d Enrique Cerda,c Luka Pocivavsek,d and Sachin
Velankara,b

While buckling is a time independent phenomenon for filaments or films bonded to soft elastic
substrates, time evolution plays an important role when the substrate is a viscous fluid. Here we
show that buckling instabilities in fluid-structure interactions can be reduced to the analysis of a
growth function that amplifies the initial noise characterizing experimental or numerical error. The
convolution between a specific growth function and noise leads to natural imperfections that emerge
in the form of wave packets with a large scale modulation that can transform into localized structures
depending on nonlinear effects. Specifically, we provide an experimental example where these wave
packets are amplified into ridges for sufficiently low compression rates or are diluted into wrinkles for
high compression rates.

1 Introduction
The deformation of microtubules immersed in intracellular flu-
ids, the motion of cilia on the surface of cells or the displace-
ment of tectonic plates on the surface of the earth, are common-
place examples of fluid-structure interactions at different time
and length scales where viscous forces play a dominant role1–3. A
well-known primary instability leads to sinusoidal undulations or
wrinkling if the film or filament bears a compressive strain ε 4–8.
Wrinkles of wavenumber km are effective to release the compres-
sion of the initial flat state by rotating the structure out of the line
of action of viscous forces.

Similar wrinkling instabilities have been extensively studied
for the case of a film bonded to a soft elastic substrate9,10. Be-
yond some critical threshold strain εc, bending modes can lower
the elastic energy more effectively than compressive modes, thus
leading to buckling in the form of sinusoidal wrinkles distributed
uniformly over the entire surface of the film. Upon further com-
pression, other localized buckling modes such as period-doubled
wrinkles or well-separated tall ridges have also been observed and
studied11–16. Localized buckles can release the local compression
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of the film more effectively than uniform wrinkles when the stiff-
ness mismatch ratio E/Es between the elastic film stiffness E and
the soft substrate stiffness Es increases. A more compliant sub-
strate, i.e. a large E/Es, allows the stiffer film to displace over
larger distances, which is essential for localization. Similar si-
nusoidal or localized instabilities are also observed for inviscid
liquid-supported films where gravity or surface tension plays the
role of substrate stiffness17–19.

Analogous localization phenomena were recently reported for
films supported on a layer of viscous fluid. Buckles can ap-
pear either in the form of uniform wrinkles over the entire film,
or well-spaced tall ridges20–22. A comprehensive review of the
literature on buckling phenomena on viscous substrates is pro-
vided in21. The mechanism leading to ridge localization in such
energy-dissipating systems must however be fundamentally dif-
ferent from the energy-conserving cases from the previous para-
graph. While the soft matter community has a sophisticated un-
derstanding of buckling in terms of energy, the knowledge of rate
effects - which are inevitable for viscous or viscoelastic substrates
- is rudimentary. Such substrates fully dissipate mechanical en-
ergy, and hence no energy minimizer is available. Instead, for
the case of uniform wrinkles, the analysis is similar to instabilities
in fluid mechanics (Rayleigh-Taylor, Kelvin-Helmotz, Richtmyer-
Meshkov, etc.) where an interface is unstable to small pertur-
bations of wavenumber k and the amplitude grows in the form
AkeS(t,k) with time. The most unstable mode km is obtained by
maximizing the growth function S(t,k) with respect to k, and the
time to observe the instability is dictated by the condition of hav-
ing the amplitude of order one, S(t,km) ∼ O (ln(1/Ak)). Initial
perturbations are not expected to play a role in the final shape of
the interface when nonlinear effects become dominant. In fact,
a great deal of research has been done to understand how the
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final shapes describing bubbles and spikes in Rayleigh-Taylor in-
stability are not dependent on the initial perturbations of the flat
interface23. Here we show that this scenario is completely dif-
ferent in buckling instabilities resulting from fluid-structure inter-
actions. It is well known that buckling instabilities are extremely
sensitive to structural imperfections in real applications, and engi-
neers take careful account of them to avoid failure of a designed
structure. These perturbations are attributable to errors during
fabrication, the presence of defects, variation of material proper-
ties, etc. so that they have an intrinsic random nature and can
deviate buckling into unexpected paths. For the case of buckling
by viscous forces all these initial imperfections are hidden in the
specific values of Ak and the behavior below and near the thresh-
old is expressed by the convolution

ψ(x, t) = Re
[∫

∞

0
dkAkeikxeS(t,k)

]
(1)

where ψ represents the out-of-plane deformation of a filament
or film. In general, the constants Ak are complex and it is
necessary to take the real part of the fourier transform. Wrin-
kling is predicted by the first order approximation of the integral
ψ ∝ Akm eikmxeS(t,km) + c.c.. However, this paper shows a remark-
able result that a second length scale emerges at a second order
approximation, assuming that the critical mode is a maximum for
the growth function.
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Fig. 1 Surface profiles obtained from Eq. 2 for km = 2π and k0 = 0.5. A.
Convolution for a constant initial amplitude Ak = 10−2. The distance be-
tween the two vertical dashed lines corresponds to the value ℓ= 4

√
2/k0.

B. Convolution for Ak = 10−2 × p where p is a random number between
-1 and 1.

Around the maximum the growth function can be ap-
proximated as S(t,k) = S(t,km) − (k − km)

2/k2
0 where k−2

0 =

−∂ 2
k S(t,k)/2|km . It yields

ψ(x, t)≈ eS(t,km)Re
[∫

∞

0
dkAkeikxe−(k−km)

2/k2
0

]
(2)

The wavenumber k0 represents the spread of the modes around
km. The remaining integral is well studied in different fields of
physics that account for a range of modes playing a role as the
amplitude probability in Quantum Mechanics or surface waves
amplitudes in Fluid Mechanics. As known in these other fields,
we show that the addition of multiple unstable modes produces

a different response than an individual mode. The simple as-
sumption of having a constant real value for the initial pertur-
bations Ak = A0 leads to the classical example describing a wave
packet ψ = A0k0

√
πeS(t,km)−k2

0x2/4 cos(kmx) that is localized along a
distance ∼ 1/k0 (see Fig. 1A). But there is a whole range of differ-
ent possibilities depending on the specific statistical distribution
of the initial amplitudes Ak. Figure 1B shows the profile when the
amplitude follows a random uniform distribution. The amplitude
randomness triggers the well-known phenomena of “beating"24

where competing unstable modes near km induce a pulsation of
the wrinkled pattern. Thus, the convolution leads to the appear-
ance of natural imperfections at two modes km and k0 and these
two modes are available for buckling at threshold. Moreover, the
pulsation can be long range, i.e. appears as a long-wavelength
modulation of the amplitude for k0 ≪ km, representing a length-
scale that is distinct from the wrinkle wavelength.

2L

Fig. 2 A. Schematic of the experiment. A film of length 2L (orange) is
attached to a viscous liquid layer (light blue) coated onto a pre-stretched
rubber strip (black). B&C. 2D sketch of geometry before and after
buckling. Dashed line indicates film height H f lat > H0 if buckling does
not happen. D-F. Experimental images at the same compression strain
ε = 0.14 and liquid thickness H0/h = 31.5, applied at various rates. β is
the dimensionless strain rate defined in the text.

An example of two distinct length scales at the threshold can
be seen when a viscous substrate bearing an elastic film is com-
pressed at a constant compression rate20. Figure 2 illustrates our
experimental setup. A strip of elastic film rests on the surface of
a viscous liquid layer, which is itself coated onto a rubber strip
being held stretched (Fig. 2A). Releasing the rubber strip imposes
compressive stress on the liquid, which in turn compresses the
film, causing it to buckle. As described in two recent experimen-
tal21 and numerical studies22, the buckles can adopt two distinct
forms. If the compression rate is relatively large, wrinkles ap-
pear uniformly over the entire film (Fig. 2F). If compression rate
is relatively small, buckles take on the form of tall and sharply-
localized ridges separated by nearly-flat regions (Fig. 2D). Re-
markably, wrinkle packets are clearly observed near the threshold
(see Fig. 2E) and, unlike in the case of films supported on soft
solids where localization is observed far from the onset for wrin-
kling, ridges localize simultaneously with wrinkles. This implies
that localization is not a post-buckling phenomenon. In section 2
we study experimentally and numerically these two length scales
in detail and in section 3 we provide a theoretical framework that
explains them based on the ideas outlined above on the role of
small perturbations may create a long-range modulation. Finally,
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we apply the analysis to other configurations in section 4.

2 Experiments and Numerics
Experiments were conducted by placing a 100x8 mm elastic thin
film of thickness h = 25.4 µm (PET, McMaster-Carr) onto the sur-
face of a polymeric liquid layer of viscosity η ∼ 106 Pa.s (poly-
isobutylene, BASF Oppanol B15), and thickness H0 ranging from
0.25 to 1.6 mm, which was itself coated onto a prestretched rub-
ber strip (see Fig. 2A). The rubber strip was allowed to unstretch
at controlled speed. The liquid layer then induced compression
of the film, which buckled. The high viscosity of the fluid en-
sures that gravity does not play a role in the experiments. Even
though the liquid layer is not confined laterally, gravity-driven
flow is sufficiently weak that the layer thickness H0 remains con-
stant for a time scale on the order of one day. Moreover, experi-
ments conducted by hand showed very similar results when tilted
at 90 degrees. Simulations were conducted for the geometry of
Fig. 2A under plane strain conditions using ABAQUS (see ESI†).
Recent works26–28 have numerically studied a similar configura-
tion but with a viscoelastic substrate exhibiting a rubbery behav-
ior for long times, which plays a role in the final state of the sys-
tem. Here we enforce that the substrate layer exhibits fluid-like
behavior to approximate a Newtonian fluid. Thus the evolution
of buckles is entirely determined by a coupling between just two
factors: the elasticity of the film and the viscous dissipation in
the substrate. The ends of the bottom rubber layer were moved
towards each other at fixed velocity to induce compression and
buckling. The loading conditions and material properties were
selected to ensure that in the rubber layer the compressive strain
is ε = ε̇t for t > 0. The geometry was sufficiently long to approxi-
mate infinite film conditions.

For sufficiently long films under plane strain conditions, the
mechanics of the film prior to buckling can be captured by three
parameters20: the non-dimensional strain rate β = (1−ν2)ηε̇/E,
where E is the film modulus, ν is the Poisson ratio of the film
(set to ν = 0.49 in the numerics); the non-dimensional liquid
thickness H0/h; and the strain ε = ε̇t. Incidentally the litera-
ture under plane strain conditions on thin film buckling some-
times uses the in-plane stiffness Y = Eh/(1−ν2) and the bending
stiffness B = Eh3/12(1− ν2) (rather than E and h) to character-
ize the film. In that case, the suitable non-dimensional numbers

are α = ηε̇H0/Y , the von Kármán number N =
√

Y H2
0 /B, and

the strain ε. These latter parameters will be used in our the-
oretical description. However, β and H0/h offer the benefit of
cleanly separating the material parameters from the geometric
ones. Both simulations and experiments spanned the same range
of β and H0/h values although the dimensional values of the ma-
terial parameters (modulus and viscosity) were orders of mag-
nitude higher in the experiments (Table S1 in the ESI† lists the
parameter values used in the simulations). The fact that experi-
ments and simulations produce comparable results confirms that
these dimensionless parameters accurately capture the physics.

For quantitative analysis of the simulations, we must isolate
film motion that is specifically attributable to buckling. We char-
acterize the film kinematics by the x-displacement u(x, t) of a ma-
terial point on the film from its initial position, and the height

H(x, t) of the film, which is also the liquid layer thickness. If the
film stayed flat without buckling, these two quantities would fol-
low (see ESI†):

u f lat =−ε̇tx; H f lat = H0/(1− ε̇t) (3)

The first equation states that x-displacement of the film matches
that of the bottom rubber layer. The second states that as strain
increases, the film rises due to liquid incompressibility, as indi-
cated by the dashed blue line in Fig. 2C. Once the film buckles,
the local values of u and H deviate from Eq. (3), and these devia-
tions are written as ∆u = u−u f lat and ∆H = H −H f lat . We adopt
∆H (see Fig. 2C) as the definition of the local buckle amplitude.

The red lines in Fig. 3 show the evolution of the non-
dimensional amplitude profile ∆H/H0 for two compression rates
(see Supplemental Video†). The onset of buckling is marked by
the appearance of non-zero values of ∆H/H0 at sporadic loca-
tions over the film. We found that inter-ridge distance can be
identified reliably from the ∆u̇ profiles (i.e. the horizontal film
velocity relative to the rubber layer), rather than by measuring
the distance between the tallest buckles from the amplitude pro-
files. The blue lines in Fig. 3 plot these relative x-velocity profiles
in non-dimensional form ∆u̇/ε̇H0. Remarkably, in the low-rate
simulation, (Fig. 3D), while the buckle amplitude is still modest
(∆H/H0 < 0.2), the ∆u̇/ε̇H0 develops a long-wavelength modula-
tion. The modulation is such that the film moves towards loca-
tions with relatively large ∆H values; these locations “accumulate
film" and grow taller, whereas neighboring regions “supply film"
and themselves become flat. With increasing strain, the regions
with tall ridges become increasingly narrow, and the velocity pro-
file takes on a sawtooth shape. Yet the wavelength of the mod-
ulation and the location of the zeroes in ∆u̇/ε̇H0 remain approx-
imately pinned throughout. In contrast, at high-rate (Fig. 3C),
∆u̇/ε̇H0 temporarily takes on large values in the vicinity of buck-
les. But long-range correlations in ∆u̇/ε̇H0 do not appear, and sub-
sequently all the buckles increase their amplitude uniformly. The
two length scales that characterize the buckling, the wavelength
λ , and the inter-ridge distance ℓ, can be estimated readily from
the analysis of the spatial autocorrelation functions of ∆H/H0 and
∆u̇/ε̇H0 (see ESI†, section S3). For large values of β or H0/h, how-
ever, the amplitude of the tallest ridges no longer dominates over
all the others, and hence ℓ is not reported. Figure 4 compares
numerical and experimental results for the wavelength and inter-
ridge distance. In summary, the simulations show that an elas-
tic film bonded to a viscous substrate undergoing compression
can show two distinct length scales near the threshold. Wrinkles
and wrinkle packets emerge near the threshold confirming the
scenario given in the Introduction. More importantly, these two
distinct modes may appear not necessarily due to specific charac-
teristics of the underlying mechanics, but also due to the random-
ness of the initial noise. In fact the wrinkle packets observed in
the example of Fig. 1B have a different topography than the ones
observed in Fig. 3C and D (red color) implying that the initial
distribution of amplitudes are not exactly predicted by a uniform
distribution.
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Fig. 3 A&B: Snapshots of buckled geometry at ε = 0.075 for the (A) wrinkling and (B) ridge localization simulations at the β and H0/h values listed. A
wider region is shown for B, making the liquid layer appear thinner. In fact, both have H0/h = 9.84. C&D. Evolution of amplitude (red) and x-velocity
(blue) profiles in each simulation. (E) Fourier transform of the amplitude profile at threshold and fits to gaussian (see text) where horizontal lines
indicate width of the gaussian. The upper two data are moved vertically by 1 and 2 units respectively.
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Fig. 4 Dependence of normalized wavelength (red symbols) and inter-
ridge distance (blue symbols) on non-dimensional A. rate β , and B. liquid
thickness H0/h. The error bars on the experimental ℓ values indicate
the range of distances measured 21. Error bars on the experimental λ

values are smaller than the symbols. The red solid and blue dashed
lines correspond to the theoretical predictions in Eqs. (14) and (16), as
explained in the text.

3 Theoretical Model
We now seek to understand our system within the framework of
previous models that account for the interaction between the film
and the fluid. Assuming lubrication approximation for the fluid
motion, the dynamics of the film constrained to deformations in
the x− z plane is captured by two equations (see ESI†)

∂tu =−H2
∂x p/(2η)+Hτ/η − ε̇x (4)

∂tH = ∂x

[
H3

∂x p/(3η)−H2
τ/(2η)

]
+

ε̇

1− ε̇t
H (5)

The pressure (p) and shear stress (τ) under the film are related
to the bending and stretching of the film by p = B∂ 4

x H −∂x(F∂xH)

and τ = ∂xF . Here F is the force per unit of width on the cross
section that accounts for in-plane elasticity F = Y ∂xu. Equations

(4) and (5) were derived by Huang and Suo6,7 for the case ε̇ = 0
(see section 4 for details). Unlike their system however, fluid
motion is the driving force deforming the film in our system, and
these two extra terms in Eqs. (4) and (5) act as “source terms"
that change H and u with time.

Neglecting the stresses in Eqs. (4) and (5) is equivalent to as-
suming no resistance of the film along the x and z directions.
Accordingly, for p = τ = 0, Eq. (3) is a solution to Eqs. (4) and
(5) representing homogeneous upward motion of an infinitely
long film prescribed by fluid incompressibility, and a compressive
strain ∂xu =−ε that mirrors the strain of the bottom rubber layer.
We devote the next paragraph to understand how this solution
arises.

To comprehend how the solution in Eq. (3) emerges, we rely on
previous works20,22 accounting that the equation for the horizon-
tal displacement predicts a “shear-lag" effect. The second term on
the right-hand side of Eq. (4) takes the form Hτ/η ≈ (H0Y/η)∂ 2

x u,
defining a diffusion coefficient D = H0Y/η and a diffusive time
scale tD = L2/D, where L is the half length of the film (see
Fig. 2A). This time scale accounts for the characteristic time re-
quired for boundary effects to propagate throughout the system.
Therefore, before buckling, spatial and time derivatives are of the
order ∂x ∼ 1/L and ∂t ∼ 1/tD. Rescaling horizontal length scales
(u, x) with L, vertical length scales with H0 and time scales with
tD, we make Eqs. (4) and (5) dimensionless (see ESI†). Defining
dimensionless quantities by bar symbols, Eqs. (4) and (5) become

∂t̄ ū(x̄, t̄) = H̄∂
2
x̄ ū− εDx̄+O(Λ2,Λ4/N2)

∂t̄ H̄(x̄, t̄) =−1
2

H̄2
∂

3
x̄ ū+

εD

1− εDt̄
H̄ +O(Λ2,Λ4/N2) (6)

where Λ = H0/L and εD = ε̇tD is the strain applied at time
tD. These equations must be solved with the boundary condi-
tions ū|x̄=0 = 0 (fix center) and ∂x̄ū|x̄=±1 = 0 (free ends), and
the initial conditions ū|t̄=0 = 0 and H̄|t̄=0 = 1. The approxima-
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tion H̄ ≈ 1 in the coupling terms yields the asymptotic solution
ū =−(εD/2)(x̄− x̄3/3), which is valid for long times (t̄ ≫ 1) when
boundary layers formed at the free ends have propagated to the
center of the film20. Note that this asymptotic solution corre-
sponds to a finite shear τ ≈ ηx/H0 in dimensional variables. How-
ever, here we are interested in the opposite limit when the system
size is large (tD → ∞), and boundary layer effects are negligible.
The exact solution for short times of Eqs. (6) is

ū(x̄, t̄) =−εDt̄ x̄+O(t̄2); H̄(x̄, t̄) =
1

1− εDt̄
+O(t̄2) (7)

which is the dimensionless form of Eq. (3). The physical interpre-
tation of the behavior for t ≪ tD is explained by the small mag-
nitude of the elastic forces. Elastic forces are proportional to dis-
placements and substantial deformation is needed to counteract
the applied loads represented by the source terms of Eqs. (6).
Displacements are on the order of u ∼ t at short times, resulting
in small elastic forces. Thus, the film deforms in-plane, exactly
following the deformation of the bottom rubber for short times,
and pressure and shear can be neglected.

We now continue with the analysis of the equations in dimen-
sional variables and use the strain γ = ∂xu as variable to obtain
a set of equations invariant under translations. When nonlinear
terms involving derivatives of the height ((∂xH)2, ∂xH∂ 2

x H, etc.)
are neglected, Eqs. (4) and (5) become

∂tγ =− 1
2η

H2[B∂
6
x H −Y ∂

3
x (γ∂xH)]+

Y
η

H∂
2
x γ − ε̇

∂tH =
1

3η
H3[B∂

6
x H −Y ∂

3
x (γ∂xH)]− Y

2η
H2

∂
2
x γ +

ε̇

1− ε̇t
H (8)

We conduct a linear perturbation analysis of these equations
around the solution given by Eq. (3), using Fourier modes of the
form

∆H/H0 = ξk(t)cos(kx)

∆γ = ωk(t)cos(kx) (9)

where ∆γ = ∂x∆u = ∂xu − ∂xu f lat . This leads to a second order
equation for the amplitude of the height perturbation:

ξ̈k +2µ(t,k)ξ̇k +q2(t,k)ξk = 0 (10)

where the functions µ and q are defined in ESI†. Applying
the WKB method25, the general solution for the perturbation
amplitude is ξk(t) = (a1eS+(t,k)+ a2eS−(t,k))/Q(t,k)1/2 where Q2 =

q2 + (µ̇ + µ2) and S±(t,k) =
∫ t

0 dt ′[−µ(t ′,k)± Q(t ′,k)] are time-
dependent growth exponents.

From here on, we use strain instead of time to study the buckle
evolution, i.e. we work in terms of S±(ε,k) rather than S±(t,k).
Because S− < 0, the instability appears only when S+(ε,k) is pos-
itive. As shown in ESI†, for the parameter values of interest, S+ is
well-approximated by the analytical expression

S+(ε,k) = 2ε − ε
(kH0)

6

(12αN2)
+

ε

6
(kH0)

2 + ε
2 (kH0)

4

(24α)
(11)

Fig. 5 Evolution of the growth exponent S+(ε,k) with increasing strain.
Dashed red line corresponds to the strain (and hence time) at which S+
first reaches a specified value S0.

To relate this result to classical buckling theory for a free elas-
tic film, we observe that, for very slow compression, (α →
0) the growth function can be approximated as αS+/ε ≈
−(kH0)

6/(12N2)+ ε(kH0)
4/24 where the unstable modes S+ > 0

are obtained when ε > 2(kH0)
2/N2 = 2Bk2/Y . The available

modes are determined by boundary conditions, for instance, the
Neumann-type boundary condition ∂xH|x=±L = 0 yields k = πn/L
where n = 1,2... Therefore, the first mode to become unsta-
ble as compression increases is kel = π/L for εel

c = 2(B/Y )π2/L2.
The growth function for this mode as strain increases beyond εel

c
is approximately αS+(ε,kel)/ε ≈ (ε − εel

c )(kelH0)
4/24. Thus, the

growth of the first unstable mode follows the trend S+(ε,kel)∼ t2;
however, as shown at the end of this paragraph, there are modes
that grow even faster. Figure 5 evaluates S+ using the parameters
of Fig. 3B for illustration. The blue line shows that at any given
strain (or equivalently, time), S+ > 0 for small kH0 indicating an
instability. Further, S+ has maximum at a certain wavenumber km

which increases with increasing strain. This maximally-unstable
wave number can be obtained from ∂k(S+) = 0 as (kmH0)

2 =(
N2ε +

√
24N2α +N4ε2

)
/6. For a large ratio ϕ = Nε/

√
α be-

tween the two terms in the square root, we obtain for the maxi-
mum

(kmH0)
2 ≈ N2

ε/3 (12)

a strain-controlled but rate-independent regime similar to the
scaling law obtained for a film under a fixed prestrain6 and for
filaments immersed in a viscous fluid8. In this large strain limit
(ϕ ≫ 1), the evaluation of S+ gives a simple expression for S+ at
the maximally-unstable wavenumber: S+(ε,km) ≈ N4ε4/(648α).
It predicts a super-exponential growth S+(ε,km) ∼ t4 similar to
the buckling instability in8.

Since km changes continuously, the instability wavenumber that
eventually dominates is the one that sufficiently amplifies an ini-
tial small perturbation. We proceed by assuming that the growth
exponent must reach S+ = S0 > 1 to have a significant amplifi-
cation of perturbations. Here S0 represents the initial unknown
perturbations of the system, S0 = ln(1/Ak); however, the pre-
cise “amplification criterion" depends on the size of the initial
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unknown perturbations of the system and their statistical dis-
tribution. A noisier system should require a smaller value for
the exponent S0. Reaching S+ ≈ S0 requires a certain critical
strain (dashed red line in Fig. 5). We set S0 = N4ε4/(648α)

to obtain εc ≈ 323/4(S0α)1/4/N as the critical strain. Note that
ϕ = (648S0/α)1/4 at the critical strain. This value is consistently
large in all our simulations, thus validating our initial assumption
in obtaining Eq. (12).

The critical strain, in terms of our simulation parameters, is

εc ≈ c1S1/4
0 β

1/4(H0/h)−3/4 (13)

where c1 = 2−1/431/2 ≈ 1.46. Further, substituting Eq. (13)
into Eq. (12) gives the critical wavenumber (kcH0)

2 ≈ N2εc/3 =

23/4N(S0α)1/4, or a critical wavelength

λc/(2πH0)≈ c2S−1/8
0 β

−1/8(H0/h)−5/8 (14)

where c2 = 2−7/83−1/4 ≈ 0.41. Notably, λc is very weakly-sensitive
to rate and noise (power 1/8), consistent with the simulations
and experiments. Equation (14) is shown as the solid red line in
Fig. 4A using the exponent S0 as fit parameter. It yields S0 ≈ 30.
We use the same parameter S0 to predict the relation between
wavelength and H0/h in Fig. 4B (solid red line) and critical strain
with β and H0/h (see ESI†) to show the consistency of our rela-
tions. Because the critical strain is more sensitive to initial noise
(power 1/4), the agreement between simulation and theory is
less satisfactory. Note that the experimental wavelengths in Fig. 4
always exceed the numerical values suggesting that experiments
have higher initial perturbations, and hence need a lower value
of S0.

We remark that Eq. (12) is derived from a linear analysis of
Eqs. (8) and its predictions are strictly valid near the threshold.
Although it predicts the wavenumber increases with strain for
compressions larger than the critical strains (ε > εc), the ampli-
tudes of the unstable modes around kc increase, and nonlinear
terms come into play in the subsequent analysis. In fact, the se-
quence in Fig. 3C shows that the wavelength of wrinkles changes
slowly with compression after threshold. A nonlinear analysis of
the equations would be needed to elucidate how the most unsta-
ble mode at threshold suppresses the growth of other modes to
become dominant.

We now turn to the theoretical analysis of the inter-ridge dis-
tance. Unlike ridge localization on elastic substrates where ridges
are observed far from threshold16, Fig. 3B shows that localiza-
tion appears simultaneously with wrinkling. Moreover, a careful
examination of the surface profile near the threshold shows that
packets of wrinkles transform into ridges as strain increases, and
the distance between the ridges corresponds to the size of these
packets. The fourier transform of the profiles near the threshold
confirms these observations. We conjecture that these packets of
wrinkles add natural imperfections to the film and select the posi-
tions where ridges appear. Figure 3C shows that at relatively low
β values, the unstable modes have a gaussian-shaped distribution
in the region km−k0 < k < km+k0. The wavenumber k0 character-
izes the spread of the distribution, which becomes narrower with
decreasing rate. It is well-known29 from fourier analysis that a

gaussian distribution of modes predicts the appearance of wave
packets with a size ∼ k−1

0 . Physically, these wave packets appear
because modes within ±k0 of km beat with each other to create
wave packets at a spacing of order ∼ 1/k0. Thus, the long wave-
length or inter-ridge distance is a modulation of the profile rather
than a new distinct sinusoidal undulation.

The same conclusion is supported by the analysis of the growth
function. Figure 5 shows that there is a band of rapidly growing
modes for ε > εc defined by the condition S+ > S0. Specifically,
near the maximum the growth function can be approximated as
S+(ε,k)≈ S+(ε,km)− (k− km)

2/k2
0, where

(k0H0)
2 ≈ 18α/(N2

ε
3) (15)

It predicts that the fourier distribution given by the solution
ξk(t) ∝ eS+ has a gaussian shape centered at km with width k0.
Equation (15) is strongly different than Eq. (12). It shows that
the size of a wave packet depends on strain rate in agreement
with Fig. 4C.

To connect k0 with the inter-ridge distance, we use the analysis
of Eq. (2). For constant initial perturbations Ak there are wrinkle
packets of the form ξ ∼ e−x2/2σ 2

where σ =
√

2/k0
29. Taking the

inter-ridge distance as ℓ= 4σ (equivalent to two standard devia-
tions in a gaussian distribution, see Fig. 1A), we now estimate ℓ

in our Abaqus simulations by performing Fourier analysis on the
amplitude profiles and fitting them to a Gaussian-shaped distribu-
tion to obtain k0, as shown in Fig. 3E. Figure 4 (blue star points)
shows that this method gives similar ℓ values as the analysis of the
spatial autocorrelation functions (see ESI†, section S3). However,
at high rates, Fourier analysis cannot be used because noisy data
result in poor-quality Gaussian fits. Note that this data analysis
includes the unknown initial distribution of amplitudes in numer-
ical simulations explained by roundoff errors and discretization.
This distribution could shift the values of kc and k0 predicted by
theory assuming a uniform distribution (or white noise) of the ini-
tial amplitudes. Indeed, as we analyze below, the gaussian distri-
butions observed in Fig. 3E show a deviation from the theoretical
predictions obtained under these simple assumptions.

Although Eqs. (12) and (15) describe two different length
scales, they are connected at threshold when assuming that the
initial amplitude perturbations do not play a role in predicting
kc or k0. Their ratio k2

c/k2
0 = N4ε4

c /(54α) is proportional to the
growth exponent. It yields k2

c/k2
0 = 12S0 at the threshold condi-

tion. Equivalently, the ratio between the inter-ridge distance and
wavelength is then

ℓ/λc = (96S0/π
2)1/2 (16)

Thus, the inter-ridge distance is just a multiple of the wavelength!
Indeed Fig. 4 shows that ℓ/λc is almost independent of liquid
thickness, and only weakly dependent on rate. Quantitatively,
we obtain ℓ≈ 17λc for S0 ≈ 30 (upper dashed blue line), which is
in reasonable agreement with the experiments and simulations.
The difference shows that Eq. (15), or equivalently Eq. (16) at
threshold, under-predicts the k0 values extracted directly from the
fourier transform (blue star points in Fig. 4). Therefore, there is
a wider distribution than the theoretical prediction implying that
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the initial distribution of amplitudes is not uniform.

4 Other Systems
The same analysis can be applied to similar problems where vis-
cous forces are dominant to buckle a filament or film. The insta-
bility analysis will lead to a growth function where the most un-
stable mode km and the width of the gaussian distribution k0 can
be extracted. Although, the previous analysis predicts λ ≈ 2π/km

and ℓ≈ 4
√

2/k0 these relations are approximate because the mag-
nitudes of the amplitudes and their statistical distribution are im-
portant to exactly predict the critical strain for buckling, wave-
length at threshold, and the corresponding band width of un-
stable modes. However, km and k0 give a first estimation of the
topography of the wrinkle packets and the behavior of natural
imperfections after buckling.

The results thus far have only examined the case when the film
experiences continuous compression at a fixed rate ε̇. But the
same approach can be applied to the case where a sudden com-
pression of strain ε0 is applied to a film supported by a viscous
fluid. This instantaneous compression could be applied to the
film by thermal effects, swelling, pre-stretching release, etc. The
same setup defined in Fig. 2 can be used to study the effect of a
sudden compression if the rubber bottom is released sufficiently
fast. We have reported that wrinkling is observed during the first
stage of fast compression, whereas localized ridges appear under
quiescent conditions after the strain has been applied21.

Previous studies4–7 have computed the instability for this type
of compression and only predicted uniform wrinkles. The instan-
taneous compression dictates a constitutive relation F = Y (∂xu−
ε0) so that the force is initially compressive for small displacement
(F ≈ −Y ε0) and relaxation takes place after a time tD (F ≈ 0).
Equations (4) and (5), without source terms and with this new
constitutive relation, describe the dynamics of the film. In terms
of the strain γ = ∂xu and height H the equations to solve are

∂tγ =− 1
2η

H2[B∂
6
x H −Y ∂

3
x ((γ − ε0)∂xH)]+

Y
η

H∂
2
x γ

∂tH =
1

3η
H3[B∂

6
x H −Y ∂

3
x ((γ − ε0)∂xH)]− Y

2η
H2

∂
2
x γ (17)

Before buckling we expect again that spatial and time derivatives
scale in the form ∂x ∼ 1/L and ∂t ∼ 1/tD. Rescaling the variables
in the same way we did in the previous problem, we make the
equations dimensionless. Equations (17) become

∂t̄γ(x̄, t̄) = H̄∂
2
x̄ γ +O(Λ2,Λ4/N2)

∂t̄ H̄(x̄, t̄) =−1
2

H̄2
∂

2
x̄ γ +O(Λ2,Λ4/N2) (18)

They must be solve with the boundary conditions γ|x̄=±1 = ε0 (free
ends) and the initial conditions γ|t̄=0 = 0 and H̄t̄=0 = 1. The so-
lution for short times (t ≪ tD) is γ = 0+O(t̄2) and H̄ = 1+O(t̄2).
Thus, a linear stability analysis around this solution provides the
specific growth function for large systems. It yields (see ESI†)

S =
1

12

(
ε0 −

(kH0)
2

N2

)
(kH0)

4 t∗ (19)

where t∗ is a dimensionless time defined by t∗ = Yt/(ηH0). Mini-
mization with respect to the wavenumber shows that the equiva-
lent to Eqs. (12) and (15) are

(kmH0)
2 ≈ 2N2

ε0/3 (20)

(k0H0)
2 ≈ 9/(2ε

2
0 N2t∗) (21)

Thus, the gaussian becomes narrower with time. The ratio
k2

m/k2
0 = 4ε3

0 N4t∗/27 increases with time, predicting that wrin-
kle packets should start to separate more and more as time in-
creases21,30. Because the strain is fixed, km does not change
with time, and hence kc = km; however, there is a critical time
when the growth function reaches the threshold value S(t∗,km) =

S0. It yields t∗c ≈ 81S0/(ε
3
0 N4). In dimensional terms tc ∼

(9/16)(S0η/Y )(ε0H0/h)−3. Accordingly, the time needed to ob-
serve the wrinkling instability is expected to increase sharply as
the strain or liquid thickness reduces.

Another situation is the compression of a filament immersed in
a viscous fluid due to thermal expansion, swelling or other mech-
anism. It produces a homogeneous compression similar to the
compression applied by shear flow in the previous examples. In
fact, when thermal expansion or swelling is induced at a constant
rate by a linear change with time, it defines an effective com-
pression rate ε̇ (see ESI†). The main source of dissipation is the
Stokes flow around the filament and viscous force per unit of line
can be readily estimated8,31 as F⃗d =−µ v⃗ where µ ∝ η . Although
the computation of the drag force F⃗d requires a 3D analysis of the
flow around the filament, we constrain the motion to take place
in the plane x− z so that v⃗ = (∂tu,∂tH). The drag force can be
divided into normal (Tn) and frictional (Tt) components (similar
to p and τ in the previous problem) so that F⃗d =−Tt x̂+Tnẑ. These
two forces per unit of line are related to bending and stretching
of the filament by Tn = EI∂ 4

x H − ∂x(F∂xH) and Tt = ∂xF , where
I is the moment of inertia and F is the tangential force in the
cross section. The constitutive relation for in-plane deformation
is F = EA(γ − ε̇t) where γ = ∂xu; hence, the dynamic of the fila-
ment can be reduced to two equations

µ∂tγ = EA∂
2
x γ

µ∂tH =−EI∂
4
x H +EA∂x((γ − ε̇t)∂xH) (22)

Because of the simplicity of the viscous forces the diffusive equa-
tion for the horizontal displacement becomes decoupled from the
vertical displacement. The diffusion equation must be solved with
the boundary conditions γ|x=±L = ε̇t (free ends) and the initial
conditions γ|t=0 = 0. The diffusion coefficient is now D = EA/µ

and the solution for short times (t ≪ tD) is γ = 0 and H = H0. A
linear stability analysis around this solution yields for the growth
function

S =
1
µ

(
−EIk4t +EAε̇k2 t2

2

)
(23)
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The most unstable mode and spread of the gaussian are then

k2
m = Aε/(4I) (24)

k2
0 = 4πηε̇/(EAε

2) (25)

Moreover, the same analysis used in the previous section leads to
the determination of the critical strain, critical wavenumber and
size of the wave packets at threshold. It remains to be studied if
nonlinear terms, due for example to the proximity of a solid wall,
allow these imperfections to develop into regions of high local
curvature.

Other buckling instabilities in fluid-structure interactions, such
as indentation of floating films, deflation of shells or real cells im-
mersed in viscous fluid, deformation of microtubules by molecu-
lar motors, etc. could also show a small band width of unstable
modes leading to the phenomena of beating. Thus, natural im-
perfections with long scale modulations in the form of wrinkle
packets must be observable at threshold and potentially trigger
localization.

5 Conclusions

A key dimensionless parameter introduced in the analysis for con-
stant strain rate compression is the ratio of film stiffness to an
effective substrate stiffness, E/(ηε̇) ∝ β−1. This implies that low
and high compression rate regimes are equivalent to low and high
viscosity respectively. Thus, low viscosity or slow compression
is necessary to allow rapid fluid motion over large distances to
permit the amplification of the wave packets set up at thresh-
old. In this regard, an “instantaneous" compression of the film
in a strain-controlled system corresponds to a very small value
of the effective mismatch E/(ηε̇), thus preventing localization.
Yet, after compression, the system can be regarded as having an
almost zero strain rate, and localization must be observed for suf-
ficiently long times as observed experimentally under quiescent
conditions21,30.

The concept of an effective mismatch ratio may be useful in
guiding research and predicting how other situations of buck-
ling in fluid-structure interactions translate when viscous forces
become important and imperfections in the form of packets of
wrinkles are developed. There are two necessary conditions to
develop localization: 1) a sufficiently large system to include a
number of wrinkle packets and neglect relaxation at the bound-
aries, and 2) slow compression (or equivalently, small values of
β) to buckle the structure along the direction dictated by large
scale imperfections. However, nonlinear terms play a fundamen-
tal role to amplify or suppress localization. We expect that the
proximity of a solid wall facilitates amplification by decreasing
the vertical mobility with respect to the horizontal mobility and
hence preventing downward vertical movement of the film.
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