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Abstract 

  

Biology is replete with examples, at length scales ranging from the molecular (ligand-receptor 

binding) to the mesoscopic scale (wing arresting structures on dragonflies) where shape-

complementary surfaces are used to control interfacial mechanical properties such as adhesion, 

friction, and contact compliance.  Related bio-inspired and biomimetic structures have been used 

to achieve unique interfacial properties such as friction and adhesion enhancement, directional and 

switchable properties. The ability to tune friction by altering surface structures offers advantages 

in various fields, such as soft robotics and tire manufacturing. Here, we present a study of friction 

between polydimethylsiloxane (PDMS) samples with surfaces patterned with pillar-arrays.  When 

brought in contact with each other the two samples spontaneously produce a Moiré pattern that 

can also be represented as an array of interfacial dislocations that depends on interfacial 

misorientation and lattice spacing. Misorientation alone produces an array of screw dislocations, 

while lattice mismatch alone produces an array of edge dislocations. Relative sliding motion is 

accompanied by interfacial glide of these patterns. The frictional force resisting dislocation glide 

arises from periodic single pillar-pillar contact and sliding. We study the behavior of pillar-

pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction measurements 

are combined with a geometric model for relative sliding to calculate frictional stress that is in 

good agreement with experiments.    

 

  

Page 2 of 28Soft Matter



3 

 

1. Introduction  

  

Achieving tunable adhesion and friction has applications ranging from rubber processing in tire 

manufacturing to object handling in soft robotics [1, 2]. Nature has provided us with many 

examples[3-6] of how microstructures on the surface can help control adhesion and friction. One 

such example is that of gecko [4, 7, 8], which has fibrillar structures on its toes to help it climb 

rough and smooth surfaces [5, 9, 10]. Geckos stick using Van der Waals dispersion forces [11] and 

have reversible adhesion [12]. Another such example is that of the head arresting system in 

dragonflies [13], which consists of intricate complementary microstructures on their head and neck 

to immobilize the head during tandem flight. Pillars in insects and amphibians have liquid secretion 

[14, 15] to form a capillary bridge for adhesion. Many other animals like skinks [16] and insects 

like beetles, spiders [17-19] have microstructures on their contacting surfaces to achieve desired 

adhesion and friction.   

Bioinspired and biomimetic structures have been shown to modulate adhesion[20-22], friction[23], 

and contact compliance [6, 24-28] and to provide new functionality such as switchability and 

directional properties just by altering surface structures. An exemplary instance is the renowned 

case of Velcro [29], which operates on a loop-clasp mechanism. There is now a considerable 

literature on bioinspired contact surfaces [3, 9, 14, 15, 20, 30-38].  

Most bioinspired studies focus on adhesion/ friction enhancement for microstructures on one side 

against a generic smooth or rough surface on the other [38, 39]. Shape complementary 

microstructures on both sides [40-44] of the interface have been relatively less explored. It has 

been demonstrated that shape complementarity at the micron scale can significantly enhance 

adhesion selectivity [40, 43, 45]. Guduru [46, 47] explored the mechanics of detachment between 

a wavy elastic surface and a rigid solid, uncovering an intriguing phenomenon. Surface waviness 

induces an unstable detachment process with alternating stable and unstable segments, resulting in 

increased work of separation. These findings provide an alternative explanation for the sometimes 

observed increase in pull-off force on rough surfaces. Adhesion selectivity using rippled surfaces 

[45] showed how shape complementary surfaces can enhance adhesion. Singh et al. used 

microchannel structures [43] to show adhesion enhancement in such shape complementary 

interfaces. Chen et al. [40] showed the same using a pillar geometry.  
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The investigation of sliding friction in shape-complementary surfaces has been relatively limited. 

Amonton’s and Coulomb’s laws describe friction in phenomenological terms, but the 

understanding of the relationship between macroscopic frictional response and the behavior of 

microscopic contacts remains under active investigation [48-50]. He et al. [42] studied sliding 

friction in ridge-channel and pillar interfaces, achieving friction enhancement in structured 

surfaces as compared to control surfaces. They reported the spontaneous formation of interfacial 

dislocations and presented a model for friction in ridge-channel surfaces based on treating the 

dislocation core as a crack. However, they presented only a qualitative description of friction in 

pillar surfaces.  

For periodically structured two-sided interfaces, orientational or lattice-parameter mismatch leads 

to spontaneous production of Moiré patterns on the interface, much like an incommensurate twist 

grain boundary in crystalline solids. These can also be represented as dislocation structures in 

shape complementary surfaces that resemble microscale replicas of dislocations on the atomic 

scale in crystalline solids. Therefore, models for dislocation glide and microscopic friction 

mechanisms are relevant.  For instance, the Peierls/Nabarro model for the dislocation core provides 

expressions for the minimum stress needed for dislocation glide [51, 52]. The Prandtl-Tomlinson 

model [53] for nanoscale friction is a minimalistic model for the relationship between the energy 

of interaction between two surfaces and friction [50, 54]. Related ideas have been used to explain 

friction in soft materials [55-57].  The Frenkel-Kontorova (FK) model is similarly based on motion 

of a chain of particles placed on a periodic substrate and is used to describe sliding in crystalline 

interfaces. This model can be used to understand a pillar interface, where each pillar has to slide 

past pillars on the other side of the interface [50, 58]. 

In this work we study friction in bioinspired, two-sided, micropillar surfaces.  Our goal is to relate 

macroscopically measured friction stress, in terms of the pillar deformation at the interface.  This 

problem is analogous to that of determining the stress needed for a dislocation to glide in a crystal, 

the basic version of which is determined by the Peierls-Nabarro model of the dislocation [51, 52, 

54, 58-60]. Analogously, for our model, friction is defined as the force required for , Moiré 

patterns/dislocations to slide across the interface, the details of which depend on pillar-pillar 

interaction.  
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2. Experimental Methods  

  

2.1 Sample Fabrication 

 

Micropillar samples were fabricated using polydimethylsiloxane (PDMS) elastomer molded into 

an etched silicon master with pillar geometry on the surface patterned by photolithography. The 

pillars fabricated were 10 m in diameter, 16 m in height, and arranged in a square array with a 

minimum interpillar spacing of 20 m. PDMS precursor (silicone elastomer base) was combined 

with crosslinker (curing agent, Sylgard 184 Silicone Elastomer kit, Dow Corning) in the ratio 10: 

1 by weight. The mixture was then degassed under vacuum for 30 minutes before applying to the 

master and was cured at room temperature for 2 days. The cured PDMS was then peeled off the 

silicon master. A typical sample is 30 mm long, 10 mm wide and about 800 m thick. The second 

complementary sample was fabricated in a similar way. Additional samples were fabricated in a 

similar way but cured at different temperatures to introduce slightly different interpillar spacing 

due to differences in thermal contraction from curing to room temperature. Flat samples were also 

fabricated with no micropatterns and used for control experiments. A white light interferometry-

based optical profilometer (Zegage, Zygo Corp) was used to produce micrographs of micropillar 

samples as shown in Fig. (1a, 1b). Figures 1c, 1d show a plan view of the interface each patterned 

with micropillars showing a misorientation, 𝜃 (Fig 1c) or a lattice mismatch,  (Fig. 1d) between 

the two arrays. The circles represent the bottom of the pillars where they join the bulk. Figure 1c 

shows two pillar arrays (black and red lattices), in which the black lattice is rotated by a 

misorientation angle, 𝜃=10°, with respect to the red lattice. Figure 1d shows two lattices with 
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different minimum spacings a and a’ where =a/a’ is the lattice mismatch. (In the case shown 

here, =1.2.)  

 

In order to study inter-pillar interaction, larger, mm-scale, single pillar samples were fabricated, 

as shown in Fig. 1(e), with the same aspect ratio as the micropillars. The process included using 

the same PDMS mixture and pouring the mixture into a mold fabricated for this purpose. The cured 

single pillar samples were 3 𝑚𝑚 in diameter and 4.8 𝑚𝑚 in height with backing dimensions of 

30 𝑚𝑚 ∗ 30 𝑚𝑚 ∗ 8 𝑚𝑚 shown in Fig. 1e and 1f.   Details of the single pillar experiments and 

its analysis are given in the companion paper. 

  

                
(a)                                          (b) 

 
  (c)                                       (d) 

                
            (e)          (f) 

Figure 1. (a) 2D view of micropillars arranged in a square array with interpillar spacing 

of 20𝝁𝒎. The pillars are 10 m in diameter and ~16 𝝁m in length. (b) 3D view of 

micropillars. (c) Arrays of black and red pillars at a relative misorientation angle, 𝜽 =
𝟏𝟎. (d) Red and black pillar arrays with lattice spacing mismatch,  = (𝒂 𝒂′⁄ ) = 𝟏. 𝟐. 

(e) Picture of a mm-scale, single pillar sample. (f)  Image of two mm-scale single pillar 

samples, mounted on a custom built tribometer. 

Fibril
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2.2  Friction Measurement  

  

Friction measurements were conducted using a custom built Flat-on-Flat Tribometer as shown in 

Figure 2a. The setup consists of two stages on which samples are mounted, and a load cell each to 

measure horizontal or shear force, and vertical or normal force. Vertical and horizontal motors 

control the respective movement of stages, and the rotation motor controls rotation of the lower 

stage (to control misorientation). The motors are connected to a motion controller and the entire 

system is controlled by custom-written LabVIEW code. A camera is used to image the behavior 

of pillars at the interface during sliding.   

Sliding friction was measured at five different values of misorientation (𝜃= 0°, 5°, 15°, 30°, 45°) 

and five different normal loads (0.075 N to 0.4 N) for patterned and flat control samples and each 

experiment was repeated three times. The setup can work under normal load or displacement 

control. Normal load is controlled by normal displacement, which is fed to the PID controller 

operated by LabVIEW software. The two samples are brought in contact using the vertical motor.  
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A typical friction experiment consists of sticking the top and bottom samples to glass slides using 

   
(a) 

                       
                        (b)                                               (c) 

               
              (d)                           (e) 

Figure 2. (a) Schematic of custom-built flat-on-flat tribometer. Pillar samples are mounted on 

upper and lower stages as shown. Vertical and horizontal motors control the relative 

displacement between two samples. (b) Micropillar PDMS samples for measuring sliding 

friction, Top sample has dimensions 𝟑𝟎 𝒎𝒎 by 𝟏𝟎 𝒎𝒎 and bottom sample is 𝟒 𝒎𝒎 by 

𝟒 𝒎𝒎.  (c) Schematic of pillar samples in contact showing the Burgers vector for pillar 

samples. (d) Schematics of single pillar samples, 𝑯𝒄=Height of contact or vertical overlap (e) 

𝒍𝒙= Lateral overlap. 
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double-sided Scotch® tape.  The slides are mounted onto the lower and upper stages and brought 

into contact under displacement control (Fig 2a). After mounting the samples on the stage, we set 

the misorientation angle between the two samples using the rotation motor. We start by aligning 

the two samples at 0° misorientation, which is when dislocations disappear from the interface. 

With this as 𝜃 = 0°, other angles are easily obtained. Once we have the desired misorientation, we 

set a normal load and switch to normal load control. When the load stabilizes to the set value, we 

slide the samples with respect to each other for 3 mm at a velocity of 0.01mm/s.  

3. Results and Discussion  

 

3.1 Moiré Patterns & Dislocations   

 

When the two micropillar samples are first brought in contact, Moiré patterns appear 

spontaneously on the interface, as we’ve reported previously[41-43]. Due to the square patterning 

and periodicity, the interface consists of periodic square regions, and the size of these regions 

depends on the misorientation and lattice spacing mismatch.[42, 61] The boundary of each square 

region can be viewed as a dislocation line, albeit with a diffuse core. Specifically, these regions 

are formed by two parallel sets of mutually perpendicular dislocation lines (see Figure 3). We refer 

to the edges in the Moiré patterns as "dislocation lines" by analogy to twist grain boundaries in 

crystals[61, 62].  Although they are geometrically similar to twist grain boundaries, the mechanics 

of interaction across the interface is different as discussed later.   

The Moiré pattern and its accompanying dislocation array forms during the initial application of 

normal load, with density and orientation depending on  and  values. Orientational mismatch 

alone, (θ > 0° 𝑎𝑡 𝜆=1), produces an array of screw dislocations whereas a lattice mismatch alone, 

(𝜆≠1 at θ = 0°), produces an array of edge dislocations. Presence of both, an orientation mismatch 

and a lattice mismatch, produces an array of mixed dislocations[42]. The density of square regions 

increases with increase in mismatch[42].  Figure 3 shows formation of Moiré patterns[63] between 

shape complementary pillar samples. Figure 3a(i) represents geometrically the formation of screw 

dislocations when red and black square lattices overlap at a 5° misorientation. As noted above, the 

black arrow lines in Fig 3 represent dislocation lines. A corresponding pattern can also be clearly 

seen on the interface of our actual pillar samples in figure 3a(ii) for the same misorientation angle. 
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As sliding begins, pillars are pushed into contact, each with a neighboring pillar with force that 

changes with displacement until it loses contact with its partner pillar. This process occurs for each 

pillar. In the micrographs of Fig. 3, we observe a pattern of light and dark regions. The lighter 

patterns correspond to when pillars from complementary surfaces are in partial or full registry (i.e., 

right next to each other). The darker regions are where pillars from both samples are bent on top 

of each other and are at maximum disregistry. The lines connecting dark regions can be interpreted 

to be dislocation lines. 
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(i)                                           (ii) 

                 (a) 

 
(i)                                           (ii) 

                (b) 

 
(i)                                           (ii) 

                (c) 

Figure 3. Moiré pattern & Dislocation lines 

Representation of Moiré patterns as screw, edge, and mixed dislocations. (3a)(i) An array 

of screw dislocations produced by aligning red and black lattices at a misorientation, 

𝜃 = 5 and (𝑎 𝑎′⁄ )=1. (3a)(ii) An array of screw dislocations formed at the interface of 

two pillar samples in contact. (3b)(i) An array of edge dislocations produced when two 

lattices (here, red and black) have a lattice mismatch, (𝑎 𝑎′⁄ )=1.023. (3b)(ii) An array 

of edge dislocations formed at the interface of two pillar samples in contact at 

(𝑎 𝑎′⁄ )=1.023. Note difference in scale between 3a(ii) and 3b(ii). (3c) (i) An array of 

mixed dislocations produced by aligning the two lattices at a misorientation 𝜃 = 5 and 

at lattice mismatch, (𝑎 𝑎′⁄ )=1.023. (3c)(ii) An array of mixed dislocations on the pillar 

interface with the same conditions as 3c(i).   
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Figure 3b compares the formation of Moiré patterns corresponding to edge dislocations 

geometrically and in experiments. Figure 3b(i) shows that red and black lattices with 𝜆=1.023 form 

edge dislocations. Similar patterns are observed experimentally as shown in Fig 3b(ii). Edge 

dislocations appear on a perfectly aligned interface with lattice mismatch.  As misorientation is 

then increased from 𝜃=0°, Moiré patterns corresponding to mixed dislocations appear on the 

interface (shown in 3c). Figure 3b(ii) represents experimentally observed edge dislocations at 𝜆 =

1.023 ± 0.001. The pattern again shows  light and dark regions. Figure 3c(i) represents Moiré 

patterns corresponding to dislocations with mixed edge and a screw character for 𝜆=1.023 and 

𝜃=5°. The patterns are different than that of screw dislocations if observed carefully in that they 

are tilted slightly compared to the orientation of screw dislocations. Figure 3c(ii) represents mixed 

dislocations for pillar samples in contact at 𝜆 = 1.023 ± 0.001 and 𝜃 = 5°.  A more detailed 

account of the geometry of dislocation arrays can be found in [42].  For completeness, we provide 

the main results.  These are that the dislocation density 𝜌 and orientation 𝛼 of the dislocation lines 

are functions of misorientation angle, 𝜃, and lattice mismatch, 𝜆. Orientation, 𝛼 is found as, 

𝛼 = 𝑡𝑎𝑛−1 𝑠𝑖𝑛 𝜃

𝜆−𝑐𝑜𝑠 𝜃
, and                                                         (1)  

density as 𝜌 =
1

𝑏
√(𝜆 − 1)2 + 4𝜆 sin2 (

𝜃

2
)                                                                       (2)  

where b is the magnitude of the Burgers vector, 𝜆 is lattice mismatch, and 𝜃 is misorientation. 

To further analyze the orientation of moving dislocations, it is useful to consider the Peach-Kohler 

force [58], which is a configurational force that defines the direction of dislocation motion. It is 

given by  

FPK =( 𝜎. 𝑏) × 𝜉,         (3) 

where 𝜎 is applied stress, 𝑏 is the Burgers vector and  𝜉  is the dislocation line vector (see fig 4a 

and 4b for frame of reference). For a screw dislocation as shown in Fig S17d, Burgers vector, 𝑏1 

is associated with the dislocation line 𝐴𝐴” and 𝑏2 is associated with dislocation line 𝐶’𝐶”. Thus, 

for a screw dislocation, there are two Burgers vectors i.e., 𝑏1 = −
1

√2
 𝑒1̅ +

1

√2
 𝑒2̅ and 𝑏2 =

1

√2
 𝑒1̅ +

1

√2
𝑒2̅,  𝜉  is the dislocation line vector, 𝜉1 = −

1

√2
 𝑒1̅ +

1

√2
 𝑒2̅, and 𝜉2 =

1

√2
 𝑒1̅ +

1

√2
 𝑒2̅ and stress, 

𝜎 = −𝜏𝑒2 ⨂ 𝑒3 − 𝜏𝑒3 ⨂ 𝑒2 + 𝑝𝑒3 ⨂ 𝑒3, thus, 𝐹𝑃𝐾 = 𝜏 (
1

2
 𝑒1̅ +

1

2
 𝑒2̅) and 𝐹𝑃𝐾 = 𝜏 (

1

2
 𝑒1̅ −

1

2
 𝑒2̅). 

This gives the resultant force in 𝑒1̅ direction and this implies that screw dislocation runs 

perpendicular to the direction of sliding which is true as shown in fig 4b (Full video in 
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Supplementary Information, SI: V3_lambda=1_5_deg_ ScrewDislocation.avi). For an edge 

dislocation as shown in Figure S17e, Burgers vector 𝑏1 is associated with dislocation line 𝐶′𝐶” and 

Burgers vector 𝑏2 is associated with dislocation line 𝐴′𝐴”.  Thus, 𝑏1 =
1

√2
𝑒1 −

1

√2
𝑒2,  𝑏2 =

1

√2
𝑒1 +

1

√2
𝑒2, and corresponding dislocation line vector,  𝜉1 =

1

√2
𝑒1 +

1

√2
𝑒2, 𝜉2 = −

1

√2
𝑒1 +

1

√2
𝑒2, thus, 

𝐹𝑃𝐾 = 𝜏 (−
1

2
 𝑒1̅ +

1

2
 𝑒2̅) and 𝐹𝑃𝐾 = 𝜏 (

1

2
 𝑒1̅ +

1

2
 𝑒2̅) respectively. Net resultant force, 𝐹𝑃𝐾 is in 𝑒2̅ 

direction, which implies that for an edge dislocation, dislocation lines run parallel to the direction 

of sliding as shown in Figs. 4c, d and a full video in Supplementary Information (SI: 

V8_lambda=1.023_0deg_EdgeDislocation ).  

 

    
(a)                            (b) 

            
(c)                                                                              (d)                    

Figure 4. Sliding happens through dislocation glide. 

Optical images of pillar interface. (a)  Screw dislocations: at misorientation,  =  5, 

𝜆 = 1 (before sliding commences), (b) Snapshot of sliding screw dislocations at 

misorientation,  = 5, 𝜆 = 1. For sliding in ‘2’ direction, the dislocation pattern moves 

in ‘1’ direction. (c) Edge dislocations: at misorientation,  =  0, 𝜆 = 1.023 (before 

sliding commences), (d) Snapshot of sliding edge dislocation pattern at 𝜆 = 1.023. For 

sliding in ‘2’ direction, the dislocation pattern moves in ‘2’ direction.  

 

Direction of dislocation motion

Direction of sliding

Direction of dislocation 
motion
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Figs. S17 and 4 show that, as we traverse the sample, the registry between pillars above and below 

the interface varies systematically and periodically, with period identical to that of the Moiré 

pattern. We see that the direction of dislocation motion is consistent with that given by the Peach-

Kohler formula. When sliding initiates, the interface loses its symmetry (compare Figs 4 a,b and 

c,d).  The period of the Moiré pattern corresponds to disregistry equal to the Burgers vector.  

Therefore, for one Burgers vector of slip in the ‘2’ direction, each pillar undergoes a full load-

release cycle. This observation is key for our calculation of macroscopic friction stress. That is, at 

any point in time, the instantaneous friction force is the sum of all pairwise inter-pillar contact 

forces across the interface.  The friction force averaged over one sliding cycle (slip = Burgers 

vector) can be obtained by matching external work done to the energy loss for each pillar pair in 

going through a full loading-unloading cycle.  

  

3.2 Friction Stress Measurements  

 

Figure 5 (a) shows typical raw data for measured friction stress as a function of sliding distance, 

for different values of normal stress varying from 4*103 N/m2 to 2.5*104 N/m2 at 𝜆 = 1 and 𝜃 =

5° (dislocations have screw character). As the pillar samples come in contact and start sliding, 

friction force first rises and then subsides to an approximately constant value. Note that the friction 

stress increases with increasing normal stress. (Friction stress is obtained by averaging friction 

force when it stabilizes between 2 to 3 mm of shear displacement and then dividing it by the 

nominal area of contact, which in this case is sample size i.e., 4*4 mm2.) Fig. 5b shows how the 

friction stress varies with displacement for edge dislocation case at 𝜆 = 1.023 and 𝜃 = 0°. Fig. 5c 

shows data for friction stress versus displacement for mixed dislocation case at 𝜆 = 1.023 and 𝜃 =
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5°.  The data show that friction stress is strongly dependent on pressure and does not depend much 

on edge or screw character of dislocation nor on misorientation if 𝜆 is close to unity.  

 

Figure 5d shows a plot of how friction stress varies as a function of normal load and misorientation, 

𝜃. This particular case is at =1.023 for various values of 𝜃 = 0°, 5°, 15°, 30° and 45°. As can be 

seen from the figure 5d, friction rises strongly with the normal stress but is essentially independent 

of misorientation. This is starkly different from that found in the ridge-channel geometry [43] 

where friction depends strongly on misorientation angle. Weak dependence on misorientation for 

pillar samples is likely because pillars are organized in a square lattice, which is not far from 

isotropic. Also shown in Fig. 5(d) is measured friction stress for a control in which one of the pillar 

       
 

(a)                                                                     (b) 

                    
       (c)                                                                     (d)   

Figure 5. Experimental data for friction 

 (a) Friction stress as a function of displacement for no lattice mismatch i.e., =1, but  = 5 

at various normal loads. (b) Friction stress as a function of displacement at a lattice mismatch 

=1.023 for misorientation 𝜃 = 0°. (c) Friction stress as a function of displacement at a lattice 

mismatch i.e., =1.023 for misorientation 𝜃 = 5°. (d) Steady state friction stress as a function 

of normal stress at a lattice mismatch =1.023 for several misorientations from 𝜃 = 0° 𝑡𝑜 𝜃 =
45° and normal load, in comparison with a flat control sample. 
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interfaces is replaced by a flat, unstructured, PDMS sample.  Friction for cases where both sides 

have pillars shows significant increase as compared to friction in the control case.  Friction stress 

for pillar complementary samples can be seen to be enhanced by up to about a factor of 5 over that 

of a control sample.   

We turn our attention next to studying the relationship between macroscopically observed friction 

and the pairwise interaction of pillars. For this purpose, we first show results on single pillar-pair 

experiments and then combine these with a geometric model of the sliding interface to calculate 

predicted macroscopic friction stress.   

  

3.3 Single pillar-pair friction experiments  

  

We propose that the friction force arises from the ensemble of pillar-pillar interactions.  To study 

this quantitatively and directly, we first conduct experiments on the interaction of pairs of 

pillars.  Single pillar samples are fabricated following the process mentioned in section 2.1. Pairs 

of these single-pillar samples are slid past each other. The contact is characterized by two types of 

overlaps between pillars: in the plane of the interface (lateral overlap) and along the length of the 

undeformed pillar (vertical overlap or 𝐻𝑐 as height of contact) as shown in Figs. 2d, e; 6a, b.  

The experiments are performed keeping the vertical distance between two pillars fixed. Let the 

vertical distance be d and length of each pillar, L.   If the gap exceeds the upper limit (d > L), we 

have zero vertical overlap. Then the pillars disengage and the force they transmit to each other 

while sliding goes to zero. If the gap hits the lower limit (d =L), then the pillar can take any vertical 

load.  

 

Fig 6a represents a lateral overlap that varies from 0 to 1, where 𝑙𝑥 is a dimensionless parameter 

to measure lateral overlap and is defined as, 𝑙𝑥 = 1 −
∆𝑥

2𝑅
 .  Fig 6b represents vertical overlap along 

Page 16 of 28Soft Matter



17 

 

the length of the pillar and is defined as 𝑙𝑧 =
𝐻𝑐

𝐿
  . Figure 6c-h shows a schematic progression of 

sliding a pair of pillars past each other. The collection of forces resisting this motion give rise to 

the macroscopic friction force as well as the vertical reaction force.    

 

Neglecting the role of adhesion (see experiments in SI section S3 on lubricated vs. dry single 

pillar pair experiments), we make the approximation that if we normalize all displacements 

and location by pillar radius and stresses by the shear modulus, then the normalized stress is 

a function of normalized location.  That is, if one scales the system uniformly, forces measured 

in the pillar-pair interaction experiments can simply be scaled down to estimate forces in the 

micropillar samples. A series of figures in Figs.6c-h shows progression of sliding for a typical 

single pillar-pair experiment. The corresponding shear and normal force plots are shown in 

Figure 7 as a function of shear displacement. As the sliding starts under normal displacement 

control (i.e., vertical overlap is fixed for each experiment and normal load varies), the two 

   
(a)                            (b)  

 
               (c)                                (d)                                 (e)                                 (f) 

 
               (g)                                  (h) 

Figure 6. Representation of different pillar overlaps and single pillar experiment  

a) Lateral overlaps, 𝑙𝑥 ranging from 1 to 0. b) Vertical overlap or height of contact (𝐻𝑐) 

which ranges from 4.8 mm (full contact) to 0.8 mm (least contact). c-i) Sliding experiment 

for a single pillar pair (1 & 2, side view). Progression of pillar contact during sliding at 

𝑙𝑥 = 1 and full height overlap (𝐻𝑐 = 4.8 𝑚𝑚). 

 

 

 

 

1

2

111

22 2

11

2 2

Page 17 of 28 Soft Matter



18 

 

pillars come in contact and bend as shear displacement increases. The two pillars appear to 

stick to each other as shear stress/force reaches a maximum point and then series of slipping 

events occur, accompanied by decrease of shear force, and ending with separation of the two 

pillars. (The case shown here in Fig.7 c-h is for a 100% lateral overlap (𝑙𝑥 = 1 ). 

Figure 7a shows variation of shear force with sliding displacement for single pillar pair 

experiments for lateral overlap, 𝑙𝑥 = 1 at different vertical overlaps ranging from (4.8 mm to 

0.8 mm). Shear force is maximum for maximum lateral overlap (𝑙𝑥 = 1 ) and 𝐻𝑐 = 4.8 𝑚𝑚 

and decreases if the lateral overlap or height of contact is decreased (as shown in section S3 

in SI).  After contact, the shear force initially increases linearly with shear displacement. At 

an intermediate shear displacement, the response softens and then hardens again prior to 

initiation of stick-slip. As seen from Fig 7a, after shear displacement reaches ~ 8 mm, there is 

a decline in shear force as the pillars slide with respect to each other in stick-slip steps. This 

stick slip motion as the force declines is most significant in the 100% lateral overlap case 

whereas the force drop in the rest of the cases (𝑙𝑥 = 0.75, 0.5, 0.25, 0) is more sudden (shown 

in SI). Normal force, on the other hand, rises initially but declines as shear force slope 

increases. This is because the two pillars in contact are almost horizontal (more force in shear 

direction) and thus normal force declines.  

Figure 7 a, b also shows quartic fits to the experimental data. The detailed mechanics of this 

inter-pillar interaction is presented in a companion paper.  

  
(a)                 (b) 

Figure 7. Friction data for single pillar experiments 

(a) Shear force as a function of shear displacement for 100% lateral overlap (𝒍𝒙 = 𝟏)  at 

different heights of contact, 𝑯𝒄. (b) Normal force as a function of shear displacement 

for 100% lateral overlap (𝒍𝒙 = 𝟏) at different heights of contact, 𝑯𝒄 (4.8 mm to 0.8 

mm). 
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   The single-pair pillar experiments provide: 

( ) ( )

( )
*

*

0

, ,s s

u

s s

T u N u u

w T u du= 
                (4) 

where, T, N, u*, us, and w are shear force, normal force, maximum shear displacement, shear 

displacement, and energy loss from a single pillar pair, respectively.  As shown in SI, the 

effect of adhesion is negligible so that change of scale leaves all stresses unchanged.  

Therefore, if the scale factor between the single pillar-pair experiments and the pillar array is 

𝛼s, then energy scales as (𝛼s)
3, displacement by 𝛼s, and forces by (𝛼s)

2.  Thus, for given overlap 

between a pair of micropillars, we may use the results of the mm-scale single pillar pair 

experiments to compute the shear and normal force of interaction for given lateral and vertical 

overlap of a pair of micro-pillars.  

Each single-pillar-pair experiment is conducted for five specified values of lateral and vertical 

overlap (5x5 = 25 cases in all) producing data such as shown in Fig. 7 a, and b (see also SI, 

Figs S7-8).  Each force plot is fit with four fitting parameters.  Each fitting parameter is a 

function of the two overlap parameters i.e., lateral overlap and vertical overlap or height of 

contact (𝐻𝐶).  Thus, we have a 2D surface for each parameter (more information provided in 

SI Figure S15) that is fit by a third order polynomial in two variables (lateral and vertical 

overlaps) using which we can estimate the shear and normal forces for any specified overlaps. 
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3.4 Overall friction response 

 

This section presents a geometric model illustrating the interaction between cylindrical pillars as 

they slide past one another. Fig. 8(a) shows two circles (representing pillars) sliding past each other 

with some lateral overlap, 𝑙𝑥 =
∆𝑥

2𝑅
. Here, ∆𝑥 denotes the lateral displacement between the centers 

of the two pillars, and R is the radius of each pillar. The upper pillar is shown in a sequence of 

positions (numbered 1 to 4) as it moves vertically by a distance ‘𝑑𝑦’ at each step. The deflection, 

, which quantifies the deviation of the pillars from their initial positions during sliding, is 

determined for each step. The deflection is expressed as:       

                         = {
2𝑅 − 𝑑   ,
0               ,

              
2𝑅 − 𝑑 > 0
2𝑅 − 𝑑 < 0

}            (5)             

where 𝑑 represents the distance between the centers of the two pillars and is calculated using           

the equation: 

𝑑 = √∆𝑥2 + ∆𝑦2; ∆𝑥 = 𝑥2 − 𝑥1; ∆𝑦 = 𝑦2 − 𝑦1                                           (6) 

thus, deflection simplifies to δ = 2𝑅 − √∆𝑥2 + ∆𝑦2, when 2𝑅 > 𝑑.  

The final displacement in sliding direction, 𝑢𝑓, is derived from the initial displacement at which 

the pillars first come into contact, denoted as 𝑢𝑖, and is defined by: 

            𝑢𝑓(Final displacement)= −(∆𝑦 − 𝑢𝑖)  (0 ≤ 𝑢𝑓 ≤ 4𝑅)               (7) 

                
                 (a)                                                                    (b) 

Figure 8. Geometric model (a) Geometry of two pillars sliding past each other with ∆𝑥 lateral 

overlap. We imagine that the lower pillar is fixed while the upper one moves. (b) Geometric 

representation of overall experiment using large black lattice rotated by 5° w.r.t z axis and 

overlapping with a smaller red lattice sliding on the top. 
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This calculation also mirrors the physical bending of single pillars observed in sliding experiments. 

As the red lattice slides over the black lattice, the model calculates the displacement (in sliding 

direction) of each red pillar at every point in time, setting the displacement to zero once the distance 

between the centers of the pillars exceeds 2R. Initial displacement is defined as, 

      𝑢𝑖 = √((2 ∗ 𝑅)2 − ∆𝑥2) ,                (8) 

which indicates the displacement at which pillars begin to overlap.   

Fig. 8(b) visualizes the overall experimental setup with stationary lattice of large black pillars 

rotated by 5° with respect to z-axis, and a lattice of smaller red pillars sliding over the black lattice. 

The aim is to calculate shear stress that arises due to interaction between overlapping pillars. In 

the sliding lattice model, the calculation of shear and normal force begins with the determination 

of the final displacement, 𝑢𝑓 of each red pillar, which is analogous to the physical displacement 

observed in single pillar sliding experiments (Fig. 7a & 7b). This final displacement is tracked 

until the inter-pillar distance exceeds twice the radius, effectively reducing the displacement to 

zero for calculation purposes. 

The force-versus-displacement curves derived from single pillar experiments are processed 

through a quartic polynomial fitting procedure (with zero intercept). This yielded a set of four 

coefficients for each curve, and these coefficients are functions of two parameters: the lateral 

overlap, 𝑙𝑥 and the height of contact, 𝐻𝑐. Through this functional relationship, we formulated a 

series of surface functions that map the dependency of these coefficients on the overlap parameters.  

 

 

 

         
(a)                                         (b)                                          (c) 

Figure 9. Comparison of friction data from single pillar-pair experiments to that from 

geometric model simulations. 

Comparison of shear stress as a function of normal stress for geometric model and experiments 

at several misorientations, 𝜃 = 0, 5, 10, 15, 30, 45  at lattice mismatch, (a) =1 (b) 

=1.023 (c) =1.006. 
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The simulation is carried out for fixed gap and this functional mapping allows us to interpolate 

between measured overlaps for predicting the system's response to varying degrees of overlap 

between the pillars. To provide a visual illustration of these relationships, contour plots for each 

surface function have been included in Figure S15a and S15b.  

With the surface functions defined, we are able to determine the coefficients for any specified 

combination of lateral and height overlaps. These coefficients, when applied in conjunction with 

the final displacement values, enable us to compute the shear and normal force. This approach 

allows for an accurate quantification of shear  and normal forces. These individual forces from 

pairs of pillars are subsequently summed and divided by the sample area to ascertain the average 

shear and normal stress across the lattice.  

 

The shear stress vs normal stress predictions yielded by our model align closely with the empirical 

data from microscale friction experiments, remaining within the experimental shear stress range. 

Figures 9(a), 9(b) and 9(c) display the comparison of shear stress versus normal stress values 

obtained from the model with experimental data for various values of λ and θ.  

Figure 9a presents a comparative analysis of shear stress versus normal stress, specifically for a 

lattice parameter, λ, set to 1 across various angles of rotation, θ. The correlation between the 

model's predictions and the experimental data is generally favorable, however, an anomaly is 

observed for the case where 𝜃 = 0°, the red curve. In this specific instance, the model predicts a 

sawtooth pattern in the shear force curve, diverging from the experimental trend. This deviation is 

attributed to the absence of edge-nucleated dislocations within the model's framework for the 𝜃 =

0° scenario. Consequently, the sawtooth pattern leads to a lower average shear stress in comparison 

to both the experimental data and the other curves represented for different θ values.  

For a more detailed theoretical underpinning, including a comparison with a one-dimensional edge 

dislocation model, readers are directed to the Supplementary Information section S4. This section 

discusses how the force summation approach used here aligns with energetic methods traditionally 

employed in the computation of average friction stress.  See also section S6 in SI, which contains 

a simple model that shows why summation of forces calculated using isolated pairs of pillars works 

because the pillars are highly compliant. 
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4. Summary and Conclusions  

 

We presented a study of friction of shape-complementary pillar interfaces.  The structure of the 

interface can be understood to comprise Moiré patternsthat accommodate misorientation and 

differences in lattice spacing on two sides of the interface. Relative sliding of such complementary 

pillar structures can be viewed as being accommodated by glide of Moiré patterns.  The frictional 

force depends strongly on pressure but only weakly on misorientation. Friction for complementary 

pillar structures is higher than that of control samples by up to a factor of 5.  In order to relate 

macroscopic measured friction to the behavior of single pillar-pair interactions, we conducted mm-

scale single pillar-pair experiments and obtained pillar-pillar interaction forces at the interface.  

Using these data, we developed a simple numerical model to determine the sliding friction of the 

pillar interface as a sum of pairwise pillar-pillar interactions. Our model compares well with 

experiments.  

This pillar interface has many similarities to atomistic interfaces. The interaction of atoms inside 

the dislocation core determines the force required to move a dislocation. In our case, the relevant 

interaction is that between pillars on opposite sides of the interface. An important difference 

between our interfacial structure and that found in crystalline interfaces at the atomic scale is that 

the summed mechanics of pillar pairs suffices to obtain the total friction stress.  That is, pillar-

pillar coupling is very stiff.  In SI S6 we present a simple model for an incommensurate pillar pair 

array which shows how, for sufficiently stiff pillars the system would behave more like atomistic 

interfaces do, with disregistry confined to dislocation lines.   

Our results show how shape complementary pillar interfaces can be designed for enhanced, sliding 

friction.  
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