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A soft departure from jamming: the compaction of de-
formable granular matter under high pressures

Joel T. Clemmer,a Joseph M. Monti,a and Jeremy B. Lechman a

The high-pressure compaction of three dimensional granular packings is simulated using a bonded
particle model (BPM) to capture linear elastic deformation. In the model, grains are represented by
a collection of point particles connected by bonds. A simple multibody interaction is introduced to
control Poisson’s ratio and the arrangement of particles on the surface of a grain is varied to model
both high- and low-frictional grains. At low pressures, the growth in packing fraction and coordination
number follow the expected behavior near jamming and exhibit friction dependence. As the pressure
increases, deviations from the low-pressure power-law scaling emerge after the packing fraction grows
by approximately 0.1 and results from simulations with different friction coefficients converge. These
results are compared to predictions from traditional discrete element method simulations which,
depending on the definition of packing fraction and coordination number, may only differ by a factor
of two. As grains deform under compaction, the average volumetric strain and asphericity, a measure
of the change in the shape of grains, are found to grow as power laws and depend heavily on the
Poisson’s ratio of the constituent solid. Larger Poisson’s ratios are associated with less volumetric
strain and more asphericity and the apparent power-law exponent of the asphericity may vary. The
elastic properties of the packed grains are also calculated as a function of packing fraction. In
particular, we find the Poisson’s ratio near jamming is 1/2 but decreases to 1/4 before rising again
as systems densify.

1 Introduction
Across industry and nature, dense granular matter is exposed to
a diverse range of environments. Such environments are often
representative of the hard-particle limit where grains experience
stresses much less than their elastic moduli causing minimal elas-
tic deformation1. For instance, this is frequently the case for rel-
atively stiff materials like sand or rocks under the force of gravity
in stationary piles, chute flows, hoppers, etc. However, under
relatively high-pressure conditions, contact forces can induce sig-
nificant particle deformation and the hard-particle approximation
is not accurate. This is seen in applications including pharmaceu-
tical die compaction of powders, rock cataclasis due to fault mo-
tion, and impacts on foam packaging material or rubber mulch in
playgrounds. Such high loads can lead to significant elastic defor-
mation, plasticity, and fracture in grains, altering the mechanical
properties of the granular medium.

At low pressures, granular packings are often characterized in
the context of the jamming transition2,3. Granular materials tran-
sition to a rigid state that can hold a pressure when the packing
fraction increases to a critical value φc. As φ continues to in-
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crease, the pressure, as well as other quantities, grows as a power
of φ −φc. In granular materials, the specific value of φc depends
on friction coefficients, but power laws are found to be indepen-
dent of friction4,5.

At high pressures, the behavior of granular materials has been
less explored in the literature. Experimentally, various techniques
have been used to probe highly compressed granular media6–9

finding notable changes in behavior including a transformation in
the functional shape of distributions of contact forces6 and a tran-
sition to continuum behavior10 with increasing pressure. Compu-
tational studies have leveraged both finite element method (FEM)
based models11–14, the material point method (MPM)8,15,16, and
bonded particle models (BPM)15,17,18 to explicitly represent the
elastic deformation of grains. While most simulations have either
been limited to two dimensions or only explored comparisons in
compaction curves to experiments, work by Cárdenas-Barrantes
et al. 14 in particular used the FEM-based Non-Smoothed Con-
tact Dynamic Method (NSCD) to quantify the scaling of a wide
range of metrics, including the pressure, coordination number,
and the asphericity of grains, with the distance from the jamming
transition in this limit. The Multi-Particle Finite Element Method
(MPFEM) has also been used to study the compaction of cohesive
plastic grains to large packing fractions.19

A related set of systems include emulsions, foams, and biologi-
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cal cells which undergo significant deformation but do not neces-
sarily exhibit internal solid elasticity like grains. The particles in
these systems can be more accurately viewed as elastic, fluid-filled
membranes that still penalize changes in volume or surface area,
however, similar challenges exist between the two classes of prob-
lems implying research in either direction is mutually beneficial.
Recent work using the Deformable Particle Method (DPM) has
significantly progressed computational methods to model these
systems and has characterized many relevant features of high-
pressure packings in both two20,21 and three dimensions.22 Al-
though solid elasticity may not be explicitly modeled, results are
likely still very applicable to the problem.

In this work, we focus on the isotropic linear elastic response
of deformable grains under compaction, or what has been termed
squishy granular material.9 In addition to being the primary
regime of interest in materials which can sustain significant re-
versible strains, elastic deformation always serves as a precursor
to potential plastic deformation or fracture and is therefore an
important limit to establish before overlaying such additional in-
elastic mechanisms or extending to nonlinear elasticity. The goals
of this article are twofold. The first is to develop a computa-
tionally efficient and flexible method that can represent the large
deformations of an ensemble of grains. Computational efficiency
is necessary to simulate a sufficiently large number of grains to
avoid significant finite size effects associated with jamming23 and
minimize fluctuations in mechanical responses. For instance in
shear jamming, there are significant fluctuations in systems with
< 103 grains.24 Flexibility is necessary to model granular media
with a breadth of material models, including both linear and non-
linear elasticity, surface friction, adhesion and cohesion, and plas-
ticity and fracture. It is also desirable to have a grain model that
readily resolves aspherical shapes or inhomogeneous materials.
To accomplish this, we propose a BPM that includes a new multi-
body term to control isotropic linear elasticity and developed an
open source BPM package in the parallelized particle simulator
LAMMPS25. We illustrate how friction can be adjusted in a BPM
by controlling the morphology of a grain’s surface.

The other primary goal of this paper is to characterize the scal-
ing of standard features of jamming at large pressures of a pack-
ing comprised of deformable grains. Here we use BPM to model a
wide range of elastic and frictional grains to characterize the im-
pact of material properties on deformation. Results are compared
to those from traditional discrete element method (DEM) simula-
tions to highlight where resolution of internal degrees of freedom,
which DEM lacks, is necessary. We find that if one considers cer-
tain metrics, results from DEM simulations only significantly devi-
ate when the packing fraction φ exceeds φc by 0.1 and, even then,
are within a factor of two from results from BPM simulations. In
addition, we describe how Poisson’s ratio affects the deformation
of grains. Both the average volumetric strain of grains and their
average distortion from their initial spherical shape, or aspheric-
ity, grow approximately as a power of the distance to jamming,
φ − φc. At higher Poisson’s ratios, grains exhibit less volumet-
ric strain but more asphericity, the latter of which interestingly
may have an exponent that depends on Poisson’s ratio. Lastly, we
characterize the elastic moduli of the packed systems. Both the

bulk and shear moduli initially grow as a power of excess pack-
ing fraction up as the system densifies. This growth accelerates
above a transition φ − φc ∼ 0.1. The Poisson’s ratio of the pack-
ing νP is found to decrease up until φ −φc ∼ 0.1 before reaching
a minimum of νP ∼ 1/4 then increasing at even higher packing
fractions.

2 Methods
In traditional DEM simulations, each grain is represented as a sin-
gle computational particle with translational and rotational de-
grees of freedom26. Particles exchange contact forces with neigh-
bors and trajectories are numerically integrated. Typically, DEM
simulations treat grains as spherical objects with Hertzian normal
forces. DEM is generally used in the hard-particle limit, although,
there are more sophisticated contact models that account for non-
linear elasticity or multicontact interactions to improve accuracy
at high pressures27 or include schemes to approximate the distor-
tion of the shape of grains.28 However, to explicitly model elas-
tic deformation one inevitably needs to add internal degrees of
freedom to grains to describe the internal strain field. One so-
lution is to solve the internal solid mechanics of a grain using
the Finite-Element Method as done in both the MPFEM11,12,19,29

and the NSCD13,14. While this approach allows one to precisely
control the constitutive model, meshed-based methods can suf-
fer from mesh entanglements at severe deformations, which may
become relevant for complex grain geometries, and may strug-
gle to represent other discontinuous behavior relevant to com-
pacted grains such as fragmentation. Another option is to use
mesh-free formulations of continuum elasticity such as peridy-
namics30,31, the Multibody Meshfree Approach32, or the mate-
rial point method8,15,16,33. However, these methods can be fairly
complex and computationally expensive.

In contrast to the above continuum methods, another popular
approach are BPMs34. In a BPM, grains are represented by a col-
lection of particles connected by a predefined network of bonds.
The relative displacement of particles represents internal strain
which then incurs forces or stresses from the bonds. While elas-
ticity naturally emerges from this framework, one has to design
the forces exchanged by bonds to create the desired mechanical
response as opposed to directly inputting a constitutive equation.
The obvious downside is that it is not always known apriori how
to design or calibrate bond forces. Unlike FEM, there is also lit-
tle information on convergence to analytic continuum mechanical
solutions with increasing simulation resolution. However, a ben-
efit of BPMs is their relatively simple formulation which provides
substantial flexibility and computational efficiency.

For this work, we use a BPM approach and construct a new
bond formulation to model isotropically elastic systems with large
linear elastic regimes. In Sec. 2.2, we describe this model and
demonstrate its ability to overcome restrictions on Poisson’s ra-
tio that typically impair BPMs in Subsection 2.3. We then de-
scribe the construction of spherical grains, the verification that
the model reproduces Hertzian contact forces, and the creation of
initial jammed states in Sec. 2.4. For comparison, we identify sev-
eral parameterizations of traditional DEM simulations which ap-
proximately match the behavior of BPM simulations at low pres-
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sures in Sec. 2.5. Lastly in Sec. 2.6, we briefly describe the
development of a BPM package in the open-source Large Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) code-
base.25

2.1 Bonded particle models

To the authors’ knowledge, there is no consensus on the defini-
tion of a bonded particle model or BPM. Many different compu-
tational models have been labeled BPMs34,35 and there are many
different names for related models based on bonded interactions
between particles including, but not limited to, the cohesive beam
model36, bonded DEM37, and various lattice or spring network
models38–44. Additionally, the relation between BPMs and bond-
based peridynamics (in contrast to the more complex state-based
peridynamics) is not always clear and the two methods can share
strengths and limitations45,46. In this article, we use the term
bonded particle model or BPM to loosely refer to any particle-
based method that attempts to model solid elasticity by exchang-
ing forces between neighboring particles using a predefined bond
network and an unambiguous stress-free reference state.

Within BPMs, one can begin to break down different imple-
mentations based on numerical details. For instance, particles
that make up a solid body may be aligned on a lattice or may
have a disordered configuration. Lattices greatly simplify the cal-
ibration47, but are not ideal for representing isotropic materials
as they can lead to anisotropic artifacts in crack propagation or
contact forces. To avoid such issues, we focus on disordered ar-
rangements of particles. Another important distinction is the type
of particles used. While there are some models which use as-
pherical particles48,49, models typically use either spherical par-
ticles with rotational degrees of freedom or point particles with
no rotational degrees of freedom. With rotation, simulations are
more akin to traditional DEM and bonds between particles can be
thought of as beams which transmit normal and shear forces as
well as torques35,36,50,51. In contrast with point particles, bonds
typically only transmit normal forces41–43,52,53, although, addi-
tional forces may be overlaid38,40,54–57.

A common obstacle in BPMs is modeling different Poisson’s ra-
tios. In a disordered packing of particles which only exert pair-
wise, central-body forces, Poisson’s ratio ν is restricted to 1/3 in
2D and 1/4 in 3D58,59. This restriction, part of what is known as
Cauchy’s relations, is partially circumvented in BPMs with rota-
tional degrees of freedom as beam-like bonds also exert tangen-
tial forces such that increasing the strength of tangential forces
relative to normal forces forces increases the relative resistance to
shear. This generally increases the ratio of the shear modulus to
the bulk modulus which decreases Poisson’s ratio36,60,61. This ef-
fect has been extended in the deformable DEM model (DDEM)62

where particles deform into ellipsoids based on their local stress
state. A similar increase in shear strength is also achieved in some
point-particle-based BPMs by constructing additional force terms
such as a rotationally-invariant tangential force in the Distinct
Lattice Spring Model (DLSM)40 or three-body angular interac-
tions38,54–57. However, simulating larger Poisson’s ratios can still
prove difficult since reducing the shear modulus relative to the

bulk modulus requires negative tangential or angular stiffnesses
which could reduce stability.

Another approach is to add a nonlocal or multibody term that
depends on other nearby particles or bonds. For instance, a non-
local energetic term is constructed from the displacements of first
and second neighbor bonds on a regular lattice in the Lattice Par-
ticle Model41,42, a quadratic energy term penalizes local volume
changes in the Hybrid Mass Spring System44, and a unique dis-
persion of incoming forces from particles onto their neighbors is
used in the Extended Mass Spring Model43. In all of these mod-
els, one can tune the strength of the additional term to to model
arbitrary Poisson’s ratios, both increasing and decreasing the re-
sistance of the solid to shear relative to compression. Lastly, the
mechanisms in DDEM62 and DLSM40 described above could also
be classified as multibody interactions since interactions depend
on adjacent particles.

2.2 Multibody bond formulation

In this work, the motivation is to find a simple BPM formula-
tion that can represent Poisson’s ratio ν both above and below
1/4 in 3D while limiting computational costs, avoiding assump-
tions about the underlying particle arrangement, obeying physical
symmetries, and conserving momentum. To avoid the computa-
tional costs associated with rotational degrees of freedom, we use
point particles. Bonds between particles i and j exert central-body
forces with a magnitude given by

kB
(
r0,i j− ri j

)
+aB

([
Vi +V j

V0,i +V0, j

]1/3
−

ri j

r0,i j

)
(1)

where kB and aB are constants, ri j and r0,i j are the current and ref-
erence distances between particles, and Vi and V0,i are measures
of the current and reference local volumes occupied by each parti-
cle. The first term in Eq. (1) proportional to kB represents a simple
spring. On its own, this term could be used to represent an elastic
material with ν = 1/4 in 3D and a bulk modulus K that depends
on kB and the specific bond topology (e.g. how many bonds a
particle has on average). The second term proportional to aB is
constructed to resemble a deviatoric term, the difference between
the local volumetric dilation Di j ≡

[
(Vi +V j)/(V0,i +V0, j)

]1/3 and
the stretch of a bond λi j ≡ ri j/r0,i j, and controls the shear modu-
lus G while having a minimal impact on the bulk modulus K. Note
that forces between bonded particles are still equal-and-opposite.

To better conceptualize the multibody term, one can consider
a few idealized deformation geometries, illustrated in Fig. 1, to
linear order in strain. Under pure isotropic compression or exten-
sion, all bonds stretch by a factor λ regardless of orientation. As
all particles dilate by a factor D = λ , the second term then evalu-
ates to zero. The stress state depends on the first harmonic term
so K is minimally dependent on aB (in disordered systems there
is some dependence which is further discussed in the following
section).

In simple shear, one bond is extended while another is con-
tracted (to linear order) in Fig. 1. Therefore, two particles expe-
rience a reduction in local volume while the other two particles
experience an equal and opposite increase. For the four exterior
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Fig. 1 An idealized bond network between four particles undergoing
isotropic contraction (top), isotropic extension (middle), and simple shear
(bottom). Red, dashed bonds contract and green, dotted bonds expand
to linear order in strain.

bonds, these two effects cancel out and the multibody term is
again irrelevant. However, the average volumetric dilation and
the bond stretch are less than unity in the internal compressed
bond. The bond stretch is larger in magnitude than the volumet-
ric dilation such that their difference is positive. For the internal
extended bond, the opposite is true such that the difference is
negative. Thus, forces, and therefore the shear stress, increase if
aB > 0 and decrease if aB < 0.

Before calculating forces, the local volume Vi is first calculated
for each particle i. Instead of calculating a geometrically exact
volume, we use a proxy

Vi = ∑
j 6=i

r3
i j (2)

where the sum occurs over neighboring bonded particles. Since
we evaluate ratios of volumes, constant prefactors are neglected
and bonded neighbors are assumed to be evenly distributed on a
spherical surface. While a more accurate metric might be ideal,
we find that this approximation performs well while minimizing
computational costs. While exact costs depend on implementa-
tions, we find this multibody formulation approximately doubles
the computational time needed to calculate forces. In contrast,
we find forces that account for rotational degrees of freedom can
take approximately ten times longer to calculate than a simple
harmonic term*.

In addition to bond forces described in Eq. (1), the model also
includes damping forces and non-bonded interactions between
neighboring particles. Between bonded particles, there is an ad-
ditional dissipative, central-body force with magnitude

−Γr̂i j ·δ~vi j (3)

where δ~vi j is the difference in velocity between particles. This

* As seen in examples of a brittle plate impact included in the main LAMMPS distri-
bution

term originates from Dissipative Particle Dynamics and damps the
difference in normal velocities while conserving linear and angu-
lar momentum63. Between non-bonded particles, such as parti-
cles on the surfaces of separate grains, an alternative central-body
force is applied between particles within a distance of d, a particle
diameter with a magnitude

kP
(
d− ri j

)
+aP

(
d− ri j

)3−Γr̂i j ·δ~vi j . (4)

These interactions are referred to as pair interactions and are
censored between bonded particles. This force consists of a har-
monic repulsion with stiffness kP, an analogous damping force
with equal strength Γ, and an additional anharmonic repulsive
force with strength aP. The anharmonic term is added to en-
sure particles on the surface of one grain cannot overcome the
pairwise repulsion of particles on the surface of another grain
and slip past them at very high pressures, which would inter-
lock the two grains. While individual particles can still expe-
rience some overlap, this prevents overlap between the convex
hulls of grains. While a similar effect could be achieved by al-
ternatively increasing kP relative kB, using an anharmonic term
allows all forces to be equally stiff in the limit of small overlaps
near the jamming transition. We equate the two linear stiffness
terms k≡ kB = kP and define a unit of time τ ≡

√
m/k. Simulations

then use Γ =
√

km, aP = 50k/d2, and various values of aB.

2.3 Calibration

To create an initial network of bonded particles representing a
bulk solid, we randomly fill cubic boxes of linear size L with
enough monodisperse spheres of diameter d to fill a volume frac-
tion of 0.64. Periodic boundary conditions are used along all di-
mensions. Overlaps between particles are first removed by run-
ning overdamped dynamics with the pairwise force in Eq. (4) with
aP = 0 and additional viscous damping. All damping, both vis-
cous and pairwise, is then removed and particles are thermalized
by generating random uniformly distributed velocity components
with a root-mean-square velocity magnitude of 0.03. Simulations
are run for a time of 1000τ before pairwise damping is restored
and simulations are quenched over 3000τ. This protocol results
in a disordered packing of particles near the jamming thresh-
old. Bonds are finally generated between all neighboring parti-
cles within a distance of 1.5d resulting in each particle having
∼ 15 bonds and the velocities of particles are zeroed. Trajectories
are numerically integrated using the velocity-Verlet algorithm and
a timestep of 0.1τ.

After generating cubic systems of size L = 50d, elastic mod-
uli are calibrated by applying isotropic compression and simple
shear, as conducted in a separate work57. Note that changes in
the initialization protocol (e.g. decreasing the maximum bond
length) would require a recalibration of elastic properties. In
both loading protocols, the simulation cell is deformed at a near-
quasistatic strain rate, slow enough that no significant differences
are detected at lower rates, while particle positions are affinely
remapped to match the global deformation. This process is car-
ried out to strains of 0.5%. A stress tensor is calculated as the sum
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Fig. 2 (a) The ratio of the measured shear modulus G to the bulk mod-
ulus K as a function of the strength of the multibody term aB. Dashed
lines indicate G/K = 0.6 and aB = 0.0. (b) The Poisson’s ratio ν and bulk
modulus K (inset) vs. aB. Red lines indicate fits described in the text.

of the virial and kinetic contributions

σαβ =− 1
V

(
∑

particles
vα vβ − ∑

interactions
F

rα rβ

|~r|

)
(5)

where V is the volume of the entire system,~v is a particle velocity,
~r is the displacement between two particles, and the summation
across interactions includes bond and pair forces with magnitudes
F . At the slow strain rates considered in this work, the virial con-
tribution dominates the stress. Initially, σαβ = 0 as there are no
pair interactions between particles (the system is fully bonded),
and all bonds are at their equilibrium reference length. As the sys-
tem deforms, the mean pressure P ≡ −(σxx +σyy +σzz)/3 grows
linearly with volumetric strain in compression and the shear stress
grows linearly with shear strain in simple shear. Data is fit using
a least means square linear regression to estimate the bulk and
shear moduli.

First, we consider the ratio of the shear to bulk moduli G/K,
which grows approximately in proportion to the multibody force
strength aB as shown in Fig. 2(a). At aB = 0, one expects a Pois-
son’s ratio of ν = 1/4 which corresponds to G/K = 3/5. With
this constraint, we find G/K ≈ 0.6+ 0.475aB(kd)−1. Notably, this
implies the incompressible limit, G/K = 0 or ν = 1/2, is near
aB = −kd, the point where the multibody force is approximately
equal in magnitude to the harmonic force. Therefore, the multi-
body term can both increase ν above 1/4 for aB < 0 and decrease
ν below 1/4 for aB > 0 as demonstrated in Fig. 2(b).

Ideally, the bulk modulus K would be independent of aB such

that aB only controls the shear resistance. However, we do find
some dependence of K on aB in the inset of Fig. 2(b) as K
drops near the incompressible limit. Data was empirically fit us-
ing K = 1.365k/d− 0.14k2(aB + 1.168kd)−1. As further discussed
in the appendix, particles under compression have greater non-
affine displacements in the incompressible limit suggesting they
adjust their positions to minimize total compressive bond forces
using the multibody term. At aB ≤ −kB, this can destabilize a
simulation as the strength of the multibody force can exceed the
harmonic force in a bond. This leads to some pairs of particles
nearly fully overlapping to accommodate compression. It is not
unsurprising that numerical artifacts appear when compressing a
nearly incompressible model. Practically, this limits ν . 0.46.

This effect can be mitigated either by: a) using a regular lattice
or b) adding a constraint that the net multibody force exerted
by a particle on its neighbors is zero. By stemming the decay
in K with decreasing aB, the latter approach allows simulations to
reach slightly larger values of ν ∼ 0.48. Other modifications to the
model, such as adding more bonds per particle or using a more
accurate volume calculation, could potentially push this limit fur-
ther. However, since these options either introduce anisotropy or
additional complexity in the calculation of forces, we opt to keep
the current formulation and recognize that this entails an initial
calibration for K.

To quantify the accuracy of this approach, we studied the con-
vergence of both the calibrated parameters and deviations from
linear elastic solutions as a function of increasing resolution. In
a BPM, increasing the resolution of a simulation is equivalent to
increasing the number of particles used to represent a unit of vol-
ume. In finite systems, there is some variation in macroscopic
moduli across different random realizations that decrease with
increasing system size. Testing cubic systems of different sizes
L3, we find that the measured bulk and shear moduli both con-
verge to an infinite-system-size limit at a rate of ∼ L−2. Further-
more, variations in measured moduli between random realiza-
tions of the same system size decay as L−3/2 as larger systems
have less variation between samples, likely reflecting a typical√

N scaling where N is the number of independent volume el-
ements. Lastly, local deviations in the strain of particles decay
as L−1 with increasing resolution. This simply implies the non-
affine displacement of particles is constant and independent of
system size. However, many materials are disordered on some
length scale leading to localization effects that are critical in their
mechanical response suggesting this inherent feature of BPMs is
not necessarily inaccurate. For the resolutions considered in this
work, grains may exhibit variations in macroscopic parameters of
approximately 1% and the local strains of particles in the grains
may deviate by approximately 0.1% to 0.01% on average from the
continuum elastic solution at small strains. More details on these
tests are provided in the appendix.

As the strain increases, the nonaffine displacement of particles
also increases. Such nonaffine motion is expected to lead to de-
viations from linear elasticity64. Therefore, while we have pro-
vided a detailed characterization of the linear elastic behavior of
this BPM at small strains, this emergent nonlinear elasticity is
still uncontrolled. Generally, we find deviations from linear elas-
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(a) (b)

Fig. 3 Rendered images of (a) rough and (b) smoother grains consisting
of ∼ 5,000 BPM particles each.

tic deformation in compacted bulk samples is limited to around
10% at strains of 10% and is small enough to be ignored for our
purposes. In the granular packings described below, the volumet-
ric strain of grains only exceeds this limit for packing fractions
φ & 0.9 (Fig. 12[a]), or the two to three densest packings stud-
ied in this work. At exceedingly large volumetric strains of 50%
of bulk samples, the pressure can deviate from the linear elastic
prediction by a factor of ∼ 2. Therefore, these densest granular
packings may exhibit non-negligible elastic nonlinearities. The
rigorous quantification of such effects is left for future work.

2.4 Grain generation and compaction protocol
To create spherical grains of bonded particles, we used two proto-
cols. The first approach is to take the disordered packing of parti-
cles described above and cut out monodisperse spherical regions.
Any particles with a position beyond a distance of ten particle di-
ameters from the center of the grain were deleted, resulting in
∼5,000 particles per grain. As seen in Fig. 3(a), this results in
a fairly irregular surface and we therefore label this the rough
model.

To create a smoother grain, we first cut out a sphere of packed
particles without bonds and construct a spherical repulsive wall
around the packing with a harmonic potential with stiffness k
and a cutoff d that applies an inward force to particles in con-
tact. The wall is initially at a distance large enough to avoid any
contacts but its diameter then oscillates with an exponentially de-
caying amplitude to reorder particles on the surface while simul-
taneously applying viscous forces to overdamp dynamics before
constructing bonds. This process essentially vibrates grains into
smoother shapes and is referred to as the smoother model (Fig.
3[b]). While this construction is smoother, it still does not repre-
sent an ideally smooth sphere. However, by increasing the resolu-
tion of a grain, or the number of particles in a grain, the relative
scale of the roughness could be decreased.

As friction only emerges in a point-particle-based BPM through
the geometric corrugation on the surface of grains, these two ge-
ometries represent a high and low frictional grain, respectively.
While this grain-creation protocol provides some indirect control
over friction, it is still limited. There is not a clear connection
between the roughness and the friction coefficients in traditional

DEM simulations and the upper and lower bounds on achievable
friction coefficients are unknown.

To compare normal contact forces between BPM grains to
Hertzian contact theory, computed force-displacement relation-
ships are obtained by compressing BPM spheres between sym-
metrically displaced, mathematically smooth walls. Walls are dis-
placed at a constant rate of 5× 10−4τ−1. BPM particles interact
with the walls using a harmonic potential with stiffness k and a
cutoff d to prevent interpenetration. The reported force is the
average of the total normal force on each wall mediated by the
wall-particle interaction. The centers of mass of the spheres are
tethered to their initial positions with a soft spring to prevent
unbounded lateral translation, which originates from the lack of
friction between walls and spheres. The effect of this lateral con-
straint on the normal force was negligible. The ensemble average
for rough spheres was calculated using 292 distinct BPM spheres;
for smoother spheres, the ensemble average was calculated us-
ing 50 randomly rotated sphere configurations to alter the wall-
sphere contact points. Normalized forces for various grain ge-
ometries and material properties are plotted as a function of a
radius-normalized overlap δ/R in Fig. 4 based on the expected
Hertz force,

3
8R2Eeff

f (δ ) =
(

δ

R

)3/2
(6)

where R is the grain radius, Eeff ≡ 3K(1−2ν)/(2−2ν2) is an effec-
tive Young’s modulus, and the overlap δ is defined relative to the
first instance the force exceeds a magnitude of 10−3EeffR2. Due
to the rough surface, there is not an obvious definition of R and
we therefore simply assume R = 10d for both smoother and rough
grains in the following analysis.

Comparing forces for rough and smoother grains at ν = 1/4
(Fig. 4[a]), we see markedly strong agreement for smoother
grains with minimal variation while forces for rough grains are
notably weaker with more variation between grains and contact
location. This is to be expected as the roughness of the surface
implies contact depends on the exact location of the outermost
surface particles, reminiscent of asperities on rough surfaces65–67

which also cause deviations from Hertz theory. Stronger agree-
ment might be found if one tailored the force threshold to define
the initial contact for each system or accounted for the rough-
ness in estimating a radius. Focusing on smoother grains, we also
see good agreement with the analytic expectation across a wide
range of Poisson’s ratios serving as an important verification of the
multibody term in a system with free surfaces and large deforma-
tions (Fig. 4[b]). Deviations are slightly larger at the extremes
of ν but are much smaller than the change in the magnitude of
un-normalized forces.

While the good agreement with Hertz theory is an important
verification at small strains, Hertz theory does assume small over-
laps such that one might expect corrections at large indentation
depths. Detailed FEM studies have quantified the magnitude of
corrections finding that Hertz theory under predicts normal forces
at large indentation depths68. However, experimental tests of
rigid spheres indenting a block of approximately linear elastic sil-
icone have found relatively good agreement with Hertz at inden-
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Fig. 4 (a) Average contact forces normalized by EeffR2 as a function of
the normalized overlap for rough grains (blue) and smoother grains (red)
in comparison to analytic Hertzian contact force (dashed, black line) at
a Poisson’s ratio of ν = 1/4 (aB = 0). Ribbons around the average force
represent one standard deviation. (b) Contact forces for smoother grains
at the indicated ν. Log-log plots of both panels are provided as insets
with dashed lines representing the force cutoff of 10−3EeffR2 and a 3/2
power law.

tation depths larger than those in Fig. 4 which may emerge from
competing non-Hertzian effects69. Additionally, it is possible that
the corrugated surface of grains or potential nonlinear elastic ef-
fects at very large strains could affect results, coincidentally im-
proving agreement with Hertz theory at large indentation depths.

The next step is to generate packings of grains and compress
them. To reduce computational costs, templates of loose packings
of 1,024 grains with 57% volume fraction are generated using tra-
ditional DEM simulations70. An example with 128 grains is ren-
dered in Fig. 5(a). These templates are then used to locate BPM
grains, mapping particles and bonds across periodic boundaries
as necessary. Systems are relaxed and slightly expanded to break
all contacts before resetting the equilibrium lengths of bonds to
create stress-free granular states just below jamming as seen in
Fig. 5(b).

Systems are then systematically compacted using a protocol
aimed at sampling a wide range of logarithmically distributed
pressures. First, systems are jammed at a pressure of PT =

10−6k/d by running dynamics for a total time t of 2× 105 using
a Berendsen barostat with a gain constant of 0.1d/k that isotrop-
ically expands or contracts the box. The box is then istropically
compressed at a constant true strain rate ε̇ along each dimen-
sion. As box lengths evolve, particle positions are shifted to track
their relative position in the simulation box. During the constant
strain rate compaction, the strain rate is initially ε̇ = 10−9τ−1,
however, every 2× 105 units of time it is gradually incremented
until it reaches 10−6τ−1 to probe a wide range of states near and
far from the jamming limit. At all rates, the average kinetic en-
ergy per particle remains small, always below 10−6kd2, and there
are minimal inertial effects. A selection of systems were run using
a purely pressure-controlled protocol at a much slower rate and
no identifiable differences were found in results. A sample com-
pressed system is rendered in Fig. 5(d). Five random realizations
were run for each system to average results.

2.5 Equivalent discrete element method simulations

As a comparison, we also simulated the compaction of various tra-
ditional DEM contact models. Normal contact forces are Hertzian
with damping forces based on the formulation by Tsuji, Tanaka,
and Ishida71. Tangential forces are calculated using a Mindlin no-
slip solution72 with a sliding friction coefficient µs. Rolling and
twisting friction are applied using spring-dashpot-slider models
by Luding73 and Marshall74 with rolling and twisting friction co-
efficients µr and µt , respectively.

To match DEM to BPM simulations, we varied three parame-
ters: µs, µr, and µt . Instead of performing mechanical tests on
individual BPM grains to measure frictional forces at contacts,
we opted to simply adjust the DEM friction coefficients to achieve
similar jamming packing fractions φc. For each type of BPM grain,
smoother and rough, two analog DEM simulations were identified
with µt = µr = 0 and µt = µr 6= 0. Values were estimated from stud-
ies by Silbert 4 and Santos et al. 5 on the friction-dependence of φc

then tuned. For rough grains (higher friction), we arrived at val-
ues of {µs,µr,µt} of {0.3,0,0} and {0.15,0.1,0.1}. For smoother
grains (lower friction), we arrived at values of {0.15,0,0} and

Journal Name, [year], [vol.],1–18 | 7

Page 7 of 18 Soft Matter



(a) (b) (c) (d)

Fig. 5 (a) Loose packing of N = 128 DEM grains, or one eighth of the actual system size. (b) The corresponding packing of BPM grains. The same
(c) DEM and (d) BPM systems after compacting to a volumetric strain of ∼ 60%.

{0.1,0.05,0.05}. While these values are not unique and a more
rigorous fitting protocol may have arrived at different values, we
identify little difference between DEM systems with and without
rolling/twisting friction in Sec. 3.1 relative to the difference be-
tween DEM and BPM systems. Therefore, we would not expect
a more thorough mapping between BPM and DEM simulations
results to change results.

2.6 Implementation in LAMMPS

To model a large number of high resolution grains, we imple-
mented a package in the particle dynamics codebase LAMMPS for
modeling BPM systems25. The package is available open source
with the main LAMMPS distribution and is designed to support a
wide range of bond styles and, due to the design of LAMMPS, is
easy to modify and expand. Currently, the package includes an
implementation of a point-particle-based model, as used in this
work, as well as a more common model based on DEM particles
with rotational degrees of freedom and bonds that transmit shear
forces and torques51. Features of the package include general-
ized methods for bonds to store data (such as a reference state or
strain history to model plasticity64), communicate with neighbors
to calculate multibody interactions, break under various loading
conditions (to model fracture or fragmentation53,57), and option-
ally either overlay or censor pair forces between bonded particles.
All capabilities were developed with parallel efficiency in mind.
For each compaction simulation with ∼ 5× 106 particles, 2× 107

timesteps were run in approximately 40 hours on 288 or 480 pro-
cessors for systems without and with the multibody term, respec-
tively. DEM simulations were performed using the GRANULAR
package.

3 Results and discussion

3.1 Deviations from jamming and friction dependence

We first set out to understand how and when results deviate from
the low-pressure scaling behavior near jamming and measure the
dependence on friction. Here, we narrow attention onto BPM sys-
tems without the multibody term, setting aB = 0.0 or ν = 1/4, and
only consider standard metrics of the jamming transition: pres-
sure P, packing fraction φ , and the average coordination number
Z. This section also includes a comparison between BPM and

DEM simulations to quantify errors related to omitting the inter-
nal elasticity of grains.

In DEM simulations, φ is typically defined as:

φsphere =
1
V ∑

grains

4
3

πR3
i (7)

where V is the volume of the entire system and Ri is the radius
of grain i. However, this definition is inadequate for BPM sim-
ulations as grains inherently have surface roughness, and there-
fore are not perfectly spherical, and can deform. Therefore, we
alternatively calculate the volume fraction using Monte Carlo in-
tegration, φMC. Within the simulation cell, random points are
uniformly sampled and tested for collisions with all particles in
the simulation (where each particle has a radius of d/2) and with
the convex hull of each grain to include the internal volume of
gaps between particles. Using 107 random points, uncertainty in
φMC is limited to the fourth digit.

Initially, both DEM and BPM systems start just above the jam-
ming transition at a small but non-zero pressure. To simplify com-
parisons, reported pressures are normalized by the effective mod-
ulus for a Hertzian contact Eeff, Eq. (6). Using the above defini-
tions, we find φMC ∼ 0.60 for smoother grains and φMC ∼ 0.58 for
rough grains at pressures near P/Eeff = 10−6. Very similar values
of φsphere are found in the four sets of DEM packings as seen in
compaction curves in Fig. 6(a). Differences between DEM and
BPM values of φ are initially no greater than ±0.003 for matched
systems. As systems compact, the pressure rises and there are dis-
tinct high- and low-friction curves. This continues until a packing
fraction of ∼ 0.7 where compaction curves for the two BPM sys-
tems coalesce as friction becomes irrelevant. This is expected at
large packing fractions since tangential forces become less rel-
evant as particles become fully confined by large normal forces
and can no longer rotate. Meanwhile, results for DEM and BPM
simulations diverge with each method following a separate com-
paction curve. Similar deviations at high pressures have previ-
ously been identified between DEM and FEM-based simulations14

and are not surprising.
At very high pressures in DEM simulations, deficiencies in the

above definition of φsphere are apparent in Fig. 6(a) as it exceeds
unity. As noted in other works on deformable particles20,21, this
definition does not account for overlapping regions of DEM parti-
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Fig. 6 Pressure normalized by the effective modulus as a function of
packing fraction for the indicated DEM or BPM systems. For DEM
systems, friction coefficients are reported as {µs,µr,µt} and the packing
fraction is defined as (a) φsphere and (b) φMC. For BPM systems, both
panels report φMC. The inset in panel (b) highlights curves near jamming.
Dashed lines indicate φ = 0.5836, 0.5979, and 1.0.
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Fig. 7 Normalized pressure as a function of φ − φc for the indicated
systems with φ = φMC. The dashed line has a slope of 3/2.

cles, such as those seen in Fig. 5(c), and overestimates φ . While
this effect is negligible in the hard-particle limit typically studied
using DEM, it is significant in the high pressure limit. Therefore,
φMC was additionally calculated for DEM systems using 106 ran-
domly sampled locations to avoid this issue. As seen in Fig. 6(b),
at low pressures results are virtually independent of the definition
of φ but the expected upturn in pressure at the maximum packing
fraction of 1.0 is now visible in DEM results. Comparing DEM and
BPM results, the shape of compaction curves is now qualitatively
quite similar and we see errors associated with DEM are limited
to within about a factor of two. Given the fact that the grain-
grain normal forces are well described by the Hertzian model up
to significant overlaps of 25% of the radius (Fig. 4), this may not
be too surprising. Of course, DEM simulations fail to account for
elastic interactions between contacts such that more advanced
nonlocal DEM contact models27,75 might provide even stronger
agreement. Additionally, the DEM simulations assume perfectly
linear elasticity and the BPM simulations have a large linear elas-
tic regime such that more significant nonlinear effects would lead
to further divergence in results. Future work testing the com-
paction of well established nonlinear elastic materials, such as a
neo-Hookean model, using BPM simulations would prove useful.

To compare compaction curves to the expected power-law scal-
ing near the jamming point, we first estimate the jamming pack-
ing fraction φc. For the remainder of the article, the volume frac-
tion is exclusively calculated using Monte Carlo integration and
the MC subscript is dropped on φ . Near the jamming transition,
the pressure grows as (φ − φc)

3/2 for Hertzian contact forces76.
For each system, φc is estimated by calculating the minimum mea-
sured packing fraction and adjusting it to maximize this power-
law scaling at small φ−φc in Fig. 7. For the BPM systems, we esti-
mate φc = 0.5979 and 0.5836 for the low- and high-friction cases,
respectively. This scaling persists to values of φ − φc ∼ 10−1 at
which point the growth in pressure accelerates as φ approaches
unity. This threshold also approximately corresponds to the point
where friction becomes irrelevant and BPM and DEM results de-
viate, which is more apparent in Fig. 6b.

To confirm BPM results are converged with the resolution of
grains, or the number of particles per grain, simulations were run
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for smooth grains with radii of 2.5, 5, and 7.5 particle diameters
d. Compaction curves generally shift to larger packing fractions
at the same pressure with increasing resolution (possibly due to
a decrease in the scale of the roughness relative to the grain ra-
dius). However, compaction curves appear to converge with in-
creasing resolution. By a grain radius of 7.5d, the difference in
packing fraction from the equivalent pressure at a radius of 10d
is less than the size of as symbol in Fig. 6 suggesting our results
contain minimal finite resolution effects. Related tests demon-
strating the convergence of the elastic properties of BPM systems
are presented in the appendix.

In addition to the pressure, another key metric of the jamming
transition is the coordination number. In this work, we calcu-
late an average coordination number Z after excluding rattlers
where rattlers are defined as undercoordinated grains with two
or fewer contacts. While Z is trivially measured in DEM systems
by counting contacts, in BPM systems there is not an obviously
correct metric. One approach is to define a contact between any
two grains which have constituent particles in contact which we
label Zforce. Using this definition in Fig. 8(a), we see higher coor-
dination numbers in systems with reduced friction, as expected.
More importantly, we also see a systematically higher coordina-
tion number in both BPM systems relative to DEM systems near
jamming which could be due to the surface roughness of BPM
grains. Furthermore, Zforce may be larger due to the fact that two
particles can be in contact but not exert a stabilizing force on the
grains. For instance, one could imagine a contact could consist of
four particles, two on each grain, which exert equal and opposite
tangential forces.

In analogy to DEM, one could alternatively use a geometric ap-
proximation to identify contacts in a BPM system by detecting
when the center of mass of two grains is within a fixed distance.
To choose this distance, we calculate the maximum distance be-
tween the center of mass of a grain and any particle in the grain
and then averaging across all grains. Doubling this and adding
the interaction distance between particles, d, we find a cutoff dis-
tance of 20.27d for smooth grains and 20.53d for rough grains.
This approximates the diameter of a sphere that would encase
a grain, averaging out surface roughness. Using this cutoff, the
average coordination number Zgeometry is quite similar to DEM
systems as seen in Fig. 8(b). The curves for Zgeometry for BPM
systems lie between the high and low friction DEM systems near
the jamming transition but do not grow as rapidly as φ → 1.0. Of
course, this definition does not account for the elastic deforma-
tion of grains.

While further analysis may be required to disentangle the dif-
ferences between these two measures of coordination number
and there may be a more appropriate definition, regardless of
metric we find the expected scaling behavior near the jamming
transition. Jamming corresponds to an isostatic point where the
number of constraints on the system is equal to the number of de-
grees of freedom. For frictionless systems, this implies jamming
occurs at an average coordination number Z of Zc = 6 in 3D. When
friction is introduced, Zc decreases as fewer contacts are needed
to stabilize the packing4, however, the excess coordination num-
ber Z− Zc is always found to grow as a (φ − φc)

1/2 4,76. This is
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Fig. 8 Average coordination number as a function of the distance to
jamming for the indicated systems. For BPM systems, contacts between
grains are identified by (a) identifying contacts between particles Zforce
and (b) using a naive geometry Zgeometry. Data at Z > 14 is truncated to
improve visibility.

found to be true regardless of frictional strength2,4 and has been
found to persist to relatively high pressures in experiments10.
Here, we measure Zc by calculating the smallest value of Zforce

and adjusting it to maximize the power-law domain at low pack-
ing fractions finding Zc ∼ 5.05 for rough grains and Zc ∼ 5.2 for
smoother grains. In comparison for DEM systems, we measure
Zc ∈ [4.52,4.57] and Zc ∈ [4.91,4.98] for high- and low-friction cal-
ibrations, respectively. In Fig. 9, the expected scaling is seen in
both DEM and BPM systems where the latter uses the Zforce defi-
nition.

Under compaction, we find that BPM simulations reproduce the
expected scaling near the jamming transition until deviations set
in at φ−φc∼ 0.1. This transition also corresponds to a limit where
friction becomes less important and the internal deformation of
grains becomes relevant as compaction curves at different friction
coefficients coalesce and DEM and BPM results diverge. However,
if one considers analogous metrics, the predictions from DEM are
still within a factor of two from the BPM simulations suggesting
results from DEM simulations can still be somewhat informative
far from the hard-sphere limit assuming systems are nearly linear
elastic. However, as we explore in the following section, there is
certain information that DEM simulations cannot provide.

3.2 Impact of Poisson’s ratio on grain deformation
Next we seek to investigate the role of elasticity in the high
pressure compaction of grains. In traditional DEM simula-
tions, Poisson’s ratio only affects the stiffness of Hertzian contact
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Fig. 9 The data in Fig. 8(a) of the force-based coordination number is
plotted after subtracting the limiting coordination number at jamming.
The dashed line has a slope of 1/2.

force. Thus, DEM simulations produce trivially identical results as
stresses are simply scaled by a constant factor, Eeff. Therefore, in
this section we focus only on BPM results and vary aB to control
Poisson’s ratio ν in the low friction limit using the smoother grain
construction.

As a visual example, a highly compacted system with ν = 0.40
in panel (a) and ν = −0.11 in panel (b), are rendered at equal
volumes in Fig. 10. The shape of grains visibly differ. At a high
Poisson’s ratio near the incompressible limit, grains have signifi-
cantly deformed from their original spherical shape, flattening at
contacts. In contrast at a low Poisson’s ratio in the auxetic limit,
grains are more spherical with less change in shape. This qual-
itative behavior is expected as smaller ν or large shear moduli
increase the resistance to shape distortions. Since the two sys-
tems are rendered at equal volumes, this also implies the auxetic
grains had to compress more to compensate for the lack of dis-
tortion. Although it is hard to identify by eye, the auxetic grains
in panel (b) are indeed smaller than the nearly incompressible
grains in panel (a) which have a minimal change in volume.

Despite these observations, standard metrics from jamming ex-
hibit minimal additional dependence on ν as seen in Fig. 11
which includes results for systems with smoother grains and ν

between -0.11 to 0.4. As in the above section, φc and Zc are es-
timated by roughly maximizing the power-law domain. Across
values of ν , φc varies slightly, generally decreases with increasing
ν as seen in the inset of Fig. 11. Zc was fixed at 5.2 where Z was
defined as Zforce. Aside from the standard scaling of the effective
stiffness of the Hertz contact, results are largely independent of ν

even at very high pressures with packing fractions close to unity.
In two dimensions, scaling by the effective stiffness has similarly
been found by Vu et al. 16 to reasonably describe differences in
pressure at high packing fractions for systems with different Pois-
son’s ratios.

As suggested in Fig. 10, however, we do find quantitative differ-
ences in the deformation of grains: a fundamentally unresolved
metric in DEM simulations. For each grain, the convex hull is eval-
uated using the positions of all particles in the grain and is used
to calculate both a volume Vg and surface area Ag. Using these

definitions, we considered two metrics: the volumetric strain

εVg ≡
V0,g−Vg

V0,g
(8)

where V0,g is the initial volume of the grain and the asphericity

α ≡
A3/2

g

6
√

πVg
(9)

where α = 1 for a sphere and α > 1 for an aspherical object, as
used in other works on deformable grains.14,20

With increasing ν , one expects less volumetric compression as
one approaches the incompressible limit. In Fig. 12(a), the av-
erage volumetric strain of a grain is found to grow as a power of
the change in packing fraction with an exponent of 3/2. This
implies the average volumetric strain of grains proportionally
tracks the macroscopic pressure of the system which also grows
as (φ − φc)

3/2 as seen in Fig. 11(a). This scaling persists until
φ − φc ∼ 0.1 at which point the growth in εV accelerates as void
spaces fill and φ → 1. As ν increases, curves shift downward as
there is a greater resistance to a change in volume. Scaling out
the measured power law in the inset of Fig. 12(a), grains with
ν = 0.4 can experience approximately a quarter of the volumet-
ric compression as grains with a near-zero Poisson’s ratio at very
large pressures.

Alternatively as ν decreases, one expects stronger preservation
of the shape of grains. For instance in the auxetic limit, com-
pression along one axis will induce compression along other axes
minimizing distortion in the shape of an object. Due to imper-
fections in representing a spherical object using a collection of
point particles, at zero pressure there is some initial asphericity
as α ∼ 1.002 in uncompressed grains. Subtracting this initial value
α0, the average change in asphericity is plotted in in Fig. 12(b).
At low φ , no significant change in asphericity is detected until
φ−φc ∼ 10−3 above which α−α0 grows as a power of φ−φc with
an exponent of about 5/2 at ν = 1/4. This scaling also persists un-
til φ−φc∼ 0.1 at which the growth in asphericity accelerates. This
mirrors findings from Cárdenas-Barrantes et al. 14 which used the
finite-element based NSCD and found a similar scaling exponent
despite the completely distinct methodology.

To accentuate deviations from scaling, the estimated power law
is divided out in the inset of Fig. 12(b) revealing a splay in curves
at intermediate φ across values of ν . Grains in the auxetic limit
experience less change in shape compared to grains near the in-
compressible limit, reflecting qualitative observations in Fig. 10.
At φ − φc ∼ 10−3, α can vary by a factor of nearly 5. However,
this difference narrows as data converges to a limiting response
as φ → 1. As spheres can never fully fill a volume, grains must
distort in this limit. To accommodate these two limits, data could
be explained by a ν-dependent power-law exponent that varies
from 2.3 at ν = 0.4 to ∼ 2.7 at ν =−0.11. While this is an interest-
ing prospect, ideally one could resolve a larger scaling regime to
reduce uncertainty in a potential power law. This might require
higher resolution grains which can resolve distortions in shape of
α < 10−3.

Lastly, we consider the variation in granular deformation
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(a) (b)

Fig. 10 Images of full-sized BPM simulations of 1,024 smoother grains with values of (a) aB = −0.8kd or ν = 0.40 and (b) aB = 3.0kd or ν = −0.11
compacted to an equivalent volume with packing fractions of φ = 0.86 and 0.80, respectively. Particles are colored by their number of bonds to highlight
grain surfaces and remapped across periodic boundaries to highlight cross sections.
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Fig. 11 (a) The pressure as a function of the distance to the critical
point for BPM simulations of smoother grains with the indicated ν. The
inset includes φc as a function of ν. (b) Excess coordination Zforce from
jamming. Dashed lines have slopes of (a) 3/2 and (b) 1/2.

within a packing. To predict yield and the accumulation of dam-
age in powders, it is important to know the likelihood of a partic-
ular strain state in grains. In all cases studied, rough vs. smoother
particles or varying ν , both the volumetric strain εv (Fig. 13[a])
and the asphericity α (Fig. 13[b]) of grains are approximately
normally distributed. As seen in Fig. 12, the averages grow with
increasing packing fraction or pressure and the standard devia-
tions exhibit similar growth with a consistent power law. How-
ever, aside from the growth in these two values, the distributions
exhibit minimal dependence on pressure despite the significant
differences in mechanical and scaling behavior seen in the low
and high pressure limits.

3.3 Elastic properties of the granular packing

As a final study, we consider the elastic properties of the gran-
ular packing itself as the system densifies. At various instances
during compaction, the system state is saved. Simulations are
then restarted and relaxed for 105 timesteps to settle any ongoing
dynamics before measuring elastic properties. A small volumet-
ric compression of 0.06% strain is applied by linearly contracting
each box length at a true strain rate of 10−8τ−1 or by applying
simple shear of 0.04% strain by tilting the box at a strain rate
of 2× 10−8τ−1. Particle dynamics are simulated during loading.
Linear regression is used to fit moduli from the stress response.
Moduli are only calculated and averaged for two of the five real-
izations.

Near the jamming transition, the bulk modulus of a disor-
dered packing of Hertzian spheres KP is expected to grow as
(φ − φc)

1/2.76,77 For the shear modulus, there are subtleties and
different power laws can be identified depending on whether par-
ticles can nonaffinely shift during the loading procedure. As we
allow particles to rearrange, we expect the shear modulus GP to
grow proportional to (φ −φc).76–78 This scaling is evident in Fig.
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14 where both KP and GP grow approximately according to their
corresponding power law before accelerating at higher packing
fractions.

Very close to jamming, GP is much smaller than KP such that
the Poisson’s ratio of the packing νP is 1/2, as seen in the inset
of Fig. 14(a). This is true regardless of the Poisson’s ratio of the
constituent material ν . As the system densifies, the faster rise
in GP causes νP to decrease. This continues until φ − φc ∼ 0.1
where νP reaches a minimum value before rising. Due to un-
certainty in data, we cannot exactly determine the minimum of
νP but it interestingly reaches a value near ∼ 1/4, particularly in
the dataset with ν = −0.11. While this may simply be a coinci-
dence, a nadir at νP = 1/4 could reflect the limitation imposed
by Cauchy’s relations discussed in Sec. 2.1. At this intermedi-
ate pressure, relatively strong forces are expected to be exerted
between particles such that one might no longer expect the con-
tact topology to significantly change under small loads. Further-
more due to the convergence of results between systems with dif-
ferent friction coefficients seen in Sec. 3.1, tangential frictional
forces become less important such that forces could be effectively
central-body. Lastly, at even higher φ results began to diverge be-
tween BPM and DEM simulations implying contacts became non-
Hertzian and may elastically interact with other contacts. This
threshold may therefore mark the end of the assumption that

grain-grain interactions are two-body. Thus, this minimum could
be related to a transitional density where νP ∼ 1/4 due to ap-
proximately pairwise central-body intergranular forces. However,
detailed characterization of grain-grain forces and more accurate
measurements of elastic moduli are necessary.

As φ → 1, νP increases again due to a faster rise in the bulk
modulus than the shear modulus. As free volume vanishes,
there must be a substantial increase in the resistance to com-
paction. Such a rapid increase in the pressure near φ = 1 has
also been previously identified in other works on deformable
grains10,14,28. Additionally, slip may become relatively easier
at grain-grain contacts as asperities flatten due to high normal
forces decreasing GP/KP. This combined effect on νP has also
been previously observed in various experimental studies of com-
pacted powders79,80. In particular, measurements by Hentschel
and Page 80 similarly found a minimum Poisson’s ratio of around
1/4, or slightly higher, in various packed powders including cop-
per, steel, aluminum, and glass. Such characterizations are impor-
tant in the development of state equations for compacted granu-
lar material and for predicting the strength of pressed particulate
materials.

4 Conclusion
As many processes in industry and nature are far from the jam-
ming threshold, there is a critical need to understand the high
pressure compaction of granular materials. While high pressures
can be associated with elastic deformation, plasticity, and/or frac-
ture, here we limited the problem to elasticity to quantify the ef-
fect of friction and linear elastic parameters. To accomplish this
task, we used a bonded particle model (BPM) where 1,024 spheri-
cal grains were each represented using∼ 5,000 particles. The fric-
tion of grains was controlled via manipulating the morphology of
surface particles, an approach which may mirror real-world pro-
cesses of smoothing surfaces to control friction. To vary the inter-
nal elasticity of grains, we proposed a new multibody interaction
term which is relatively computationally cheap, easy to interpret,
and can both decrease and increase Poisson’s ratio ν . This ap-
proach and the efficient implementation in LAMMPS allowed us
to model a substantially larger sample of 3D grains than previous
works on deformable grains in compaction14,20–22.

At low pressures, results were consistent with the expectation
that higher friction systems jam at lower critical packing frac-
tions φc

4. Results from BPM simulations also obeyed the expected
power-law scalings and agreed with results from traditional DEM
simulations. By a packing fraction of φ ∼ φc + 0.1, we saw a
crossover in several behaviors. Compaction curves for systems
with different friction coefficients began to converge onto a sin-
gle curve, indicating frictional forces became less relevant. The
coalesced data also began to notably deviate from the power-law
scaling seen near jamming implying grains have significantly de-
formed. Similarly, a divergence between BPM and DEM results
emerged at this threshold, indicating contact forces are no longer
accurately described as Hertzian due to elastic interactions be-
tween contacts. However, if one used analogous metrics, dif-
ferences never exceeded a factor of two, suggesting one could
still achieve qualitatively reasonable results using a considerably
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more economical DEM approach for materials with a large lin-
ear elastic regime within the range of Poisson’s ratios tested in
this work. This comparison also assumes there is no plastic de-
formation or fracture in the system. Non-local DEM contact mod-
els that account for elastic interactions between contacts would
likely improve DEM results27,75. The observed presence of a
key crossover at φ ∼ φc + 0.1 is also consistent with findings by
Harthong et al. 29 that the independence between contacts broke
down near φ = 0.7, close to φ − φc = 0.1, in MPFEM simulations
of elastic-plastic grains.

Using the multibody term, we varied the Poisson’s ratio of
grains ν from 0.4 to −0.11. While variations in ν did not af-
fect standard metrics of pressure or coordination number with
increasing packing fraction (beyond an analytic scaling due to the
stiffness of contacts), significant differences were found in the de-
formation of grains. Generally, the average volumetric compres-
sive strain and the average asphericity of a grain, as studied by
Boromand et al. 20 and Cárdenas-Barrantes et al. 14 , grow as a
power of φ −φc with approximate exponents of 3/2 and 5/2, re-
spectively. With increasing ν , however, grains had less volumetric
compression as curves shift downwards. This result is expected
but has not previously been quantified.

A more complex relationship between ν and asphericity was
identified where the auxetic limit or ν < 0 is associated with gen-
erally less distortion but a faster rate of growth in asphericity with
increasing packing fraction. This behavior could be described by
a ν-dependent power-law exponent that decreases from 2.7 at
ν =−0.11 to 2.3 at ν = 0.4 and extends up to φ −φc ∼ 0.1 before
curves at different ν begin to converge as spheres inevitably have
to distort to fully fill a volume. Within the packing, the distri-
bution of the volumetric strain and asphericity of grains remains
approximately Gaussian at all pressures. Such characterizations
are important in predicting the probability of grains accumulating
damage or fracturing as they strain with increasing load.

As the system densifies, interesting trends in the elastic prop-
erties of the packing also emerge. Near jamming, the shear mod-
ulus of the packed system grows faster than the bulk modulus
with increasing packing fraction as previously noted in the liter-
ature76–78. This leads to a reduction in the Poisson’s ratio of the
packed system νP that continues until φ −φc ∼ 0.1, another indi-
cation of an important transition in the compaction of grains. At
larger φ , the bulk modulus then grows faster than the shear mod-
ulus causing νP to rise. This creates a minimal value of νP near
1/4 and could reflect the unique nature of grain-grain interactions
at this transition between the hard-particle and a deformation-
dominated limit. The presence of a minimum value of νP has
been seen before in experimental studies79,80.

Despite the breadth of topics explored, this work still only
touches upon an idealized limit. For instance, real materials are
not monodisperse, defect-free spheres and typically have substan-
tial elastic nonlinearity at large deformations. Of course, many
applications also depend on the activation of inelastic mecha-
nisms not modeled here such as plasticity and cohesion as previ-
ously studied using MPFEM19. While this work attempted to rig-
orously characterize some of the emergent material and contact
properties of BPM grains, there are still many uncontrolled fea-

tures of the simulations presented above. In particular, a rigorous
characterization of deviations from linear elasticity at large vol-
umetric strains & 10% and frictional forces are uncharacterized.
While our results suggested surface roughness and the strength of
friction play a relatively minor role at high pressure compaction,
they may have a larger role in other deformation geometries such
as shear, which has also exhibited dependence on Poisson’s ra-
tio81. Such alternate formulations or deformations could be mod-
eled using the BPM tools presented here presenting a wide scope
for future work.
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Fig. 16 The average nonaffine strain of particles against system size L in
(a) compression and (b) simple shear for the indicated Poisson’s ratios.
Dashed lines have slopes of (a) −1.

A Convergence properties of the BPM
An effective computational model of continuum elasticity must
converge to the true analytic solution with increasing simulation
resolution. To quantify convergence properties of our BPM simu-
lations, we tested the response of different sized systems to homo-
geneous deformation. Here we use the same isotropic compres-
sion and simple shear deformation geometries used to calibrate
material properties in Sec. 2.3 but vary the linear size of the
system from L = 2 to 200 particle diameters or ∼ 10 to 107 par-
ticles. Multiple random realizations are created for each system
size (except for L = 200 which uses a single realization) and the
set of measured bulk moduli K are then used to calculate an av-
erage value K(L) and a standard deviation σK(L) at each system
size.

Assuming K(200) is representative of an infinite sized system,
the deviation in K(L) from K(200) as a function of L is plotted
in Fig. 15(a). As L increases, the deviation decays as L−2 across
all values of aB or ν . In Fig. 15(b), σK(L) decays as L−3/2. This
power-law could emerge from an interpretation of the bulk modu-
lus of a large system as the cumulative sum of N ∼ L3 independent
random bulk moduli measured in smaller regions. This implies
the elastic properties of the BPM systems converge to a limiting
value. For systems of size L ∼ 16 with ∼ 5,000 particles, similar
to the size of single grain, we expect variations of less than 1% in
material properties due to the random packing of particles. Very
similar results, with similar magnitudes, are seen for the shear
modulus G which also suggests that there may be little variation
in the shear modulus depending on the direction of shear in a
sufficiently large sample.

As an additional check, we also calculated the average non-
affine strains of particles after 2.5% volumetric strain under com-
pression or 2.5% shear strain under simple shear plotted in Fig.
16(a) and (b), respectively. This quantifies how much the local
strain field in a system deviates from the true elastic solution. A
nonaffine displacement of each particle is essentially how far it
moves due to unbalanced forces that emerge as the system de-
forms. A strain is then defined by normalizing the displacement
by the system size. Since the nonaffine displacement of a particle
is effectively independent of the system size and is just a prop-
erty of the initial packing, the average nonaffine strains simply
decays as 1/L. One may be able to adjust the magnitude of this
effect by controlling the quench rate of the initial packing which
is associated with the local yield strength of glasses82.

While the nonaffine strain decays with the same exponent in
both compression and simple shear across all Poisson’s ratios ν

simulated, there is a vertical shift associated with the specific
value of ν . Particles have larger nonaffine strains near the incom-
pressible limit at large ν . This effect is quite prominent in com-
pression but is relatively minor in simple shear. This likely stems
from the ability for particles to rearrange relative to their neigh-
bors to optimize the distribution of local volumes to minimize
forces generated by the multibody term at small aB, associated
with the dependence of K on aB noted in Fig. 2(b). As postulated
in the methods, the magnitude of this effect might be reduced if
the multibody term was constrained to apply a net force of zero
across all of a particle’s bonds.
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