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Effect of local active fluctuations on structure and dy-
namics of flexible biopolymers†

Sayantan Dutta,a Ashesh Ghosh,a and Andrew J. Spakowitza,b,c,∗

Active fluctuations play a significant role in the structure and dynamics of biopolymers (e.g. chro-
matin and cytoskeletal proteins) that are instrumental in the functioning of living cells. For a large
range of experimentally accessible length and time scales, these polymers can be represented as
flexible chains that are subjected to spatially and temporally varying fluctuating forces. In this work,
we introduce a mathematical framework that correlates the spatial and temporal patterns of the
fluctuations to different observables that describe the dynamics and conformations of the polymer.
We demonstrate the power of this approach by analyzing the case of a point fluctuation on the
polymer with an exponential decay of correlation in time with a finite time constant. Specifically,
we identify the length and time scale over which the behavior of the polymer exhibits a significant
departure from the behavior of a Rouse chain and the range of impact of the fluctuation along the
chain. Furthermore, we show that the conformation of the polymer retains the memory of the active
fluctuation from earlier times. Altogether, this work sets the basis for understanding and interpreting
the role of spatio-temporal patterns of fluctuations in the dynamics, conformation, and functionality
of biopolymers in living cells.

1 Introduction
Biological polymers in living cells are subjected to active forces
that play a pivotal role in numerous essential life processes. Var-
ious proteins, such as chromatin remodeling complexes, topoi-
somerases, and RNA polymerase, exert forces that modify chro-
matin structure, thereby enhancing or obstructing the transcrip-
tion of specific genes1,2,3,4,5,6,7. Transcription factors bind to spe-
cific sites within chromatin through specific binding and unbind-
ing rates8,9, leading to forces that vary along the chromatin fiber.
Cytoskeletal elements, such as actin filaments, are acted upon by
molecular motors to create the contractile apparatus of a cell—
a crucial component for functions ranging from cell crawling to
muscle stretching10,11,12,13,14,15. The development of a robust
physical framework is necessary to understand the impact of these
active fluctuations on biopolymer structure and dynamics and to
gain a comprehensive mechanistic understanding of the biologi-
cal functions they serve.

Parallel to our growing understanding of biopolymer dynamics
and structure through state-of-the-art experimental techniques,
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there have been numerous efforts in recent decades to model
the active fluctuations occurring on polymers. On one hand,
filament-like polymers are categorized as semiflexible and forced
by tangential propulsion by molecular motors or self-propulsion
of the monomers, leading to hydrodynamic interactions with
their ambient fluids and the emergence of large-scale coherent
flows16,17,18,19,20,21,22,23. On the other hand, biopolymers like
chromatin have lengths significantly surpassing their persistence
lengths and are effectively modeled as flexible polymers. While
understanding the multi-scale behavior of chromatin requires
consideration of inter-bead interactions, and evaluating chromo-
somal structure at nucleosome resolution necessitates accounting
for bending rigidity24,25,26,27,28, flexible polymer models consis-
tently capture meso-scale dynamics29,30,31,32,33 and can accom-
modate environmental viscoelasticity30,34,35, architectural loop-
ing32,36, and hydrodynamics37,38. Active fluctuations acting on
flexible polymers are typically regarded as stochastic perturba-
tions from the surroundings, affecting all chain monomers non-
specifically37,38,39,40,41,42. However, these models do not assess
the impact of active fluctuations localized to specific sites on the
biopolymer. Previous studies leveraging theoretical analyses43

and simulations44 capture the influence of localized active forces
on polymer structure, revealing elongation and swelling of the
polymer chain due to the localized fluctuations.

We present a general framework in this paper that extends
the physical behavior of flexible polymers45 to incorporate fluc-
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Fig. 1 Conformation of a flexible polymer chain subject to local active
fluctuations. The gray curve represents the three dimensional confor-
mation of the chain and the red arrows denote the unit vectors in the
direction of the active fluctuation.

tuations that are correlated to bead positions. We allow these
fluctuations to have a generic temporal correlation to account
for their non-thermal nature. Our subsequent analyses focus on
active fluctuations localized at specific sites along the polymer,
characterized by a finite temporal persistence with a well-defined
timescale. These results complement previous studies43,44 by
analyzing the multiscale dynamics of the polymer chain. We
highlight how these active fluctuations influence polymer dynam-
ics across various timescales and its structure at different length
scales, depending upon their proximity to the source of the fluc-
tuations. We also explore how the direction of these active fluctu-
ations alters the polymer conformation. In this work, we specifi-
cally emphasize on how different experimental observables reveal
the presence of a site on a polymer undergoing active fluctua-
tions, its position along the polymer chain, and the characteristic
timescale governing the persistence of these fluctuations.

2 Model and Theory

We outline the model to predict the dynamics of a flexible poly-
mer chain in a viscous medium subject to Brownian and active
fluctuations with a general spatio-temporal pattern (Fig. 1). We
define a polymer chain as a space curve r⃗(n, t) with monomer po-
sition n that runs from 0 at one end of the chain to the total chain
length N, defined as the number of Kuhn lengths b in the poly-
mer. In this model, the position of the nth segment of the polymer
r⃗(n, t) evolves according to the Langevin equation of motion45

ξ
∂ r⃗(n, t)

∂ t
=

3kBT
b2

∂ 2⃗r(n, t)
∂n2 + f⃗ B(n, t)+ f⃗ A(n, t), (1)

where ξ is the coefficient of viscous drag on a monomer seg-
ment. This treatment of the viscous drag neglects long-range
hydrodynamic interactions, which tend to be screened and negli-
gible within the crowded environment in a living cell. However,
changes within the environment that alter the degree of crowding
may necessitate a more refined model for hydrodynamic interac-
tions37,38.

The Brownian force f⃗ B arises from thermal fluctuations at tem-
perature T and is governed by the fluctuation dissipation theo-
rem, written as

⟨ f⃗ B(n, t) f⃗ B(n′, t ′)⟩= 2kBT ξ δ (n−n′)δ (t − t ′)I, (2)

where I is the identity matrix45. We define the spatio-temporal
correlation of the active fluctuations as

⟨ f⃗ A(n, t) f⃗ A(n′, t ′)⟩= kBT ξ Z(n,n′)κ(|t − t ′|)I, (3)

where Z(n,n′) and κ(|t − t ′|) respectively define the spatial and
temporal correlation of the active fluctuation normalized by the
thermal fluctuation. The boundary conditions reflecting the

force-free condition at both the chain ends
∂ r⃗(n, t)

∂n
(n = 0, t) =

∂ r⃗(n, t)
∂n

(n = N, t) = 0.

The configuration of a flexible polymer is often studied as a
linear superposition of orthonormal modes, which are eigenfunc-
tions associated with Eq. 1 and are defined as

φp(n) =

{
1 p = 0
√

2cos
( pnπ

N
)

p > 0.
(4)

The time-dependent amplitude of the pth mode can be calculated

as X⃗p(t) = N−1
∫ N

0
r⃗(n, t)φp(n)dn. An inner product of Eq. 1 with

the pth eigenmode gives us the equation of motion of amplitude
of the pth eigenmode

Nξ
dX⃗p

dt
=−3p2π2kBT

Nb2 X⃗p + f⃗ B
p (t)+ f⃗ A

p (t), (5)

where f⃗ B
p (t) =

∫ N

0
f⃗ B(n, t)φp(n)dn and f⃗ A

p (t) =
∫ N

0
f⃗ A(n, t)φp(n)dn.

From Eqs. 2 and 3 respectively, the correlation be-
tween the pth and qth eigencomponent of the fluctu-
ation is given by ⟨ f⃗ B

p (t) f⃗ B
q (t ′)⟩ = 2kBT Nξ δpqδ (t − t ′)

and ⟨ f⃗ A
p (t) f⃗ A

q (t ′)⟩ = kBT Nξ Lpqκ(|t − t ′|), where Lpq =

N−1
∫ N

0

∫ N

0
Z(n,n′)φp(n)φq(n′)dn′dn.

We now determine the time-correlation of modal amplitudes,
defined as Cpq(t) = ⟨X⃗p(t) · X⃗q(0)⟩. Using Eq. 5 and properties of
fluctuating forces, f⃗ B

p and f⃗ A
p (t), we derive (Supplementary Ma-

terial note 1) that for {p,q}> 0

Cpq(τ) =
Nb2

π2 exp(−p2
τ)

[
δpq

p2 + (6)

LpqτR

∫
τ

−∞

∫ 0

−∞

dτ2dτ1 exp
(

p2
τ1 +q2

τ2
)
κ
(
|τ1 − τ2|)

]
,
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where τR = ξ N2b2/(3π2kBT ) is the characteristic time of re-
laxation of the longest wavelength mode of the chain (i.e.
p = 1), often referred to as the Rouse time, and time is non-
dimensionalized as τ = t/τR. We note that for a general function
Z(n,n′), Lpq can be non-zero for p ̸= q, suggesting coupled motion
of different modes that is not exhibited in the absence of active
forces.

In this article, we focus on active fluctuations at a specific seg-
ment n0 with exponentially decaying temporal correlation, simi-
lar to an Ornstein–Uhlenbeck process43,46,47,48 often used to de-
scribe active processes in biological context. Specifically, we de-
fine

Z(n,n′) = NΓδ (n−n0)δ (n′−n0) (7)

κ(t, t ′) = t−1
A exp

(
−|t − t ′|/tA

)
. (8)

We define Γ to represent the ratio of the squared strength of to-
tal active and Brownian fluctuations on the polymer, and tA is the
timescale of persistence of the active fluctuation. This definition
of spatio-temporal correlation in Eq. 6 leads to (see Supplemen-
tary Material note 1)

Cpq(τ) =
Nb2

π2

{
δpq

p2 exp(−p2
τ)+ (9)

ΓkAφp(n0)φq(n0)

(kA − p2)

[
2kA

(p2 +q2)

exp(−p2τ)

(kA + p2)
− exp(−kAτ)

(kA +q2)

]}
,

where kA = τR/tA. In the following section, we utilize this expres-
sion to study the impact of the point active fluctuation at the mid-
dle of the chain (i.e. n0 = 0.5N) on the structure and dynamics of
the polymer as a function of Γ and kA, two dimensionless param-
eters representing the strength and timescale of the fluctuations,
respectively.

3 Results

The theoretical foundation established in the preceding section
allows us to calculate several statistical quantities related to con-
formation and dynamics of polymers. These quantities can be ob-
served from the cutting-edge experimental tools utilized to study
structure and dynamics of biopolymers such as chromatin.

3.1 Effect of local active fluctuation on dynamics

We begin our analysis with the mean squared displacement
(MSD) of a tagged segment n of the polymer in time t. This
quantity is captured from live imaging of a marker attached to
a specific site along a chromosome30,34,49. The MSD has contri-
butions from both the center of mass fluctuations (i.e. p = 0) as

well as internal fluctuations in the structure (i.e. p > 1), such that

MSD(n, t) = ⟨[⃗r(n, t)− r⃗(n,0)]2⟩

=

〈[⃗
rcom(t)− r⃗com(0)

]2
〉
+ (10)

2
∞

∑
p=1

φp(n)
〈[⃗

rcom(t)− r⃗com(0)
]
·
[
X⃗p(t)− X⃗p(0)

]〉
+

∞

∑
p=1

∞

∑
q=1

φp(n)φq(n)
[
2Cpq(0)−Cpq(t)−Cqp(t)

]
.

For the specific case of active fluctuation at a point source with
exponential decay of correlation with time (Eq. 8), we use the Cpq

A

C

Brownian

Total

B

Fig. 2 (A) A schematic of a polymer at time 0 (thick line) and t (thin
line), where the red point denotes the segment subject to active fluc-
tuation, the arrow denotes the direction of active force, and the double
arrow denotes the magnitude of the displacement of the segment in time
t. (B) Mean squared displacement (MSD) and (C) apparent slope on a
logarithmic scale as a function of time for a polymer subject to active
fluctuation at the middle of the chain (i.e. n0 = 0.5N) and characterized
by Γ = 1,and kA = 100. The black, blue, and orange curves denote the
total MSD and the contributions of the Brownian and active fluctuations,
respectively.
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Fig. 3 The slope of MSD as a function of time for different segments.
The color of the plot denotes the distance from the source of active
fluctuation as shown in the colorbar. In the schematic above the plot,
segments are labeled with their respective color in the plot. The source
of the active fluctuation is denoted with an arrow.

from Eq. 9 for the contributions of internal fluctuations to derive
the center of mass contributions to be (Supplementary Material
note 2) 〈

[⃗rcom(τ)− r⃗com(0)]2
〉
= (11)

2Nb2

π2

[
(1+Γ)τ +

Γ

kA
[exp(−kAτ)−1]

]
,

〈
[⃗rcom(τ)− r⃗com(0)] ·

[
X⃗p(τ)− X⃗p(0)

]〉
= (12)

Nb2
ΓkAφp(n0)

[
2kA[1− exp(−p2τ)]−2p2[1− exp(−kAτ)]

p2π2(k2
A − p4)

]
,

where τ = t/τR.
First, we focus on the dynamics of the segment that itself is

subject to active fluctuations (Fig. 2A). Our theory predict a sig-
nificant enhancement in segmental dynamics in comparison to its
Brownian-only counterpart, and the dynamics exhibit dramatic
transitions across time scales (Fig. 2B). To illustrate the transi-
tions further, we plot the local power-law scaling of the MSD in
Fig. 2C. At very short times, the MSD follows a t0.5 scaling. Then,
the slope increases from 0.5, followed by a subsequent decay, and
finally trending back to a scaaling t1 at very long times (Fig. 2C).

We investigate this transition further by decomposing the MSD
into Brownian (i.e. Γ = 0) and active components. Similar to
a Rouse chain, the Brownian component shows a t0.5 scaling at
short times, and at t > τR, it exhibits a scaling of t1. On the other
hand, the active component approaches a ballistic behavior (i.e.
t2 scaling) at very short times. The active scaling loses its bal-
listic nature at time scales where the active fluctuations decor-
relate (i.e. at times t > tA = k−1

A τR), eventually approaching a

scaling of t1 at t > τR. The total MSD significantly deviates from
the Brownian MSD under conditions where the active MSD dom-
inates over Brownian MSD. We show that, at the short time, the
Brownian MSD scales as

√
t/τR. Whereas, the active MSD scales

as Γk2
A(t/τR)

2, suggesting a time scale of transition ∼ (Γk2
A)

−2/3τR.
The slope of the logarithm of total MSD decays again when the
active MSD loses its ballistic nature in k−1

A τR. Finally in t > τR,
the active and Brownian MSD approach a scaling of t, and the
polymer behaves like a Rouse chain with an enhanced effective
temperature [i.e. T (1+Γ)].

Next, we investigate the effect of the active fluctuation in the
dynamics of the segments which are not subject to active fluctua-
tions. In Fig. 3, we show the power-law scaling of the MSD for
segments at different distances from the source of the active fluc-
tuation. We observe non-monotonic behavior in the MSD scaling
similar to the predicted behavior at the active source in Fig. 2.
However, the deviation from the Brownian behavior is delayed
and less prominent as we move further away from the active
source. The result suggests that from long-time live imaging of
multiple tracers on a biopolymer at different locations, we can
estimate the position of active sources by identifying the tracers
that show fastest and most significant deviation from the Brown-
ian MSD.

3.2 Effect of local active fluctuation on conformation

We study the effect of active fluctuations on the local conforma-
tion of the polymer. Specifically, we focus on the inter-spot dis-
tance between two specific segments on the polymer. This quan-
tity can also be captured experimentally from live imaging of two
or more fluorescent markers postioned at specific locations along
the chromosome49,50 or from multiple optical reconstruction of
polymer structures from fixed imaging51,52. We show that the en-
semble average of squared distance between two spots centered
around the segment at n̄ and separated by δ segment (Fig. 4A) is
given by 〈

∆⃗r2(n̄,δ )
〉
=

∞

∑
p=1

∞

∑
q=1

Cpq(0)∆φp(n̄,δ )∆φq(n̄,δ ), (13)

where ∆φp(n̄,δ ) = φp(n̄+ δ/2)−φp(n̄− δ/2). In Fig. 4B, we plot
the mean squared distance between two points centered at a fixed
point but with different segment length between them and show
the contributions of the Brownian and active fluctuations sepa-
rately. The mean squared distance between two segments for a
flexible chain only subject to Brownian fluctuation (i.e. a Rouse
chain) is proportional to the number of Kuhn segment between
them (i.e. ⟨∆r2⟩ = δb2). On the other hand, the contribution
from the active fluctuation scales with the square of the number
of segments between them suggesting an elongated structure in a
specific direction. Near the source of active fluctuation the active
contribution scales as ∼ (ΓkA/N)δ 2b2. These scaling relations sug-
gest that the contribution of the active fluctuations to the confor-
mation dominates over the Brownian contribution only beyond a
critical length scale δ ∗ = N/ΓkA. We note that for the well-studied
case of a flexible polymer chain subject to a force or a flow in a
specific direction, the critical length-scale is also inversely propor-
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tional to the square of the magnitude of the force53,54,55.
Subsequently, we calculate the inter-spot distance of spots sep-

arated by same segment distance but centered at different posi-
tions (Fig. 4C). Our calculation shows that the inter-spot distance
decreases as we move away from the source of the fluctuation.
Whereas in the absence of any local active fluctuation, the dis-
tance is same irrespective of where the spots are centered. The
length scale of the decay of the inter-spot distance gives us an es-

A

C

B

Brownian

Total

Fig. 4 (A) A schematic showing distance ∆r between two tracers (blue)
on a polymer chain separated by segment length δ centered at n̄ subject
to active fluctuations (red arrow) at the segment n0. (B) Mean squared
inter-spot distance ∆r2 as a function of segment distance (δ) between the
spots for n̄= 0.45N, n0 = 0.5N, Γ= 10, and kA = 10. The three curves show
the total mean squared inter-spot distance (black) and the contributions
from Brownian (blue) and active (orange) fluctuations. The Brownian
and active fluctuations exhibit scalings of δ and δ 2 respectively. (C) The
black curve shows mean squared inter-spot distance ∆r2 separated by δ =

0.01N as a function of n̄ for Γ= 10 and kA = 10. The double arrow denotes
the segment distance w1/2, denoting the distance at half maximum. The
inset shows a plot of w1/2 as a function of kA, exhibiting a scaling of -1/3
power.

timate of the range of influence of the active fluctuation from its
source. Specifically, we define this length scale to be w1/2, where
the mean squared inter-spot distance is the geometric mean of the
mean squared inter-spot distances at the source of active fluctua-
tions and the mean squared inter-spot distance for a Rouse chain
given by 〈

∆⃗r2(w1/2,δ )
〉
=

1
2

[〈
∆⃗r2(n0 +δ/2,δ )

〉
+δb2

]
. (14)

We find that w1/2 is insensitive to Γ, and is proportional to k−1/3
A

for sufficiently small δ (Fig. 4C inset) suggesting that a local ac-
tive fluctuation persisting for longer time (i.e. lower kA) has a
longer range of influence from the source. Altogether, these re-
sults show that local active fluctuations create elongated struc-
tures around the active source in comparison to the rest of the
chain.

Next, we examine the effect of local active fluctuations on the
global structure of the polymer. We quantify the swelling of the
polymer due to the local active fluctuations by calculating the
square of the radius of gyration in excess of the squared radius of

A

B

Fig. 5 Excess squared Radius of gyration (A) as a function of Γ with
fixed values of kA and (B) as a function of kA with fixed values of Γ. The
dotted line in (A) represents a slope of 1 in logarithmic scale.
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Fig. 6 Conformation of a polymer subject to local active fluctuation at the middle of the chain (i.e. n0 = 0.5N) as a function of Γ and kA. The color
of the segment represents its position along the chain as shown in the colorbar .

gyration of a Rouse chain, given by

(R2
g)

ex =
∞

∑
p=1

Cpp(0)−
Nb2

6
. (15)

We find that the excess squared radius of gyration is linearly pro-
portional to Γ (Fig. 5A) but has a very weak dependence on
kA (Fig. 5B). Although a higher kA elongates the polymer to a
larger extent (as the force is higher), it elongates only a smaller
portion of chain (Fig. 4 C), since the range of action decreases
with kA. These two factors offset each other in terms of the
swelling of the entire chain.

Finally, we visualize the conformation of the polymers gener-
ated by the local active fluctuations in Fig. 6. We choose val-
ues of {X⃗p} from its steady-state distribution, which is a multi-
variate normal distribution characterized by mean zero (as there
is no directional bias of the fluctuations) and covariance matrix
with entries ⟨X⃗ ss

p · X⃗ ss
q ⟩ = Cpq(0) and construct the conformation

r⃗(n) =
pmax

∑
p=1

X⃗ ss
p φp(n). We use pmax = 10000 for this construction. As

predicted in Figs. 4 and 5, we observe the structure to swell with
an increase of Γ, and the elongation becomes more local to the
source of active fluctuation with increase of kA.

3.3 Correlation of conformation and active fluctuation

In the conformations generated in Fig. 6, we observed that the
presence of active fluctuations swells and elongates the structure
in a consistent direction. Moreover, as the active fluctuation con-
tributes only to the even modes for this specific case (Supplemen-
tary Fig. S1), the elongation demonstrates symmetry with respect
to the source of the active fluctuation, creating hairpin-like struc-

tures. We proceed to determine whether the conformation of the
structure is influenced by the direction of the active fluctuation.
We numerically simulate Eq. 1 (Supplementary Material note 3)
and track both the polymer position as well as the direction of

Fig. 7 Correlation of the active fluctuation and local conformation at
a specific segment as a function of time delay t averaged over multiple
simulations conducted with parameters Γ = 10, and kA = 100. The colors
correspond to segments at different distances from the source of the
active fluctuations, as shown in the colorbar. Dotted lines mark the time
tmax(n−n0), which corresponds to the maxima of S(n, t). Above the plot,
we show a conformation of a polymer at time 0 in gray. The black arrow
denotes the active fluctuation at n0 at that time. The other arrows are
centered at n and represent the unit vectors in the direction of active
fluctuation at −tmax(n−n0).
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active fluctuation. Moreover, we quantify the correlation of the
local tangent at segment n with direction of the active fluctuation
at time t before by defining the metric

S(n, t) =
|⃗rs(n,0) · f⃗A(−t)|
|⃗rs(n,0)|| f⃗A(−t)|

, (16)

where r⃗s(n,0) = [⃗r(n+ δ ,0)− r⃗(n− δ ,0)]/2δ is the local tangent
at time 0, and f⃗A(−t) is the active fluctuation at the source n0 at
time −t (i.e. before time 0).

Our calculation shows that the conformation near the source
of active fluctuation is highly aligned with the direction of active
fluctuation (i.e. lim

n→n0
S(n,0) = 1) (Fig. 7). As we move further

from the source of the fluctuation, the local tangent at n becomes
maximally correlated with the direction of active fluctuation at a
finite time tmax(n− n0) before time 0 (Fig. 7). The result shows
the local tangent at the segment n at time 0 gives us an estimate
of the direction of the active fluctuation at −tmax(n− n0). This
result suggests that the current conformation provides evidence
for the past active forces, since the tangent at position n correlates
to the past active force through the non-local stress propagation
along the chain. We illustrate this physical effect with an example
snapshot in Fig. 7. Altogether, these results highlight that the
conformation at a given time contains the history of the active
fluctuation.

4 Conclusions
In this article, we present an analytical theory to comprehensively
examine the effects of active fluctuations with any temporal cor-
relation and spatial correlation along the chain. We demonstrate
the power of this approach by analyzing the case of active fluctu-
ations localized at a single chain segment with exponential decay
of correlation in time. We show that such active fluctuations re-
sult in a significant departure from the behavior of a Rouse chain
both in terms of structure and dynamics. We quantitatively iden-
tify the length and time scale associated with such departure by
comparing the effect of Brownian and active fluctuations. On the
other hand, we show that the local nature of the fluctuation intro-
duces a variation in dynamics and structure associated with the
proximity to the source of the active fluctuation. Our numerical
simulations have revealed that the configuration of the polymer
retains a historical record of the active fluctuations.

We note that in this article, we deliberately focus on the quan-
tities that can also be captured using contemporary experimental
tools. This suggests that this framework can be utilized to infer
the nature of the active fluctuation from the current experimen-
tal approaches. From the results presented in this paper, we can
estimate the location and correlation time of a point active fluc-
tuation by calculating the mean squared displacement (MSD) of
tracers and the mean squared inter-spot distance (∆r2) of multi-
ple traces from live and fixed imaging data. Guided by this frame-
work, we envision that inverse problems may be formulated and
solved using Bayesian-inference enabled optimization techniques
that will infer the spatial and temporal correlations of the active
fluctuations from the trajectory of a few loci on a polymer56,57,58.
On the other hand, within models employed to depict the over-

all organization of biopolymers, the active force profile, varying
with monomer position, can be regarded as an input to assess its
influence on the global structure.

In summation, this model empowers us to understand and in-
terpret the spatial and temporal correlation of active fluctuations
within flexible biopolymers, revealing their impact on the struc-
ture, dynamics, and eventually functionality within the living sys-
tems.
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